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We employ a functional renormalization group approach to ascertain the pairing mechanism and
symmetry of the superconducting phase observed in rhombohedral trilayer graphene. Superconductivity in
this system occurs in a regime of carrier density and displacement field with a weakly distorted annular
Fermi sea. We find that repulsive Coulomb interactions can induce electron pairing on the Fermi surface by
taking advantage of momentum-space structure associated with the finite width of the Fermi sea annulus.
The degeneracy between spin-singlet and spin-triplet pairing is lifted by valley-exchange interactions that
strengthen under the RG flow and develop nontrivial momentum-space structure. We find that the leading
pairing instability is d-wave-like and spin singlet, and that the theoretical phase diagram versus carrier
density and displacement field agrees qualitatively with experiment.
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Introduction.—Recent experiments have demonstrated
that graphene multilayers can exhibit rich strong-correlation
physics [1–18], including broken spin–valley flavor sym-
metries and superconductivity,when the layers are twisted to
magic angles that yield extremely flat moiré superlattice
bands [19–23]. Twist angle changes during processingmake
systematic studies more difficult, however, and devices
inevitably have some twist-angle disorder [24]. For this
reason, the recent observation [25,26] of superconductivity
and broken flavor symmetries in untwisted rhombohedral
trilayer graphene (RTG) has been a pleasant surprise. In the
regime of displacement field and carrier density where
strong correlations have been observed, the normal state
is a two-dimensional hole gas with a distorted annular Fermi
surface, which has been precisely characterized using
quantum oscillation measurements [25,26] that take advan-
tage of the exceptional sample perfection. The strongest
superconductivity appears as an instability of a flavor-
symmetric paramagnetic normal state and has an in-plane
criticalmagnetic field that seemsmost compatiblewith spin-
singlet pairing [27,28].
Several ideas have already been explored in connection

with superconductivity in RTG [29–35]. Conventional
acoustic-phonon-mediated attraction [29] can explain
superconductivity only if direct Coulomb interactions
between electrons do not play a significant role. The
experimental observation of a nearly temperature-indepen-
dent resistivity up to 20 K suggests that electron-phonon
interactions are relatively weak [25], however, arguing
against this mechanism. Intervalley coherence fluctuation
mediated pairing was proposed as a possibility [30,31,33],
motivated by the experimental observation that supercon-
ductivity is proximal to a phase transition to a partially

isospin polarized (PIP) phase [30]. However, the observa-
tion of a sudden jump in quantum oscillation frequencies
between superconducting (SC) and PIP phases [25] indi-
cates that the phase transition is first order and therefore
that these critical fluctuations will not be strong. Since
superconductivity in RTG is in the clean limit, the Kohn-
Luttinger (KL) mechanism [36] has also been considered as
a possibility [32,35]. It was demonstrated that super-
conductivity can arise from the combination of annular
Fermi surfaces and long-range Coulomb repulsion in RTG
when a random phase approximation (RPA) is employed
[32,37].
In this Letter, we apply the functional renormalization

group (FRG) method to investigate the pairing mechanism
and symmetry in RTG. We start with long-range bare
Coulomb interactions, and include a valley-exchange inter-
action that is ∼100 times weaker than intra- and intervalley
interactions because the Fermi surfaces are small in size
compared to the RTG Brillouin zone. We find that the
valley-exchange interaction is enhanced under the RG flow
and develops nontrivial momentum-space structures that
cannot be represented by a simple momentum independent
intervalley Hund’s coupling [30,31]. The enhanced valley-
exchange interaction breaks valley-SU(2) symmetry and
lifts the degeneracy between spin-singlet and spin-triplet
pairing. The renormalized pairing interactions deve-
lop features at cross-annulus momentum transfers due to
inter-Fermi surface particle-hole fluctuations. For exper-
imentally relevant ratios of the annulus radii, these features
favor d-wave spin-singlet pairing and p-wave spin-triplet
pairing on the inner and outer Fermi surfaces, respectively.
The competition between pairing and particle-hole channel
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instabilities is sensitive to the Fermi-level density of states
as well as the precise annulus shape.
Model.—We employ the well established six-band con-

