
Simultaneously Sorting Overlapping Quantum States of Light

Suraj Goel ,* Max Tyler,* Feng Zhu, Saroch Leedumrongwatthanakun , Mehul Malik , and Jonathan Leach †

School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom

(Received 15 July 2022; revised 3 October 2022; accepted 21 February 2023; published 6 April 2023)

The efficient manipulation, sorting, and measurement of optical modes and single-photon states is
fundamental to classical and quantum science. Here, we realize simultaneous and efficient sorting of
nonorthogonal, overlapping states of light, encoded in the transverse spatial degree of freedom. We use a
specifically designed multiplane light converter to sort states encoded in dimensions ranging from d ¼ 3 to
d ¼ 7. Through the use of an auxiliary output mode, the multiplane light converter simultaneously
performs the unitary operation required for unambiguous discrimination and the basis change for the
outcomes to be spatially separated. Our results lay the groundwork for optimal image identification and
classification via optical networks, with potential applications ranging from self-driving cars to quantum
communication systems.

DOI: 10.1103/PhysRevLett.130.143602

Introduction.—The task of discriminating between a set
of quantum states is a fundamental requirement in quantum
information science, and in particular, quantum commu-
nication [1,2]. However, in general, two different quantum
states can have a finite, nonzero overlap with respect to
each other, making them nonorthogonal and therefore
difficult to separate. It is theoretically impossible to
perform a measurement that allows us to perfectly distin-
guish between such states 100% of the time. An important
question now follows: given a set of quantum states with a
nonzero overlap, what is the best measurement strategy to
distinguish between them?
The answer to this question lies in quantum measure-

ment theory, where strategies for the optimal measurement
of nonorthogonal quantum states are known [3,4]. In the
extreme, we are left with a choice between a measurement
strategy that is either efficient or accurate (only orthogonal
states can be sorted efficiently and accurately); see Fig. 1.
The efficient option is minimum error state discrimination
(MESD) [5]. Here, one seeks to perform a set of measure-
ments that categorize every input state. The drawback to
MESD is that errors are inevitable, and we have to accept
that we will be incorrect with some probability relating to
the overlap of the input states. The accurate option is
unambiguous state discrimination (USD) [6–10]. Here, one
seeks to perform measurements that never incorrectly
identify the input state. The downside here is that state
identification occurs with a reduced probability; i.e., a
measurement does not always provide a result, but when it
does, it is always correct. In addition to the extremes, there
are intermediate strategies that have been developed that
interpolate between MESD and USD. Several theoretical
studies include discrimination with a known error margin
[11–14], discrimination with a fixed rate of inconclusive
outcomes [15–17], and partial state separation with a
MESD procedure [18–22].

The problem that we address in this Letter is practical
high-dimensional unambiguous state discrimination, i.e., a
positive operator-valued measure (POVM) for nonorthog-
onal, high-dimensional states with simultaneous outcomes.
High-dimensional quantum states (or qudits) allow for
quantum information to be encoded in a d-dimensional
space, enabling quantum communication protocols with
increased information capacity and robustness to noise
[23–27]. While the theoretical foundation for the necessary
measurement strategies has already been developed, their
experimental realization has proved to be a significant
challenge.

FIG. 1. Measuring nonorthogonal states using minimum error
or unambiguous state discrimination. The MESD protocol is
efficient in that every input state is always categorized, even if
this leads to errors. The USD protocol is accurate in that every
input state is correctly identified, even if this does not happen
100% of the time.
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Unambiguous state discrimination was simulated for
single-photon states of light encoded in high dimensions
using single-outcome projective measurements [28]. Such
projective measurements provide a limited functionality in
quantum communication systems, where multioutcome
measurements are necessary for maximizing key rates
and loophole-free tests of Bell nonlocality [29]. Recent
Letter on state discrimination includes sorting high-
dimensional states using optimal measurement strategies
[30], multistate quantum discrimination through optical
networks [31], and quantum state elimination [32].
Additionally, much of this recent Letter is related to the
complementary field of classical deep optical networks
used for information processing and image classification
using diffractive optics [33–35]. Methods for sorting and
manipulating states using bulk optics [36], two phase
screens [37,38], complex media [39–41], and multiplane
light converters (MPLCs) [42–49] have been the topic of
significant recent research.
The problem we set out to solve in this Letter is the simu-

