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We study the role of elasticity-induced facilitation on the dynamics of glass-forming liquids by a coarse-
grained two-dimensional model in which local relaxation events, taking place by thermal activation, can
trigger new relaxations by long-range elastically mediated interactions. By simulations and an analytical
theory, we show that the model reproduces the main salient facts associated with dynamic heterogeneity
and offers a mechanism to explain the emergence of dynamical correlations at the glass transition. We also
discuss how it can be generalized and combined with current theories.
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Glass-forming liquids display a huge slowing down of
the dynamics, characterized by a relaxation time that grows
by more than 14 orders of magnitude when the temperature
is reduced by just 1=3 from its value at melting [1].
Whereas it is very difficult to find signatures of this
dramatic change of behavior in static correlation functions,
a clear signal emerges in dynamical spatial correlations and
length scales [2]. The associated concomitant growth of
timescales and length scales is a hint of the collective nature
of the relaxation processes underpinning glassy dynamics.
This phenomenon, called dynamic heterogeneity (DH), has
been a central one in the research on the glass transition
both theoretically and experimentally [2]. However, a full
understanding of DH, especially close to the glass tran-
sition, is still lacking.
In this respect, an important aspect is certainly dynamic

facilitation [2]. This is the property by which a local region
that undergoes relaxational motion in a supercooled liquid,
or in a similar slow relaxing material, gives rise to or
facilitates a neighboring local region to move and relax
subsequently. Some theories advocate that facilitation
provides a complete explanation of DH [3], whereas others
suggest that it is part of a more complex dynamical process
associated with the growth of a static length scale [4] (see
also the recent discussions in Refs. [5,6]). Despite its
important role demonstrated in numerical simulations and
experiments [2,6–10], the cause of dynamic facilitation in
real systems has not been fully elucidated yet. Furthermore,
its interplay with thermal activation events is also not
well understood. A theory of glassy dynamics [3,8,11]
posits the emergence of kinetic constraints and describes
dynamical slowing down using kinetically constrained
models (KCM) [12]. In this case, facilitation is the main
mechanism at play. However, its effect on dynamics is very
dependent on the kind of kinetic constraint chosen, and a
first-principle study of the mechanisms that would lead to
specific kinetic constraints is currently lacking.

In this Letter, we address these issues by envisioning
supercooled liquids as solids that flow, following the
pioneering works [13,14], and the recent numerical find-
ings [15–21] which show that anisotropic stress fluctua-
tions with Eshelby-like patterns emerge in the supercooled
state. We consider that close to the glass transition
dynamics proceeds by local events that take place in a
surrounding matrix which is solid on the timescale over
which the local event takes place [22,23]. In consequence,
the local relaxation event causes an elastic deformation in
the surrounding because the system restores mechanical
equilibrium that is broken transiently due to the plastic
rearrangement [24]. Such deformation changes the arrange-
ments of the particles and can then make some nearby
regions more prone to relaxation. Recent works [9,24]
have shown that this elastic mechanism indeed leads to
dynamic facilitation and/or avalanche-like rearrangements.
Reference [25] has used elasticity theory to estimate the
energy scale associated with the dynamic facilitation theory
of Ref. [3]. Another series of works [26,27] have concen-
trated on “softness” and elasticity as the fields that mediate
facilitation. Here, we focus on the simplest model that
encodes this “elasticity-induced facilitation.” We show by
numerical simulations and theoretical analysis that this
mechanism allows us to capture the main salient facts
associated with DH. Our model offers a starting point for a
quantitative theory of dynamical correlations in glass-
forming liquids, and it sheds new light on the theories
of the glass transition.
Since glassy phenomenologies, in particular DH, have

been universally observed in a wide variety of glassy
materials regardless of the details of the microscopic
interactions [2,28] (and also for non-time-reversible dynam-
ics such as granular materials), we aim for a coarse-grained
simplified description able to capture the essential physical
mechanisms. The elastoplastic models (EPMs), which have
already been very successful in describing rheology and
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yielding transitions of amorphous materials [29,30], provide
then a natural setting to study the role of elasticity and
plasticity on the dynamics of supercooled liquids. In
consequence, we focus on a scalar EPM in which plastic
relaxation is not induced by external loading but by thermal
activation. We study the observables used to probe equilib-
rium dynamics and DH of supercooled liquids [2].
Our model, called EPM-Q, is defined on a L × L square