tinuum model detailed in the Supplemental Material [38]
that accounts for long-range Coulomb interactions, gate
and dielectric screening, and all pertinent details of the low-
energy electronic structure. In the following calculations,
we choose the displacement field-induced electrostatic
potential Δd ¼ 30 meV and carrier density ne ¼ −1.75 ×
1012 cm−2 as representative [38]. The corresponding annu-
lar Fermi surfaces are illustrated in Fig. 1(a). To capture the
competition between superconductivity, intervalley coher-
ence, and spin-polarized half metals in RTG, we employ the
temperature-flow FRG scheme because it properly
accounts for small-q particle-hole fluctuations [44–46].
The technical details of the present study are similar to
earlier works [44,47–49], especially those in multiorbital
systems with more than one Fermi surface [50–52]. To
implement numerical FRG calculations, we set the initial
temperature to T0 ∼ 11600 K [38] and employ the N-patch
scheme [44,53] illustrated in Fig. 1(a).
The one-loop FRG flow equations for four-point vertices

(4PVs) with spin-SU(2) symmetry are depicted diagram-
matically in Fig. 1(b). These diagrams are similar to
KL-mechanism diagrams [36], previously employed to
study pairing instabilities in graphene-based systems
[32,35,54–61]. The essential difference between the KL
diagram and the FRG flow equation is that the former

focuses only on the irreducible pairing vertex while the
latter retains all 4PVs on an equal footing, making it
possible to explore competing orders. Moreover, particle-
hole fluctuations that do not develop instabilities can, upon
reducing temperature, still give progressively larger con-
tributions to the RG flow of the pairing vertex, leading to an
enhancement of the pairing instability. Appealing to stan-
dard rescaling and power counting arguments [47,49], we
focus on the zero-frequency 4PVs with momenta on the
Fermi surfaces. We therefore choose the wave vectors
marked by circles in Fig. 1(a) to represent each patch and
approximate the 4PVs by uðk1; k2; k3Þ ¼ uðn1; n2;n3Þ for
all wave vectors ki in the same patch ni [62]. The fourth
wave vector is determined by momentum conservation. As
shown in Fig. 2(a), the 4PVs can be classified as intravalley
(ua), intervalley (ut), or valley exchange (ue) using the
definitions

uaðn1; n2; n3Þ ¼ uðKn1; Kn2;Kn3Þ;
utðn1; n2; n3Þ ¼ uðKn1; K0n2;K0n3Þ;
ueðn1; n2; n3Þ ¼ uðKn1; K0n2;Kn3Þ; ð1Þ

where the patch indices are associated with valleys. For
example, n2 in ua and ut are on K- and K0-valley Fermi
surfaces, respectively. Time-reversal symmetry requires
uðτ1n1; τ2n2; τ3n3Þ ¼ u�ðτ̄1n̄1; τ̄2n̄2; τ̄3n̄3Þ, where n̄ de-
notes the opposite patch number of n on the same Fermi
surface. Using these conventions, the valley index can be
removed from the FRG flow equations (see Supplemental
Material [38]).
Renormalized pairing interaction.—The initial values of

the 4PVs are obtained by patch averaging bare Coulomb
interactions using band eigenstates to calculate wave func-
tion overlap factors (see Sec. IV in the Supplemental
Material [38]). For opposite-valley electron pairing, the
relevant 4PVs are utðn1; n̄1; n̄2Þ and ueðn1; n̄1;n2Þ, where
the outgoing momenta belong to K and K0 valleys. The
initial values of ue are much weaker (less than 1%) than

(a)

(b)

FIG. 1. (a) Patching scheme for the annular Fermi surfaces
(solid curves). The momentum space around each valley is
divided into 48 patches. The circles on the Fermi surfaces specify
the wave vectors at which we evaluate 4PVs. The dotted curves
identify the wave vectors at which energy maxima occur along
radial directions, and separate patches that belong to the inner and
outer Fermi surfaces in our FRG calculations. (b) Diagrammatic
representation of the one-loop RG flow equation for 4PVs,
including particle-particle (PP), exchange (EX), and forward
scattering (FS) contributions. Here the temperature T is the RG
flow time, and the slashes on the propagators denote temperature
derivatives [44].

