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Motivated by recent experiments, we investigate the Lieb-Liniger gas initially prepared in an out-of-
equilibrium state that is Gaussian in terms of the phonons, namely whose density matrix is the exponential
of an operator quadratic in terms of phonon creation and annihilation operators. Because the phonons are
not exact eigenstates of the Hamiltonian, the gas relaxes to a stationary state at very long times whose
phonon population is a priori different from the initial one. Thanks to integrability, that stationary state
needs not be a thermal state. Using the Bethe-ansatz mapping between the exact eigenstates of the Lieb-
Liniger Hamiltonian and those of a noninteracting Fermi gas and bosonization techniques we completely
characterize the stationary state of the gas after relaxation and compute its phonon population distribution.
We apply our results to the case where the initial state is an excited coherent state for a single phonon mode,
and we compare them to exact results obtained in the hard-core limit.
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Introduction.—Phonons are a central concept in the field
of quantum gases. They are quantized sound waves, or
collective phase-density excitations, that arise in low-
energy and long-wave-length description of quantum
gases, e.g., in Bogoliubov theory of Bose-Einstein con-
densates in D ≥ 2 spatial dimensions [1], or, in 1D, in
Bogoliubov theory for quasicondensates [2,3] and more
generally in Luttinger liquid theory [4–6]. Phonons
are routinely used to analyze experiments with out-of-
equilibrium quantum gases, such as the dynamics gener-
ated by a quench of the interaction strength in a 1D Bose
gas [7], or by its splitting into two parallel clouds [8,9], or
by a quench of the external potential [10]. In general, the
description in terms of phonons accounts remarkably well
for the observed short time dynamics [9,11]. Crucially, the
out-of-equilibrium states produced in these experimental
setups are phononic Gaussian states with expectation
values of phononic operators obeying Wick’s theorem.
This is because they are obtained from a thermal equilib-
rium state, which is itself described by a Gaussian density
matrix, by acting on it with linear or quadratic combina-
tions of density and/or phase field.
However, although phonons are exact eigenstates of the

effective low-energy Hamiltonian, they are only approx-
imations of the true eigenstates of the microscopic
Hamiltonian. Thus, phonons have finite lifetime [12–16]
and, at long times, the phonon distribution should evolve.
In ergodic systems, this evolution would consist in the
relaxation toward thermal equilibrium. But what if the
microscopic system is integrable? In this Letter, we

investigate the integrable Lieb-Liniger model of 1D
Bosons with contact repulsive interactions [17]. We express
the phonons in terms of the true, i.e., infinite-lifetime,
quasiparticles of the Lieb-Liniger model. We can then
characterize the final stationary state of the system after
relaxation and we relate the phonon mode occupations to
the ones in the initial state.
Sketch of the main result.—The Hamiltonian of the Lieb-

Liniger model is

H ¼
Z

L

0

dxΨ†
�
−
1

2
∂
2
x þ

c
2
Ψ†Ψ

�
Ψ; ð1Þ

with second-quantized bosonic operators obeying commu-
tation relations ½ΨðxÞ;Ψ†ðyÞ� ¼ δðx − yÞ. Here, c > 0 is
the repulsion strength, L is the length of the system (we use
periodic boundary conditions) and we use units such that
ℏ ¼ m ¼ 1. For N atoms the average density is ρ0 ¼ N=L.
The density fluctuation and current operators are

δρðxÞ ¼ Ψ†ðxÞΨðxÞ − ρ0;

JðxÞ ¼ i
2
f½∂xΨ†ðxÞ�ΨðxÞ − Ψ†ðxÞ½∂xΨðxÞ�g: ð2Þ

At low temperature, it is customary to think of low-
energy and long wavelength excitations above the ground
state as quantized sound waves (phonons) that move to
the right or to the left at the sound velocity v. The chiral
combinations
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JR=LðxÞ ¼
1

2
½v δρðxÞ � JðxÞ� ð3Þ

are the currents carried by right-moving (R) or left-moving
(L) quasiparticles, with Fourier modes

JRðxÞ ¼
v

ffiffiffiffi
K

p

L

X
n>0

ffiffiffi
n

p �
ei

2πnx
L AR;n þ e−i

2πnx
L A†

R;n

�
; ð4Þ

with n > 0 (a similar definition holds for AL;n). Here, K ¼
πρ0=v is the Luttinger parameter. Acting with A†