ltaneous sorting of d equally overlapping d-dimensional
quantum states of light fjψ1i;…; jψdig, i.e., with all
pairwise fidelities of these states equal to each other F ¼
jhψ ijψ j≠iij2 [10]. There are several requirements in order to
perform this task. Firstly, every input mode in the set
fjψ1i;…; jψdig is mapped to an individual measurement
mode fj1i;…; jdig that uniquely identifies it; i.e., when a
photon in state jψ1i passes through the system, only the
measurement mode j1i can “click.” The challenge is to
perform this sorting process when every state in the set has
a nonzero fidelity with respect to every other state in the set,
i.e., 0 < jhψ ijψ j≠iij2 < 1. Secondly, the system should not
make any errors and incorrectly identify any input state;
i.e., for the jψ1i input state, the probability of all output

modes other than j1i clicking should be equal to zero.
Finally, the sorting process occurs simultaneously, and with
the highest possible probability, which for USD is given by
η ¼ 1 − jhψ ijψ j≠iij2 [10,28].
MPLC for USD.—We realize unambiguous state dis-

crimination within the framework of a multiplane light
converter, as shown in Fig. 2. This allows us to simulta-
neously transform a set of nonorthogonal states in any basis
into a new basis of spatially separated measurement modes
that can be simultaneously detected by a position-resolving
detector. Here, the nonorthogonal states of light we sort are
superpositions of Hermite-Gaussian (HG) modes, gener-
ated with a spatial light modulator using complex field
holograms [50], and we design the output modes of the
MPLC to be spatially separated Gaussian spots that can be
directly read by a camera or a single-photon detector array.
The MPLC is programmed to perform the required unitary
(USD operation) and the necessary mode conversion
(HG → Gaussian spots) at the same time.
The holograms used in MPLC devices are typically

constructed using an inverse-design technique known as
wave front matching [44,45,51,52]. This is an iterative
algorithm where the optical fields for the input and output
modes are forward and backward propagated, respectively,
and overlapped at each plane of the MPLC. The phase of
the MPLC at each plane is calculated in such a way that
the entire set of input modes are phase matched to the
respective output modes. This process is repeated for each
plane sequentially until the algorithm converges and the
difference between the forward and backward propagating
light is minimized. Each reflection from a mask performs a
phase-only transformation Φ̂i of the input states of light,
which is followed by free-space propagation Ĥ to the next
plane. The total operator of the device after n reflections is

(a) (b)

(c)

FIG. 2. (a) Schematic of the mode sorter for nonorthogonal states with color used to represent different input modes. The d input
modes pass through a multiplane light converter that sorts them into dþ 1 orthogonal outputs of spatially separated Gaussian spots. The
one additional output mode j?i corresponds to the ambiguous outcome. (b) Example holograms used for the MPLC. (c) Amplitudes of
nonorthogonal modes as they propagate through the MPLC. SLM, spatial light modulator.
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given by Û ¼ Ĥ
Q

1
i¼nðΦ̂iĤÞ. The free-space propagation

operator Ĥ [53,54] is calculated by simulating light
propagation in free space as discussed in detail in
Supplemental Material [55].
Here we introduce an additional output state labeled j?i

into the wave front matching protocol, which means that for
d input modes, there are now dþ 1 output modes. The
MPLC device supports a large number of modes, which is
ultimately limited by the number of pixels and spatial
resolution of the phase masks. The number of modes of the
MPLC greatly exceeds the number of modes we sort, which
allows us to include the additional auxiliary mode in a
straightforward manner. We are free to choose d input
modes (superpositions of HG modes) and dþ 1 output
modes (Gaussian spots placed symmetrically on the cir-
cumference of a circle). The wave front matching technique
then ensures the correct mapping between the two sets
of modes.
The purpose of the j?i output is that if a photon is