(a) (b) (c)

FIG. 2. (a) Schematic diagrams of ua;t;e. (b)–(c) Renormalized
pairing interactions at temperature T ¼ 70 mK, including
(b) utðn1; n̄1; n̄2Þ and (c) ueðn1; n̄1; n2Þ. The bottom-left and
top-right 24 × 24 blocks are scatterings on the inner and outer
Fermi surfaces, respectively. The remaining blocks are scatterings
between the inner and outer Fermi surfaces.
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those of ut because the magnitude of the intervalley
momentum transfer is much larger than the typical size
of the annular Fermi surfaces in RTG [38]. As shown in
Figs. 2(b) and 2(c), ut and ue flow to comparable magni-
tudes as temperature is reduced to T ¼ 70 mK. The
effective pairing interactions are

Vs;t ¼ utðn1; n̄1; n̄2; n2Þ � ueðn1; n̄1; n2; n̄2Þ; ð2Þ

where the upper (lower) sign is for spin-singlet (spin-
triplet) pairing, and the fourth patch index is restored
based on momentum conservation. The results shown in
Figs. 2(b) and 2(c) indicate that the inner Fermi surface
prefers spin-singlet pairing because ut and ue share similar
momentum-space structure, resulting in jVsj > jVtj. In
contrast, scatterings across the annular Fermi surfaces
and on the outer Fermi surface prefer spin-triplet pairing
because ut and ue possess opposite momentum-space
structures, leading to jVsj < jVtj.
Pairing symmetry.—The gap function at Tc is specified

by the solution of the linearized gap equation. For the
present study, we find that the spin-singlet and spin-triplet
gap functions are mainly determined by the momentum-
space structures of Vs;t and can be well approximated by
the eigenvectors of the largest magnitude negative eigen-
values of Vs;t (see details in the Supplemental Material
[38]). Figure 3(a) plots several of the lowest eigenvalues of
Vs;t as a function of T. We find that the strongest spin-
singlet and spin-triplet channels are, respectively, d-wave-
like and p-wave-like, and that both channels have doubly
degenerate eigenvectors. Figure 3(b) plots the magnitudes
of the chiral d� id and p� ip combinations of these
eigenvectors, which are stablized below the critical temper-
atures [38]. Note that the leading pairing instability is
spin-singlet d-wave-like because it possesses the lowest

eigenvalue as shown in Fig. 3(a). The deep minima in the
gap function on the outer Fermi surface in Fig. 3(b) are due
to strong mixing between different angular momentum
channels. The terminology used to distinguish p- and
d-wave pairings is justified by the Fourier coefficients of
both gap functions given in Fig. 3(c), where one angular
momentum is always dominant. Figure 3(d) illustrates the
d − id and p − ip gap structures, which are largest on the
inner Fermi surface for spin-singlet d-wave pairing and
are comparable in magnitude on the inner and outer Fermi
surfaces for spin-triplet p-wave pairing.
Figures 3(f)–3(g) decompose the spin-singlet d-wave

(Vd
s ) and spin-triplet p-wave (Vp

t ) pairing interactions into
contributions from inner-, inter-, and outer-Fermi surface
scatterings illustrated in Fig. 3(e) (details in Supplemental
Material [38]). We find that Vd

s is dominated by scattering
on the inner Fermi surface while the strongest contribution
to Vp

t is the inter-Fermi surface scattering, which explains
the comparable pairing amplitudes on the annular Fermi
surfaces in the spin-triplet p-wave channel. The ultimate
pairing symmetry depends on the competition between all
three types of scattering, which depends in turn on the
Fermi surface shape as we show later.
Pairing mechanism.—Figures 4(a) and 4(b) depict the

EX diagram contributions to ut and ue, and the associa-
ted intervalley (Πph

KK0 ) and intravalley (Πph
KK) particle-hole

susceptibilities are plotted in Figs. 4(c) and 4(d). By
comparing Figs. 4(c)–4(d) with Figs. 2(b)–2(c), we find
that the momentum-space structures of these susceptibil-
ities are responsible for the momentum-space structures
developed in the pairing interactions under FRG, which in
turn control the pairing symmetry discussed earlier. For
RTG, the momentum-space structures of Πph

KK0 and Πph
KK

arise primarily from inter-Fermi surface nesting, as illus-
trated in Figs. 4(d) and 4(e). In fact, the high-temperature

(a) (b) (d)

(c) (e)

(f) (g)