R=L;n on the
ground state j0i, one generates R=L phonons. We stress
that the excited states generated this way are only approx-
imations of the true eigenstates of the Lieb-Liniger
Hamiltonian (1). The lifetime of phonons may be large,
but it is not infinite, so the phonon population will evolve,
until it ultimately reaches a stationary value, governed by
the true eigenstates of the Lieb-Liniger model.
Our main result is a general formula that relates the

phonon population at infinite time to the one in the initial
state. The latter is assumed to be Gaussian in terms of
phonons, such that correlation functions of products of
operators JR=LðxÞ reduces to sums of products of one- and
two-point correlation functions by Wick’s theorem. In the
special case of a translation-invariant initial state h:i0,
populated by R phonons, parametrized by a single function
gðxÞ via [18]

hJRðxÞJRðyÞi0 ¼ −
ρ0v
4π

∂
2
xgðx − yÞ; ð5Þ

and hJRðxÞi0 ¼ 0, our result is that the two-point function
ultimately relaxes to

hJRðxÞJRðyÞi∞ ¼ πρ0v
L2

exp ½2gðx − yÞ�: ð6Þ

Thus, the phonon population evolves, unless the function
gðxÞ satisfies ∂

2
xg ¼ −ð4π2=L2Þe2g. One solution to this

equation is the thermal distribution at inverse tempera-
ture β ≪ L=v, for which gðx − yÞ ¼ − log fð2βv=iLÞ
sinh (½πðx − yÞ�=βv)g [19]. So the thermally occupied pho-
nonmodes will not evolve, but more general initial states will
show a relaxation phenomenon.
In the rest of this Letter we derive Eq. (6) and its

generalization to initial Gaussian phononic states not
necessarily translationally invariant. We compare our pre-
dictions to exact numerical results obtained in the hard-core
(Tonks-Girardeau) limit for a state with a single phononic
mode initially displaced. We conclude by discussing
perspectives for experimental observation of the evolution
of phonon populations.
Eigenstates of the Lieb-Liniger model and Bethe

fermions.—For even N ((resp. odd N)), an N-particle
eigenstate of (1) is specified by an ordered set of half-
integers or integers I1 < I2 < � � � < IN which uniquely

determines the set of N rapidities λ1 < λ2 < � � � < λN via
the Bethe equations [17,20,21]

λa þ
1

L

XN
b¼1

arctan

�
λa − λb

c

�
¼ 2π

L
Ia: ð7Þ

The energy of that eigenstate is Efλag ¼
P

a λ
2
a=2 and the

corresponding wave function is hvacuumjQN
j¼1 ΨðxjÞ

jfλagi ∝
P

σ Aσe
i
P

a
λσðaÞxa , where the sum is over all

permutations σ of N elements and Aσ ¼
Q

a>b ½1−
ic sgnðxa − xbÞ=ðλσðaÞ − λσðbÞÞ�. In the following, we
assume N even. The ground state corresponds to densely

packed Bethe half-integers fIð0Þa g ¼ f−½ðN − 1Þ=2�;
−½ðN − 1Þ=2� þ 1;…; ½ðN − 1Þ=2�g.
Equation (7) provides a one-to-one mapping between the

eigenstates jfIagi of the Lieb-Liniger model and the
eigenstates of N noninteracting fermions with momenta
2πIa=L, a ¼ 1;…; N. This mapping preserves the total
momentumPfλag ¼

P
a λa ¼ ð2π=LÞPa Ia. It is natural to

introduce fermion operators bJ that act on the normalized
eigenstate jfIagi by removing a Bethe half-integer J from
the set fIag, if it is present, and by annihilating the state
otherwise. Conversely, the operator b†J inserts J in the set
fIag unless it is already present. The eigenstate corre-
sponding to the modified state is then multiplied by
ð−1ÞnIa<J , where nIa<J is the number of elements of
fIag smaller than J, to enforce the correct anticommutation
relations for the “Bethe fermion” operators b†J=bJ [22].
All eigenstates of (1) with a total atom number N are

generated by acting on the ground state with an equal
number of Bethe fermion creation and annihilation oper-
ators. In particular, the low energy states are obtained by
acting with creation or annihilation operators close to the
R or L Fermi points. For a half-integer l, we define the
operators

c†R;l ¼ b†N
2
þl; c†L;l ¼ b†−N

2
−l: ð8Þ

The low energy eigenstates jψi with q R excitations are of
the form

jψi ¼
Yq
i¼1

c†R;li
Yq
j¼1

cR;mj
j0i; ð9Þ

for sets of half-integers lj > 0 and mj < 0, with q ≪ N,
and jljj; jmjj ≪ N. To lighten our formulas, we consider
eigenstates with R excitations only; it is straight-
forward to generalize our results to include also L exci-
tations. The energy of the low-energy eigenstate (9) is
E ¼ Pq

