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Characterizing the phase space distribution of particle beams in accelerators is a central part of
understanding beam dynamics and improving accelerator performance. However, conventional analysis
methods either use simplifying assumptions or require specialized diagnostics to infer high-dimensional
(> 2D) beam properties. In this Letter, we introduce a general-purpose algorithm that combines neural
networks with differentiable particle tracking to efficiently reconstruct high-dimensional phase space
distributions without using specialized beam diagnostics or beam manipulations. We demonstrate that our
algorithm accurately reconstructs detailed 4D phase space distributions with corresponding confidence
intervals in both simulation and experiment using a limited number of measurements from a single focusing
quadrupole and diagnostic screen. This technique allows for the measurement of multiple correlated phase
spaces simultaneously, which will enable simplified 6D phase space distribution reconstructions in the future.
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Increasingly precise control of the distribution of par-
ticles in position-momentum phase space is needed for
emerging applications of accelerators [1]. This includes, for
example, new operating modes at free electron lasers [2–6]
and novel acceleration schemes that promise higher-energy
beams in compact spaces [7]. Numerous techniques have
been developed for precision shaping of beam distributions
[8]; however, the effectiveness of these techniques relies on
accurate measurements of the 6D phase space distribution,
which is a challenging task unto itself.
Tomographic measurement techniques are used in accel-

erators to determine the density distribution of beam particles
in phase space ρðx; px; y; py; z; pzÞ from limited measure-
ments [9–14]. The simplest form of this uses scalar metrics,
such as second-order moments, to describe observations of
the transverse beam distribution when projected onto a
scintillating screen [15–17]. This process, however, discards
significant amounts of information about the beam distribu-
tion captured by high-resolution diagnostic screens and only
predicts scalar quantities of the beam distribution. In contrast,
methods using projections of the beam image, including
filtered back-projection [12,18], algebraic reconstruction
[19–21], particle generationheuristics [22,23], andmaximum
entropy tomography (MENT) [13,24] producemore accurate
reconstructions, albeit with higher computational costs.
The MENTalgorithm is particularly well suited to recon-

structing beams from limited and/or partial information

sources about the beam distribution, as is the case in most
experimental accelerator measurements. MENT solves for a
phase space distribution that maximizes entropy (and, as a
result, likelihood), subject to the constraint that the distri-
bution accurately reproduces experimental measurements.
While these techniques have been shown to effectively
reconstruct 2D phase spaces from image projections using
algebraic methods, application to higher-dimensional spaces
requires either independence assumptions between the phase
spaces of principal coordinate axes [25], complicated phase
space rotation procedures [20], or simultaneous measure-
ment of multiple 2D subspaces with specialized diagnostic
hardware [26].
Machine learning techniques have also been used to

reconstruct phase space distributions from experimental data
[21,27]. However, these methods demand significant initial
investment to be effective, including the generation of large
training data sets from simulation or experiment and the
training of large machine learning models.
In this Letter, we describe a new method that provides

detailed reconstructions of the beam phase space distri-
bution using limited measurements from widely available
accelerator elements and diagnostics. To achieve this,
we take advantage of recent developments in machine
learning to introduce two new concepts (shown in Fig. 1): a
machine learning based method for parametrizing
arbitrary beam distributions in 6D phase space, and a
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differentiable particle tracking simulation that allows us to
learn the beam distribution from arbitrary downstream
accelerator measurements. We examine how this method
extracts detailed four-dimensional phase space distribu-
tions from measurements in simulation and experiment,
using a simple diagnostic beam line, containing a single
quadrupole, drift and diagnostic screen to image the
transverse ðx; yÞ beam distribution. Finally, we discuss
the current limitations of this method as well as future
directions for the design of novel accelerator diagnostics
using this technique.
We first demonstrate our algorithm using a synthetic