lattice where each site represents a mesoscopic coarse-
grained region of the equilibrium supercooled liquid.
To each site i we associate a local shear stress σi, a local
energy barrierΔEðσiÞ activating the plastic relaxation event
[31–33], and an orientation ψ i ∈ ð0; π=2� for the Eshelby
elastic interaction. The following dynamical rules of the
model encode the effects of local thermal activation, local
plastic rearrangement, and long-range and anisotropic
elastic interaction. At each time step, we pick a site i at
random uniformly among the L2 sites. If jσij is greater than
or equal to a threshold value σc ¼ 1 then the site i
rearranges with probability one, whereas if jσij < σc then
the site i rearranges with probability e−ΔEðσiÞ=T, where T is
the temperature. Because of this local plastic event, σi is
updated by a local stress drop: σi → σi − δσi, where
δσi ¼ ðzþ jσij − σcÞsgnðσiÞ; z > 0 is a random number
drawn by a distribution ρðzÞ. The sign function sgnðxÞ
takes into account that if σi > 0 (or σi < 0) local yielding is
activated by a barrier at σc (or −σc). The stress drop δσi at
site i is then redistributed on the surrounding sites using
the Eshelby kernel [34] with the (random) orientation ψ i.
A new orientation is drawn uniformly at random after
each plastic event. We stress that the random orientation
introduced in this Letter is a crucial aspect to describe
the physics of quiescent (isotropic) supercooled liquids
[35,36], and differs from the aligned Eshelby kernel used in
previous elastoplastic modelings of sheared materials [30].
We repeat the above attempt L2 times, which corresponds
to the unit of time. Our choice of ρðzÞ and ΔEðσÞ is based
on previous literature [22,32,33,37]:

ρðzÞ ¼ 1

z0
e−z=z0 ; ΔEðσÞ ¼ Kðσc − jσjÞa; ð1Þ

where a ¼ 1.5 [38,39], and the mean value z0 and the
generalized stiffness K are set to one for simplicity [40].
Note that the mean-field facilitated trap models introduced
in Refs. [41,42] share important conceptual similarities
with the EPM-Q. The results presented below are obtained
in the stationary state for systems with L ¼ 64 unless
otherwise stated. See Supplemental Material (SM) [43] for
more details [43]. As in usual investigations of glassy
dynamics, we have studied the intermediate scattering
function [58]. To make the connection with studies on
KCMs [11], and since it is particularly well suited for lattice
systems, we have focused on the average of the persistence
function PðtÞ ¼ ð1=L2ÞPi piðtÞ, where piðtÞ is equal to

one if the site i did not relax from time zero to time t and
zero otherwise [59]. Both correlation functions behave in a
qualitatively and quantitatively analogous way. We show
the latter in Fig. 1(a) and the former in SM [43].
Similarly to what is found for dynamical correlation

functions in supercooled liquids, hPðtÞi, where h� � �i is the
time average at the stationary state, decays in an increas-
ingly sluggish way with decreasing T, thus capturing the
slowing down of the dynamics. The shape of the relaxation
function is simpler than the one of the realistic liquid
models. This is due to the simplicity of the model and can
be cured by generalizing it, as we shall discuss later. By
plotting the relaxation time τα (defined as hPðταÞi ¼ 1=2)
as a function of 1=T in Fig. 1(b) we find that τα diverges in
an Arrhenius way when lowering the temperature. For
comparison, we also plot τα obtained from the model
without elastic interactions, i.e., in the absence of stress
redistribution. Remarkably, this relaxation time is larger,

(a)

(b)