j¼1½ϵðljÞ − ϵðmjÞ� with the “dressed” energy [23]
given approximately by the quadratic dispersion relation
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ϵðlÞ ¼ ð2πvl=LÞ þ ð1=2m�Þð2πl=LÞ2 þOð1=L3Þ with the
effective mass m� ¼ ½1þ ðρ0=vÞ∂v=∂ρ0� [24–26].
Phonons.—We will make extensive use of the following

simple formula for the matrix elements of A†
R;n [Eq. (4)]

between two low-energy states of the form (9) in the
thermodynamic limit,

hψ2jA†
R;njψ1i ¼

N→∞

1ffiffiffi
n

p hψ2j
X
l∈Zþ1

2

c†R;nþlcR;ljψ1i: ð10Þ

Equation (10) follows from known results about form
factors of the density operator in the Lieb-Liniger model,
see Refs. [27–30] and Supplemental Material [31]. It shows
that a phonon created by A†

R;n is a coherent superposition of
Bethe fermion particle-hole pairs and that phonons are
obtained by bosonization of the Bethe fermions [19,37].
This implies that AR;n and A†

R;n satisfy bosonic canonical
commutation rules [19,37]

½AR;n; A
†
R;n0 � ¼ δn;n0 : ð11Þ

The introduction of the Bethe fermions to describe low-
energy eigenstates of the Lieb-Liniger model, and the
identification of the phonons as the Bosons obtained by
bosonization of these Fermions, are the key ingredients of
our derivation.
Bosonization allows us to invert Eq. (10) and represent the

Bethe fermion operators c†RðxÞ¼
P

l e
−ið2πlx=LÞc†R;l=

ffiffiffiffi
L

p
as

hψ2jc†RðxÞcRðyÞjψ1i ¼ hψ2j∶e−iφRðxÞ∶∶eiφRðyÞ∶jψ1i=L;
ð12Þ

where the notation ∶:∶ denotes normal ordering and
φRðxÞ ¼ −i

P
n>0ðei2πnx=LA†

R;n − e−i2πnx=LAR;nÞ=
ffiffiffi
n

p
is the

chiral field, related to the chiral current by JRðxÞ ¼
v

ffiffiffiffi
K

p
=ð2πÞ∂xφRðxÞ. The bosonization formulas require that

hφRðxÞφRðyÞi has the same short-distance logarithmic
divergence as the one in the ground state, hφRðxÞφRðyÞi ¼
− logð2πðx − yþ iϵÞ=iLÞ as y → x [38], which implies that
the phonon population hA†

R;nAR;ni decays at least exponen-
tially with n.
Initial state preparation and short time dynamics.—For

short times the nonlinearity of the fermionic spectrum
has a small effect and, as one restricts to low-energy and
long wavelength states, one can approximate the Lieb-
Liniger Hamiltonian, Eq. (1), by the Luttinger liquid
Hamiltonian

H ≃ v
X
n>0

2πn
L

ðA†
R;nAR;n þ A†

L;nAL;nÞ: ð13Þ

This Hamiltonian permits efficient calculation of equal-time
correlation functions at thermal equilibrium [39,40]. As
explained in the introduction, it also describes successfully

several experiments probing out-of-equilibrium dynamics
[7–9]. In those experiments, the initial state is Gaussian in
terms of phononic operators which motivates our choice to
consider an initial phononic Gaussian state. The latter is
characterized by the one- and (connected) two-point corre-
lations functions of the chiral currents, that we parametrize
in terms of functions fðxÞ and gðx; yÞ as

hJRðxÞi0 ¼ v

ffiffiffiffi
K

p

2π
∂xfRðxÞ; ð14Þ

hJRðxÞJRðyÞiconn0 ¼ v2
K

ð2πÞ2 ∂x∂ygRRðx; yÞ; ð15Þ

and similarly for hJLðxÞi0 and hJLðxÞJLðyÞiconn0 , as well
as for the possible cross correlation hJRðxÞJLðyÞiconn0 .
Here, hJRðxÞJRðyÞiconn ¼ hJRðxÞJRðyÞi− hJRðxÞihJRðyÞi.
Higher order correlation functions are obtained from those
by Wick’s theorem for the phononic operators.
Long time dynamics and relaxation.—The key point of

this Letter is that the phononic states are not eigenstates of
the Lieb-Liniger Hamiltonian and therefore are not well
adapted to study the long time evolution. This is clearly
seen by examining the phase difference accumulated
between different particle-hole states entering a phononic
excitation given by the right-hand side of Eq. (10): one can
estimate the relevant timescale for the dephasing of a single
phonon with momentum n as tdeph ¼ ℏm�ðL=2πnÞ2.
The long-time behavior of the Lieb-Liniger gas is now