example, where we attempt to determine the distribution of
a 10-MeV beam given a predefined structure in 6D phase
space. The propagation of a synthetic beam distribution
through a beam line containing a 10 cm long quadrupole
followed by a 1.0 m drift is simulated using a custom
implementation of Bmad [28] referred to here as Bmad-X.
To illustrate the capabilities of our technique, the synthetic
beam contains multiple higher order moments and
correlations between transverse phase space coordinates
(see Supplemental Material [29] for details). To simulate
an experimental measurement, we propagated particles
through the diagnostic beam line while the quadrupole
strength k is scanned over N ¼ 20 points. The final
transverse distribution of the beam is measured for each
quadrupole strength using a simulated 200 × 200 pixel
screen, with a pixel resolution of 300 μm (image data
can be viewed in the Supplemental Material [29]). The set
of images, where the intensity of pixel ði; jÞ on the nth

image is represented by Rði;jÞ
n , is then collected with the

corresponding quadrupole strengths to create the dataset,
which is then split into training and testing subsets by
selecting every other sample as a test sample, resulting in
10 samples for each data subset.
The reconstruction algorithm begins with the generation

of arbitrary initial beam distributions (referred to here as
proposal distributions) through the use of a neural network
transformation. A neural network, consisting of only 2 fully
connected layers of 20 neurons each, is used to transform
samples drawn from a 6D Multivariate normal distribution
centered at the origin, to macroparticle coordinates in real
6D phase space (where positional coordinates are given
in meters and momentum coordinates are in radians for
transverse momenta). As a result, the coordinates of
particles in the proposal distribution are fully parametrized
by the neural network parameter set θt.
The process of fitting neural network parameters to

experimental measurements involves minimizing a loss
function to identify the most probable proposal beam
distribution while ensuring that simulated screen images
matches experimental measurements—a technique that is
akin to the MENT algorithm [24]. The likelihood of
proposed beam distribution in phase space is maximized
by maximizing the distribution entropy, which is propor-
tional to the log of the 6D beam emittance ε6D [30]. Thus,
we specify a loss function that minimizes the negative
entropy of the proposal beam distribution, penalized by the
degree to which the proposal distribution reproduces
measurements of the transverse beam distribution at the

FIG. 1. Description of our approach for reconstructing phase space beam distributions. First, randomly generated samples drawn from
a Multivariate normal distribution are transformed via a neural network, parametrized by θt, into a proposed initial distribution. This
distribution is then transported through a differentiable accelerator simulation of the tomographic beam line. The quadrupole is scanned
to produce a series of images on the screen, both in simulation and on the operating accelerator. The images produced both from the

simulation Qði;jÞ
n and the accelerator Rði;jÞ

n are then compared with a custom loss function, which attempts to maximize the entropy of
the proposal distribution, constrained on accurately reproducing experimental measurements. This loss function is then used to update
the neural network parameters θt → θtþ1 via gradient descent. The neural network transformation that minimizes the loss function
generates the beam distribution that has the highest likelihood of matching the real initial beam distribution.
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screen location. To evaluate the penalty for a given proposal
distribution, we track the distribution through a batch of
accelerator simulations that mimic experimental conditions

to generate a set of simulated imagesQði;jÞ
n to compare with

experimental measurements. The total loss function is then
given by

l ¼ − log½ð2πeÞ3ε6D� þ λ
1

NIJ

XN;I;J

n;i;j

jRði;jÞ
n −Qði;jÞ

n j; ð1Þ

where I; J is the screen size in pixels, e is the natural
number, and λ scales the distribution loss penalty function
relative to the entropy term and is chosen empirically based
on image resolution.
However, the large (> 103) number of free parameters

contained in the neural network transformation used to
generate proposal distributions necessitates the use of
gradient-based optimization algorithms such as ADAM

[31] to minimize the loss function. Thus, we need to
implement computation of the loss function such that it
supports backward differentiation [32] (referred to here as
differentiable computations), allowing us to cheaply com-
pute loss function derivatives with respect to every neural
network parameter. This requires that every step involved in
calculating the loss function is also differentiable, including
computing the beam emittance, tracking particles through
the accelerator, and calculating pixel intensity on the
diagnostic screen. Unfortunately, to the best of our knowl-
edge, no particle tracking codes currently support back-
wards differentiation. To satisfy this requirement, we
implement particle tracking in Bmad-X using the machine
learning library PyTorch [33]. We estimate screen pixel
intensities from a discrete particle distribution with a differ-
entiable implementation of kernel density estimation [34].