FIG. 3. (a) Temperature flows of pairing interaction in channels distinguished by gap function symmetries. (b) Magnitudes of spin-
singlet d� id and spin-triplet p� ip gap functions on the Fermi surfaces. (c) Angular momentum amplitudesΔm of the gap function on
the inner (left) and outer (right) Fermi surfaces. (b)–(c) are calculated at T ¼ 70 mK. (d) Spin-singlet d − id and spin-triplet p − ip gap
functions on the K-valley Fermi surfaces, where the length and direction of arrows specify gap amplitude and phase. (e) Schematic
diagram of the inner-, inter-, and outer-Fermi surface scatterings that constitute the total pairing interaction utðn1; n̄1; n̄2; n2Þ. Similar
definitions are used for ueðn1; n̄1; n2; n̄2Þ. (f)–(g) Contributions from the three types of scatterings illustrated in (e) to pairing interactions
in (f) spin-singlet d-wave and (g) spin-triplet p-wave channels.
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initial stage of the RG flow is dominated by FS processes
that screen the long-range Coulomb interaction. The EX
enhancement becomes important in the intermediate tem-
perature regime, giving rise to the momentum-space
structures of the pairing interactions, which are then
amplified by the PP diagram upon further reducing temper-
ature [38]. Therefore, we argue that the KL-like finite
angular momentum pairing we have found stems from
particle-hole fluctuations that are enhanced by inter-Fermi
surface nesting.
It is instructive to analyze the pairing symmetry using the

simplified circular Fermi surface model shown in Fig. 4(f)
for which the electron energy spectrum is valley inde-
pendent [38]. Therefore, Πph

KKðkn1 − kn2Þ ¼ Πph
KKðθÞ and

Πph
KK0 ðkn1 þ kn2Þ ¼ Πph

KKðπ þ θÞ, where θ denotes the angle
spanned by kn1 − kn2 on the Fermi surfaces. The π-phase

difference between Πph
KK and Πph

KK0 is distorted by trigonal
warping in Figs. 4(c) and 4(d). Performing Fourier series
expansion in θ,

−Πph
KKðθÞ ¼

X

m

Am cosðmθÞ: ð3Þ

Since the momentum-space structures of the pairing
interactions are primarily determined by those of the
particle-hole susceptibilities, we approximate δutðθÞ ∝
−huti2Πph

KK0 ðθÞ and δueðθÞ ∝ −huaihueiΠph
KKðθÞ, where

hua;t;ei denote their averaged values over θ [38].
Combining with Eqs. (2) and (3), the singlet and triplet
pairing interactions in the m-wave channel Vm

s;t ∝
½ð−1Þm � 1�Am. As shown in Fig. 4(f), inter-Fermi surface
nesting enhances −Πph

KKðθÞ around θ1 and θ2 on the inner

and outer Fermi surfaces. For this study, θ1 ∼ π=2, leading
to −A2 > jA1j, and hence preferring spin-singlet d-wave
(m ¼ 2) pairing on the inner Fermi surface. In contrast,
θ2 < π=6, which results in A1 > jA2j and prefers spin-
triplet p-wave (m ¼ 1) pairing. Inter-Fermi surface scatter-
ing always prefers spin-triplet p-wave pairing because
−Πph

KKðθÞ exhibits a maximum at θ ¼ 0, as indicated in
Fig. 4(d). Overall, the competition between d-wave singlet
and p-wave triplet pairings in RTG is sensitive to the shape
of the annular Fermi surfaces.
Phase diagram.—Quantitative prediction of supercon-

ducting critical temperature Tc from FRG calculations
stands as a challenging issue [43,47]. Here we provide
crude Tc estimates by solving linearized gap equations
with an effective interaction (see details in Sec. VI of
Supplemental Material [38]). For the electron pairing
channel, the linearized gap equation is

Δs;tðnÞ ¼ −
X

n1

Πpp
KKðn1ÞVs;tðn1; n̄1; n̄; nÞΔs;tðn1Þ; ð4Þ

where Δs;t are spin-singlet and spin-triplet order parame-
ters, Πpp

KKðn1Þ denotes the particle-particle susceptibility,
and the renormalized pairing interactions Vs;t are given by
Eq. (2). Since both Πpp

KK and Vs;t are temperature depen-
dent, Tc is estimated for each channel as the temperature at
which the corresponding eigenvalue of −Πpp

KKVs;t equals 1.
We have also explored the competition between pairing

and particle-hole channel instabilities. Table I summarizes
several typical particle-hole channel instabilities (see
details in Sec. VI of Supplemental Material [38]). As
shown in Fig. 5(a), for large hole densities that are
associated with relatively thick annular Fermi seas, spin-
singlet d-wave pairing is the leading instability. The
corresponding Tc exhibits a domelike behavior vs hole
density that is qualitatively consistent with experimental
observations [25]. We note that experimental signatures of
a SC state do appear to be present in the longitudinal
resistivity at hole densities that exceed the region that can
currently be identified as in the SC dome [25]. The data