detected in this mode, it provides no information about the
input state. However, this also implies that we have not
made any incorrect identification, as required by USD. As
we can successfully discriminate between any two states
with a probability of 1 − F, the probability that j?i clicks is
equal to F. The key to the success of this protocol is that
this operator is designed to perform both a unitary
operation that maps a set of input states onto the required
unambiguous measurement states and simultaneously
changes the basis for the measurement outcomes to be
spatially separated. Both of these transformations are
performed concurrently within the MPLC.
Results.—We performed unambiguous state discrimina-

tion for sets of symmetric nonorthogonal states constructed
from modes in the Hermite-Gaussian basis. In our experi-
ment, we generated these modes with a HeNe laser and a
spatial light modulator, and detected them with a CMOS
camera.
In each realisation of USD for high-dimensional states of

light, d nonorthogonal modes were transformed into dþ 1
output modes and measured simultaneously on a CMOS
camera. The intensities recorded by the camera pixels
located in the output modes were integrated and converted
to a detection probability. We achieved USD for sets of
states in dimensions ranging from d ¼ 3 to 7 for fidelities
in the range Fðψ i;ψ j≠iÞ ∈ ð0; 1Þ. Each state was generated
as a complex superposition of Hermite-Gauss modes while
varying the interstate fidelity from 0 to 1 (see Supplemental
Material for further details [55]). The results for USD in
seven dimensions are displayed in the form of correlation
matrices in Fig. 3. Each row provides its detection
probability in all possible outputs. Figure 3(b) compares
the experimentally measured probabilities of successful
USD to the theoretical predictions. These data clearly
demonstrate that unambiguous sorting is achieved for
seven-dimensional overlapping states of light.

To quantitatively assess our system, we analyze the
performance of the MPLC compared to the theoretical limit
of minimum error state discrimination [28,56]. No auxiliary
state is used in MESD in d dimensions, and the error is
instead distributed between the d output states. This leads
to a probability of error (perr) in the output, which is
defined as the probability of measuring any output state
jj ≠ ii when given an input state jψ ii. MESD for uniform-
fidelity states has a minimum possible error probability
given by perr ≥ 1

2
½1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Fðψ i;ψ j≠iÞ
p � [28,56]. In Fig. 4,

we plot the measured error probabilities of our USD
protocol against this MESD threshold (gray area). We
see that our system outperforms MESD and has a lower
error rate than any strategy using MESD over a wide range
of interstate fidelities (overlaps). The error probabilities are
higher for lower F because the MPLC struggles more when
sorting states that are farther apart. Additionally, as d

(a)

(b)

FIG. 3. Measurement data for simultaneous USD in d ¼ 7
using a MPLC. (a) Measurement matrices for a range of fidelities
(F) between the input states. The insets show the numerically
modeled results. The results are normalized by the total power
detected in each output state. (b) Probability of measuring an
input state jψ1i in a given output state jxi as a function of
interstate fidelity. This is a cross section of the measurement
matrices for the jψ1i input state. The points are the measured
values, which should be compared to the theoretical predictions,
indicated by the dashed lines.
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increases, so too does the total error. The performance re-
duction of the MPLC for increasing d can be explained as
the accuracy of such transformations has been shown to
reduce as the dimensionality increases for a fixed number
of phase planes [41]. Here, we use four phase planes while
increasing the dimensionality of the set of modes that we
are sorting. We note that the error rate that we observe is
approximately 2 times higher that that of Agnew et al. [28],
where measurements were performed one outcome at a
time, which necessarily includes ðd − 1Þ=d amount of loss.
However, in this Letter, all outcomes were measured
simultaneously, which is a significant advance over the
prior work in terms of practical applications.
Theoretically, the error should be equal to zero for USD,