Results from our reconstruction of the beam phase space
using synthetic images are shown in Fig. 2. We characterize
the uncertainty of our reconstruction using snapshot
ensembling [35]. During model training, we cycle the
learning rate of gradient descent in a periodic fashion
which encourages the optimizer to explore multiple pos-
sible solutions (if they exist). After several of these cycles
(known as a “burn-in” period), we save model parameters at
each minima of the learning rate cycle, as shown in
Fig. 3(a). We then weight predictions from each model
equally, using them to predict a mean beam density

FIG. 2. Comparisons between the synthetic and reconstructed beam probability distributions using our method. (a)–(e) Plots of the
mean predicted phase space density projections in 4D transverse phase space. Contours that denote the 50th (black) and 95th (white)
percentiles of the synthetic ground truth (dashed) and reconstructed (solid) distributions. (f)–(j) Plots of the predicted phase space
density uncertainty.

FIG. 3. Evolution of the proposal distribution during training
on synthetic data. (a) Learning rate schedule for snapshot
ensembling. (b) Second order moments of beam reconstruction
during training for each phase space coordinate. Dashed lines
denote ground truth values. Vertical lines denote snapshot
locations after burn-in period.
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distribution, Figs. 2(a)–2(e), with associated confidence
intervals, Figs. 2(f)–2(j). Performing this analysis by track-
ing 105 particles for each image took less than 30 sec per
ensemble sample using a professional grade GPU (< 60 ms
per iteration, 500 steps per ensemble sample).
We see excellent agreement between the average recon-

structed and synthetic projections in both transverse corre-
lated and uncorrelated phase spaces. Furthermore, the
prediction uncertainty from ensembling is on the order
of a few percent relative to the predicted mean, providing
confidence that the overall solution found during optimi-
zation is unique. As shown in Table I, reconstructions of the
beam distribution from image data predicts transverse
phase space emittances that are closer to ground truth
values than those predicted from second-order moment
measurements of the transverse beam distribution. This
results from nonlinearities and cross-correlations present in
the 4D transverse phase space distribution.
It is instructive to examine the evolution of the proposal

distribution during model training. In Fig. 3(b) we examine
second order scalar metrics of the proposal distribution
after each training iteration for each phase space coordi-
nate. The entropy term in Eq. (1) causes the distribution to
expand in 6D phase space until constrained by experimen-
tal evidence. Phase space components that have the

strongest impact on beam transport through the beam line
as a function of quadrupole strength converge quickly to
the true values, whereas the ones that have little-to-no
impact on transverse beam dynamics (e.g., the longitudinal
bunch length) continues to grow. In other cases, there is
weak coupling between the experimental measurements
and beam properties; for example, chromatic focusing
effects due to the energy spread σδ of the beam weakly
affect the measured images. Here, the reconstruction can
only provide an upper-bound estimate of the energy spread,
since small changes in transverse beam propagation due to
chromatic aberrations are overshadowed by statistically
dominated particle motion. Convergence of the proposal
distribution thus provides a useful indicator of which phase
space components can be reliably reconstructed from
arbitrary sets of experimental measurements.
We now describe a demonstration of our method

on an experimental example at the Argonne Wakefield
Accelerator (AWA) [36] facility at Argonne National
Laboratory. Our objective is to identify the phase space
distribution of 65-MeV electron beams at the end of the
primary accelerator beam line. The focusing strength of a
quadrupole, with an effective length of 12 cm, is scanned
while imaging the beam at a transverse scintillating screen
located 3.38 m downstream. Charge windowing, image
filtering, thresholding, and down sampling were used to
generate a set of 3 images for each quadrupole setting (see
the Supplemental Material [29] for additional details).
We developed a differentiable simulation in Bmad-X of

the experimental beam line, including details of the
diagnostics used, such as the location and properties of
beam line elements and the per-pixel resolution of the
imaging screen. With this simulation, we used our method
to reconstruct the beam distribution from experimentally
measured transverse beam images. The results, as shown