well established [41,42]. The system shows a relaxation
phenomenon: as long as local observables are concerned,
the density matrix at long times is obtained from the initial
one by retaining only its diagonal elements in the Bethe-
ansatz eigenbasis. Moreover, according to the genera-
lized eigenstate thermalization hypothesis [43–45] which
states that all eigenstates are locally identical provided
they have the same coarse grained rapidity distribution
ρðλÞ ¼ ð1=LÞPa δðλ − λaÞ, all diagonal density matrix
sufficiently peaked around the correct rapidity distribution
[43–45] are acceptable. In this Letter, we choose the
Gaussian density matrix [46,47]

ρ̂∞ ∝ exp

�X
I

βIb
†
I bI

�
; ð16Þ

where the distribution of Bethe half-integers imposed by
the Lagrange multipliers βI ensures the correct distribution
of rapidities [48]. A commonly used alternative is the
generalized Gibbs ensemble (GGE) in terms of the rapidity
distribution. Both ensembles are equally valid as long as
local quantities are concerned [49].
Extracting the numbers βI , or equivalently the expect-

ations hb†I bIi from the correlation functions Eqs. (14)
and (15) which parametrize the initial phononic
Gaussian state, is, generally speaking, an excruciating task.
However, for an initial state in the low energy sector, only
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fermionic states close to the Fermi points are affected and
calculation of hb†I bIi, which reduces to finding the dis-
tributions hc†R;ncR;ni, hc†L;ncL;ni, is a much easier task as it
can be done by using bosonization.
To do this, we concentrate on the right movers and

introduce GRðξÞ defined by

GRðξÞ ¼
1

L

X
l

e−i2πlξ=Lhc†R;lcR;li; ð17Þ

which can be rewritten as the spatially averaged fermion
two-point correlation function

GRðξÞ ¼ ð1=LÞ
Z

duhc†Rðuþ ξ=2ÞcRðu − ξ=2Þi: ð18Þ

The crucial observation is that since GR is time inde-
pendent it can be evaluated using the initial state. Since the
latter is a phononic Gaussian state, one can use Wick’s
theorem for φR in Eq. (12) to evaluate of the two-
point fermionic correlation function. One obtains, using
hφRðxÞi0 ¼ fRðxÞ and hφRðxÞφRðyÞiconn0 ¼ gRRðx; yÞ,

hc†RðxÞcRðyÞi0 ¼
1

L
exp f−i½fRðxÞ − fRðyÞ�g

× exp

�
gRRðx; yÞ −

1

2
gregRRðxÞ −

1

2
gregRRðyÞ

�
;

ð19Þ
where gregRRðxÞ ¼ limy→xgRRðx; yÞ þ log½2πðy − xÞ=ðiLÞ� is
independent of the short distance cutoff ϵ. The function
GRðξÞ is obtained by injecting Eq. (19) into Eq. (18). The
population of the Bethe fermions, which entirely character-
izes the state after relaxation, is then computed inverting
Eq. (17). We dub this crucial intermediate result “dynami-
cal refermionization.”
Consequence: Relaxation of phonon population.—Mean

values of products of phononic operators after relaxation
are computed expressing them in terms of fermionic
operators thanks to Eq. (10), and using Wick’s theorem,
valid for the fermionic Gaussian density matrix Eq. (16).
In particular, to compute hJRðxÞJRðyÞi∞, we use the
relation JRðxÞ ¼ ðv ffiffiffiffi

K
p

=LÞ Pl

P
n≠0 e

i2πnx=Lc†R;lþncR;l,
obtained injecting Eq. (10) into (4). This gives, for x ≠ y,

hJRðxÞJRðyÞi∞ ¼ −Kv2GRðx − yÞGRðy − xÞ: ð20Þ
Also hJRðxÞi∞ ¼ 0 due to translational invariance. The
phonon population reads

hA†
R;nAR;ni∞ ¼ 1

n

X
l

hc†R;lþncR;lþnið1 − hc†R;lcR;liÞ: ð21Þ

Note that one should consider its weighted sum over a
small but nonvanishing width in k ¼ 2πn=L, to ensure that
the quantity is local so Eq. (16) applies.