FIG. 4. (a)–(b) EX diagram contributions to utðn1; n̄1; n̄2; n2Þ
and ueðn1; n̄1; n2; n̄2Þ, where blue (red) solid lines denote KðK0Þ-
valley propagators. (c)–(d) Particle-hole susceptibilities associ-
ated with (a)–(b), calculated at T ¼ 70 mK. (e) Three equivalent
inter-Fermi-surface nesting wave vectors k25 − k1 ≈ k4 − k9≈
k22 − k17, at which Πph

KK peaked: ðn1; n2Þ ¼ ð1; 25Þ, (9,4), and
(17,22) marked by stars in (d). (f) Circular annular Fermi
surfaces: kF1;2 are the two Fermi wave vectors. θ1;2 are the
angles spanned by kF2 − kF1 on the inner and outer Fermi
surfaces.

TABLE I. Matrix structures and symmetries under time-rever-
sal T and inversion C2 operations of the order parameters for
Pomeranchuk instability (PI), valley polarization (VP), ferro-
magnetism or antiferromagnetism (FM=AFM), and intervalley
charge and spin coherence (IVC=IVS). Here FM and AFM are
distinguished by identical and opposite spin polarizations in two
valleys, sx;y;z and τx;y;z are Pauli matrices in spin and valley
subspaces, and K denotes the complex conjugate.

Particle-hole instability PI VP FM AFM IVC IVS

Order parameter s0τ0 s0τz szτ0 szτz s0τx;y szτx;y

T ¼ isyτxK ✓ ✗ ✗ ✓ ✓ ✗

C2 ¼ s0τx ✓ ✗ ✓ ✗ ✗ ✗
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seem to be consistent with the notion that superconductivity
survives to higher hole densities, as in our calculations,
albeit with substantially decreased Tc. By decreasing the
hole density and moving the Fermi level toward the VHS
[see Fig. 5(a)], the PIP state seen in experiment appears
consistent with an IVS state emerging first and then being
replaced by the FM state. In our calculations, these two
states compete closely when the Fermi level of the system
approaches the VHS. Since the averaged value of ue is
positive, IVS and FM always dominate over IVC and AFM
(see Supplemental Material [38]). Similar behavior is
revealed in the phase diagram vs Δd for a given ne in
Fig. 5(b). The qualitative features of these phase diagrams
are therefore in good agreement with experimental obser-
vations [25].
Discussion.—Numerical estimates of superconducting

T 0
cs depend on model parameters, such as the dielectric

constant ϵ (see Supplemental Material [38]). One general
trend is that stronger Coulomb interaction results in higher
Tc, contradictory to the acoustic-phonon-mediated super-
conductivity [29]. The experimental phase diagram [25]
shows that the PIP (IVS) state emerges at a larger hole
density than in our theoretical estimation. If the stability
region of the IVS state is expanded to agree with experi-
ment, it intervenes before the peak of the superconducting
dome is reached. This shift would avoid the region in the
phase diagram where the p-wave spin-triplet pairing state
becomes nearly degenerate with or even dominates over the
d-wave spin-singlet pairing [38]. In fact, an accurate
determination of the phase boundary is obviously very
demanding and beyond the scope of the present FRG study.
The sudden jumps of the T 0

cs for the IVS and FM states
shown in Fig. 5 arise from the fact that the particle-hole
susceptibilities possess maxima at finite temperatures due
to proximity to the VHS [38]. Such a jump in Tc for the IVS
state is consistent with experimental observation of the
jump in quantum oscillation frequency between SC and PIP
phases [25]. We have explored the effects of changing other
model parameters [38]. The resulting phase diagrams share
similar qualitative features with Fig. 5.

The present study explains the spin-singlet SC dome
observed in RTG in terms of inter-Fermi-surface nesting
that leads to d-wave singlet pairing. We find that the Fermi
surface geometry plays the key role in determining pairing
symmetry and predict that the strongest d-wave spin-singlet
pairing emerges when the ratio of the enclosed areas of the
inner and outer Fermi surfaces is r ¼ Sin=Sout ≈ 0.176,
close to the value of 0.2 measured near the SC dome
[25,38]. Larger values of r obtained by increasing Δd or ne
lead to first-order spin or valley ferromagnetic phase
transitions that reconstruct the Fermi surface [63], remov-
ing the annulus and preempting the pairing instability.
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