TABLE I. Predicted emittances compared to true values.

Parameter
Ground
truth

rms
prediction Reconstruction Unit

εx 2.00 2.47 2.00� 0.01 mm-mrad
εy 11.45 14.10 10.84� 0.04 mm-mrad
ε4D 18.51 34.83a 17.34� 0.08 mm2-mrad2

aAssumes x-y phase space independence.

FIG. 4. Reconstruction results from experimental measurements at AWA. Comparison between measured and predicted beam
centroids (a) and second-order beam moments (b) on the diagnostic screen as a function of geometric quadrupole focusing strength (k).
Points denote training samples and crosses denote test samples. Dashed line shows second order polynomial fit of training data and solid
line shows predictions from image-based phase space reconstruction. We also compare (c)–(h) screen images and reconstructed
predictions for a subset of quadrupole strengths. Contours denote the 50th (black) and 95th (white) percentiles of the measured (dashed)
and predicted (solid) screen distributions. Orange borders denote test samples.
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in Fig. 4 and Table II, demonstrate good agreement
between experimental measurements of the beam distribu-
tion and predictions from our reconstruction. Scalar pre-
dictions of the beam emittances from the image-based
reconstruction are consistent with those calculated from
rms measurements. Additionally, our reconstruction
method accurately reproduces fine features of transverse
beam distribution measurements that were not present in
the training dataset.
In this work, we have demonstrated how differentiable

particle tracking simulations, combined with neural net-
work based representations of beam distributions, can be
used to infer phase space distributions from common
image-based diagnostic measurements. Our method pro-
duces detailed reconstructions of four-dimensional trans-
verse phase space distributions from limited datasets,
without the use of complex phase space manipulations
or specialized diagnostics. Additionally, our reconstruction
identifies limitations in resolving certain aspects of the
beam distribution based on available measurements. This
analysis is enabled by inexpensive gradient calculations
provided by backwards differentiable physics simulations.
Differentiable beam dynamics simulations enable us to
determine thousands of free parameters used to describe
complex beam distributions on a time scale similar to the
time it takes to perform experimental measurements. Thus,
our reconstruction technique is suitable for inferring
detailed beam distributions in an online fashion, i.e., during
accelerator operations.
As with any new algorithmic technique, there are areas

for future improvement. Uncertainty estimates provided by
the reconstruction algorithm only capture systematic uncer-
tainties from optimizing the loss function, Eq. (1); thus it
ignores systematic uncertainties of the physical measure-
ment and stochastic noise inherent in real accelerators.
Future work will incorporate Bayesian analysis techniques
into the reconstruction to provide calibrated uncertainty
estimates based on experimental measurements. Also,
while our method significantly increases the speed of
high-dimensional phase space reconstructions, achieving
this requires substantial amounts of memory to store the
derivative information of each macroparticle at every
tracking step (∼4 GB for each snapshot in the analysis
performed here). Peak memory consumption can be
reduced through the use of checkpointing [37] or precom-
puting derivatives associated with tracking particles
through the entire beam line. Finally, this method is limited
by the availability of accurate, computationally efficient,
backwards differentiable particle tracking simulations.