yet we see the experimental implementation using the
MPLC performs better for states with a higher initial
fidelity (overlap). The reason for this is that as F increases,
a higher fraction of the energy is put into the single
ambiguous outcome. This mapping, where all input states
are sorted to a single output state, is a simpler task to
achieve for the MPLC than the case where all input states
are sorted to individual outcomes. Additionally, we are
comparing our experimental USD implementation to the
theoretical limit of MESD. We see that, consequently, there
is a region where the error probability does not fall below
what MESD could achieve. However, any practical imple-
mentation of high-dimensional MESD would be subject to
similar error as our experiment and would not perform at
this theoretical limit.
Figure 5 shows the extension of our method to the

sorting of overlapping images. We sort three images
depicting a smiley face, sad face, and neutral face that
have a large and symmetric overlap (F ¼ 0.34) with respect
to each other—the eyes in the images are the same, while
the mouth expressions are slightly different, connoting

completely different emotions. In simple optical image
classification, the three faces would be transformed directly
to three spatially separated spots, and the wave front
matching algorithm would attempt to direct all input light
into all output modes, leading to imperfect classification.
When using the extra mode j?i, we have a place to direct
any overlapping light, potentially leading to no errors in our
measurement state outputs.
The correlation matrix for the images can be reformatted

to a confusion matrix by removing the j?i mode and
renormalizing the rows. The success probability for image
classification is then calculated as the average ratio of the
light intensity in the outcomes of interest compared to
the total light intensity of all other outcomes, excluding the
ambiguous outcome. Despite the large overlap between the
input images, the USD protocol enables the sorting and
classification with an average accuracy of 97.6%. We see
that the success probability is not constant across all three
input states. As numerical simulations suggest that an equal
success probability can be obtained, we believe that this
asymmetry is due to the combined experimental error of
the generation of the input modes and the misalignment
between phase masks in the MPLC.

FIG. 4. Evaluation of the MPLC for USD compared to the
theoretical limit of MESD. The gray shaded area indicates the
error-fidelity region accessible via MESD. Points outside this
region represent USD with an error rate that is below than what is
possible with MESD.

(a)

(b)

FIG. 5. orting overlapping images with the MPLC. The input
images have a large fidelity (F ¼ 0.34) with each other, yet we can
sort them with an accuracy of 97.6%. (a) Shows the measured
intensities of the input and output modes. (b) Shows the confusion
matrix of the sorting and the associated success probabilities.
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Conclusions.—In this Letter, we solve the measurement
problem of simultaneous sorting of high-dimensional non-
orthogonal states of light. While previous works simulate a
POVM with consecutive measurements, this Letter simul-
taneously realizes the outcomes of a POVM for high-
dimensional nonorthogonal states of light, extending the
use of MPLCs to include nonorthogonal input modes.
Such simultaneous measurements can also be performed by
engineering bases of light that are spatially separable on the
detector [57]; however, in this Letter we harness the
abilities of MPLC to perform unitary operations in arbitrary
spatial bases to perform this task experimentally for the
first time.
The key to the success of this protocol is the additional

output mode that provides extra flexibility to the system
and enables perfect mapping from each of the d non-
orthogonal input state to a unique output. The method we
adopt is the optimal strategy for minimizing errors and
correctly identifying the input states. The consequence of
USD is that at the single-photon level, the sorting does not
provide an outcome 100% of the time, and for intense
modes of light, there is a reduction in the total power that is
transmitted into the known output modes. Future Letters
will focus on extending our method to sort quantum states
and modes that have a nonuniform fidelity with respect to
each other, as well as applying such generalized measure-
ment strategies on high-dimensional entangled states of
light.
Although this experiment was performed with coherent

states of light, the theoretical formalism still applies at the
single-photon level since, in the case of linear optics, there
is an equivalence between the probabilities associated with
single-photon detection and classical laser fields [58]. The
extension of our Letter, however, to include multiphoton
states is of great interest, and in this case, multiphoton
interference can lead to photon bunching or antibunching.
For multiphoton inputs, it would be necessary to measure
the outcomes of our sorter in coincidence to fully reveal the
photon statistics [39,48].
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