Equations (20) and (21) constitute the main result of this
Letter. The translation-invariant case, Eq. (6), announced
earlier, is obtained by using fRðxÞ ¼ 0, gRRðx; yÞ ¼
gðx − yÞ, gregRRð0Þ ¼ 0. We stress that the relaxed state of
the system is no longer Gaussian in terms of the phonons.
Higher order phononic correlation functions require more
calculations—one should express them in terms of the
fermions, and then use Wick’s theorem for fermions.
Example: Application to the case of a single excited

phononic mode.—Let us consider the situation where the
initial state is obtained from the ground state by a
displacement of an R phonon: fRðxÞ ¼ A cosðk0xÞ with
the amplitude A and the wave vector k0, while keeping
gRRðx; yÞ equal to its ground-state value. Figure 1 shows the
Bethe fermion distribution obtained from dynamical refer-
mionization, Eqs. (17)–(19). For small amplitudes A, one
observes plateaus of width k0 which reflect the quantization
of phonons [31]. As A increases, more plateaus appear, and
for large A it becomes the smooth profile hc†R;ncR;ni ¼
ð1=πÞ arccos½2πn=ðLAk0Þ� expected semiclassically [31].
The bottom row of Fig. 1 shows the energy of
each phononic mode after relaxation. The difference of
the distributions of R and L phonons is a strong signature
of the nonthermal nature of the relaxed system. Within the
space of R phonons, redistribution of energy among
phonons is found to be very efficient: the relaxed distri-
bution is close, albeit not identical, to that expected for a
thermal state. We compare the dynamical refermionization
predictions to exact results in the asymptotic regime of
hard-core bosons (c → ∞): in this regime, the Hamiltonian
in terms of Bethe fermions is that of noninteracting
fermions and the current operator JR is equal to that
for the Bethe fermions, which enables exact calculations.
The initial state is obtained as the ground state of
the Hamiltonian H þ ðAk0=

ffiffiffiffi
K

p Þ R dxJRðxÞ sinðk0xÞ. As
seen in Fig. 1, results are in excellent agreement with
the predictions of dynamical refermionization.
Experimental perspectives.—Our predictions can be

tested in cold atom experiments, where initial out-of-
equilibrium states can be generated in various ways.
By quenching the longitudinal potential from a long-
wavelength sinusoidal potential to a flat potential [10],
one produces displaced phononic states, corresponding to
nonvanishing functions fR, fL. A quench of the inter-
action strength will produce two-modes squeezed pho-
nonic states [7], a situation which corresponds to
fR ¼ fL ¼ 0, but to modified functions gRR, gLL, gRL.
Alternatively, modulating the coupling constant with time
will parametrically excite only part of the phononic
spectrum [50]. In the above scenarios the prepared initial
state is symmetric under the exchange of R and L
phonons. To break this symmetry, one could expose the
gas to a potential VðxÞ ¼ V0 cosðk0x − vktÞ for some
short time duration: then only the R phonons would be
resonantly excited.
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To probe the phonon distribution after relaxation, one
possibility is to measure the in situ long-wavelength density
fluctuations [51] and access δρðxÞ ¼ ½JRðxÞ þ JLðxÞ�=v,
see Eq. (2). Alternatively, one can use the density ripple
techniques to probe the long wavelength phase fluctuations
[7,52], whose gradient is the velocity field proportional to
JðxÞ ¼ JRðxÞ − JLðxÞ. The above methods, however, do
not discriminate between right and left movers. In order to
probe selectively R phonons, one needs to probe the
dynamics, for instance using sequences of nondestructive
images [53]. Note that the results of this Letter concern
only the long wavelength fluctuations in the system: they
exclude predictions concerning short range correlations.
At very long times, one expects integrability breaking

perturbations to bring the system to a thermal equilibrium.
However, such perturbations can be weak enough to have
negligible effect during the relaxation time of the Lieb-
Liniger phonons, as is observed experimentally in Ref. [10]
and modeled recently in Ref. [54].
Interestingly, the occupation of Bethe fermions

hc†R;ncR;ni—which, in this Letter, is used as an intermediate
result—could also be measured experimentally. To measure
it, one could first perform an adiabatic increase of the
repulsion strength c, which preserves the distribution of
Bethe fermions [55], until the hard-core regime is reached.
In this regime the distribution of Bethe fermions is the same
as the rapidity distribution, which can be measured by a 1D
expansion [56,57].

Prospects.—This work calls for further investigations in
several directions. First, one could investigate higher order
functions of the chiral currents or of the phonons pop-
ulations to show that the relaxed state is non-Gaussian with
respect to the phonons. Second, our predictions call for
numerical studies of relaxation in the Lieb-Liniger model
away from the strongly interacting regime. Finally, as
discussed above, the predictions of this Letter are to be
confirmed experimentally.
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