In order to expand the range of diagnostic measurements
that can be analyzed by this technique, further investment
in differentiable implementations of particle tracking sim-
ulations is needed.
This new reconstruction approach opens the door to

efficient, detailed characterization of six-dimensional phase
space distributions and new types of compound diagnostic
measurements. By adding longitudinal beam manipula-
tions, such as transverse deflecting cavities paired with
dipole spectrometers, to the beam line used here, it’s
possible that full phase space distributions can be charac-
terized through a series of quadrupole strength and deflect-
ing cavity phase scans.
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R. Garnett (Curran Associates, Inc., Red Hook, NY, 2019),
pp. 8024–8035.

[34] M. Rosenblatt, Remarks on some nonparametric esti-
mates of a density function, Ann. Math. Stat. 27, 832
(1956).

PHYSICAL REVIEW LETTERS 130, 145001 (2023)

145001-6

https://doi.org/10.1038/ncomms7369
https://doi.org/10.1038/ncomms7369
https://doi.org/10.1038/s41598-022-06754-y
https://doi.org/10.1103/RevModPhys.94.025006
https://doi.org/10.1103/RevModPhys.94.025006
https://doi.org/10.1016/0168-9002(94)01411-6
https://doi.org/10.1016/0168-9002(94)01411-6
https://doi.org/10.1016/S0010-4655(99)00194-0
https://doi.org/10.1103/PhysRevSTAB.6.122801
https://doi.org/10.1103/PhysRevSTAB.6.122801
https://doi.org/10.1103/PhysRevSTAB.12.050704
https://doi.org/10.1103/PhysRevSTAB.12.050704
https://doi.org/10.1103/PhysRevAccelBeams.25.084001
https://doi.org/10.1103/PhysRevAccelBeams.25.084001
https://doi.org/10.1103/PhysRevSTAB.17.052801
https://doi.org/10.1103/PhysRevSTAB.17.052801
https://doi.org/10.1103/PhysRevSTAB.15.082802
https://doi.org/10.1103/PhysRevAccelBeams.23.032804
https://doi.org/10.1103/PhysRevAccelBeams.23.032804
https://doi.org/10.1103/PhysRevAccelBeams.25.122803
https://doi.org/10.1103/PhysRevAccelBeams.25.122803
https://doi.org/10.1016/j.nima.2019.162438
https://doi.org/10.1016/j.nima.2019.162438
https://doi.org/10.1103/PhysRevAccelBeams.24.022802
https://doi.org/10.1103/PhysRevAccelBeams.24.022802
https://doi.org/10.1088/1748-0221/8/02/P02003
https://doi.org/10.1088/1748-0221/8/02/P02003
https://doi.org/10.1016/j.nima.2013.05.004
https://doi.org/10.1016/j.nima.2013.05.004
https://doi.org/10.1103/PhysRevAccelBeams.25.042801
https://doi.org/10.1103/PhysRevAccelBeams.25.042801
https://doi.org/10.1016/j.nima.2005.11.001
https://doi.org/10.1016/j.nima.2005.11.001
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.145001
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.145001
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.145001
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.145001
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.145001
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.145001
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.145001
https://inspirehep.net/literature/87013
https://inspirehep.net/literature/87013
https://inspirehep.net/literature/87013
https://arXiv.org/abs/1412.6980
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1214/aoms/1177728190


[35] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q.
Weinberger, Snapshot ensembles: Train 1, get m for free,
arXiv:1704.00109.

[36] M. Conde, S. Antipov, D. Doran, W. Gai, Q. Gao, G. Ha,
C. Jing, W. Liu, N. Neveu, J. Power et al., Research
program and recent results at the argonne wakefield

accelerator facility (AWA), Proceeding of IPAC’17
(JACoW, Copenhagen, Denmark, 2017), 2885.

[37] B. Dauvergne and L. Hascoët, The data-flow equations
of checkpointing in reverse automatic differentiation, in
International Conference on Computational Science
(Springer, Berlin, Heidelberg, 2006), pp. 566–573.

PHYSICAL REVIEW LETTERS 130, 145001 (2023)

145001-7

https://arXiv.org/abs/1704.00109