FIG. 1. (a) The average persistence function hPðtÞi for
T ¼ 0.100, 0.060, 0.040, 0.030, 0.025, 0.020, 0.018, 0.015,
and 0.013 (from left to right). (b) The relaxation time τα for the
models with (circle) and without (square) elastic interaction. τα is
defined by hPðταÞi ¼ 1=2. The dashed straight line defines an
(average) activation energy barrier ΔEðσ̄actÞ.
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showing that elastic interactions substantially diminish the
energy barrier. This is direct evidence that elastic inter-
actions facilitate and accelerate dynamics in the model.
This conclusion is achieved thanks to the coarse-grained
model approach, where we can turn elasticity on and off.
This is virtually impossible for molecular simulations since
elasticity is an emergent property of the material. The
second direct evidence is provided by studying the mor-
phology of dynamical correlations. Figure 2 shows the
patterns formed by the local persistence piðtÞ at two
different temperatures: clearly, the dynamics is spatially
heterogeneous over lengths that increase when lowering the
temperature (see also movies in SM [43]). The patterns in
Fig. 2 strongly resemble the ones found in realistic
(atomistic, colloidal, granular) systems [2]. The counter-
parts of Fig. 2 in the absence of elastic interactions (not
shown) display no spacial dynamical correlations at all.
To quantify DH we measure the dynamical susceptibility

[60], χ4ðtÞ ¼ L2ðhP2ðtÞi − hPðtÞi2Þ, in Fig. 3(a). We
observe essentially the same time and temperature evolu-
tion found in molecular dynamics simulations of super-
cooled liquids [2]. To study the relationship between time
and length scales, we plot the peak of χ4 as a function of the
logarithm of τα in Fig. 3(b). This curve displays a striking
similarity with the ones obtained from experimental data
(see, e.g., Fig. 4 of Ref. [61]): after a fast increase during
the first decades of slowing down, the increase of the
dynamical correlation length becomes slower, possibly
logarithmic, with respect to τα. This is a highly nontrivial
result that can be found only in some tailored KCMs [11],
and it has been argued to hold for the random first order
transition (RFOT) theory [62,63]. In both cases, the
bending shown in Fig. 3(b) is associated with cooperative
dynamics. As we shall explain later, in our model, the
reason is different (although it shares some similarities
with KCMs).
We now offer a theoretical explanation for the phenom-

enological behavior presented above. Our starting point is
the kinetic elastoplastic theory developed in Ref. [64].

Using translation invariance, one finds that the kinetic
equations of Ref. [64] boil down to the following
Hébraud-Lequeux-like model [32,65,66] for the proba-
bility distribution Pðσ; tÞ of the local stress σ at a given
site (see SM [43]):

∂Pðσ;tÞ
∂t

¼DðtÞ∂
2Pðσ;tÞ
∂σ2

−νðσ;σcÞPðσ;tÞþΓðtÞyðσÞ; ð2Þ

where the three terms on the right-hand side in Eq. (2),
respectively, correspond (from left to right) to (i) the
redistribution of the stress due to elastic interactions, (ii) a
loss term due to rearrangements that change the local
value of σ, and (iii) a gain term due to rearrangements
in which the local value of the stress becomes equal to σ
after stress drops that take place with rate ΓðtÞ ¼R∞
−∞ dσ νðσ; σcÞPðσ; tÞ. The strength of the first term
DðtÞ is related to the total relaxation rate by DðtÞ ¼
αΓðtÞ [64]. In our case, in which the Eshelby orientations

FIG. 2. Snapshots for local persistence piðταÞ when PðταÞ ≈
1=2 for T ¼ 0.040 (a) and T ¼ 0.013 (b), respectively. The
system size is L ¼ 128. Red and blue sites correspond to mobile
[piðταÞ ¼ 0] and immobile [piðταÞ ¼ 1] sites, respectively.

(a)

(b)

FIG. 3. (a) Time and temperature evolution of χ4ðtÞ for
T ¼ 0.100, 0.060, 0.040, 0.030, 0.025, 0.020, 0.018, 0.015,
and 0.013 (from left to right). (b) The peak value of χ4 as a
function of τα for the models with (circle) and without (square)
elastic interactions.
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are randomly oriented, α ≃ 0.110 (see SM [43]), whereas
νðσ; σcÞ reads

νðσ; σcÞ ¼
1

τ0
θðjσj − σcÞ þ

1

τ0
e−½ΔEðσÞ=T�θðσc − jσjÞ; ð3Þ

where 1=τ0 is the rate of the plastic event. The first term
on the right-hand side in Eq. (3) is due to spontaneous
relaxation when the system is locally unstable (beyond σc
or below −σc), whereas the second one is due to thermally
activated relaxation [32]. We show in SM [43] that
for T → 0 the stationary PðσÞ has a symmetric bell shape
and is nonzero for −σ̄ < σ < σ̄ with σ̄ strictly less than σc
(leading to a gap in the distribution of excitations
[67,68]). Its analytic expression is reported in SM [43].
We plot it in Fig. 4 as a dashed curve and compare it to
PðσÞ obtained from numerical simulations of the two-
dimensional model at different temperatures. The agree-
ment is very good. Figure 4 numerically confirms that
the support of limT→0 PðσÞ is within the interval ½−σ̄; σ̄�
with σ̄ < σc, and show a numerical value of σ̄ very
close to the one we computed analytically. The stress
σ̄ defines the smallest typical energy barrier ΔEðσ̄Þ. As
shown in SM [43], the latter determines the relaxation
rate Γ for T → 0:

Γ ≃
1

τ0
e−½ΔEðσ̄Þ=T�: ð4Þ

The above results lead to a scenario in which there is a
spatially heterogeneous distribution of local stresses given
by PðσÞ. This leads to a distribution of energy barriers in
the system. The sites having the smallest barriers, corre-
sponding to jσj ≃ σ̄, are the ones triggering rearrangements

and controlling the relaxation time at small temperatures.
Our numerical findings presented before fully agrees
with this picture: indeed, the value of the stress σ̄act that
would lead to the Arrhenius behavior in Fig. 1(b),
τα ∼ 1=Γ ∼ eΔEðσ̄actÞ=T , is identical (or very close) to the
edge σ̄ of the support of the stress distribution, see Fig. 4.
The effect of elasticity-induced facilitation on the relaxa-
tion timescale, shown in Fig. 1(b), is correctly reproduced
by our analysis of Eq. (2) which predicts τα ∼ 1=Γ ∼
eΔEð0Þ=T in the absence of stress redistribution, hence a
larger barrier ΔEð0Þ > ΔEðσ̄actÞ (see SM [43]).
The above scenario also offers an explanation for the

development of DH. Once a site with jσj ≃ σ̄ triggers a local
rearrangement, stress is redistributed around and can lead
to subsequent relaxations. This is how dynamic facilitation
takes place. A rough argument suggests that sites at
linear distance l < ξðTÞ, where ½1=ξdðTÞ�=T ∼Oð1Þ, are
dynamically correlated as the induced change in their local
barrier can affect their relaxation time substantially. Hence,
following Ref. [69], one finds a peak of χ4 ∼ ξd ∼
ð1=TÞ ∼ log τα. This conjectured behavior of χ4 is in
qualitative agreement with our numerical findings, and it
indeed leads to bending in the log-log plot of χ4 versus τα
(see also SM [43]). The mechanism described above for
DH is different from the ones at play in KCMs [11] and
argued to hold for RFOT [62,63]. Relaxation in EPM-Q is
due to a combination of activation and elasticity instead
of subdiffusion of rare conserved defects [11]. In this new
mechanism, avalanches of motion have a finite size and
appear intermittently [70]. Determining from atomistic
simulations of glass-forming liquids which one of these
mechanisms holds is a very interesting open challenge,
see, e.g., Refs. [6–8].
In summary, we have shown that the simple EPM-Q

model, which encodes “elasticity-induced facilitation,” is
able to reproduce the salient features associated with the
growth of dynamical correlation in glass-forming liquids.
Our results offer new perspectives on the theories of the
glass transition, in particular on the theoretical proposals
describing the dynamics of supercooled liquids as “solids
that flow” [13,25,71–73]. The main difficulty of those
scenarios was that they were thought to be unable to
explain the emergence of dynamical heterogeneity and
dynamical correlations, particularly the growth of the
four-point correlation function that is the central observable
measured in experiments [61] and molecular simulations
[60]. We have shown concretely in a simple model that it is
the elastic interaction between local relaxations on top of
the solid state that provides the emergence of dynamic
facilitation and leads to dynamical heterogeneity even in
models with local barriers, consolidating molecular simu-
lation studies [9,14,22]. Some other important facts are
instead missed in our approach, but as we argue below,
more realistic versions of the model should be able to
capture them.

FIG. 4. Probability distribution function of the local stress
PðσÞ. The dashed curve indicates the solution of the mean-field
(MF) theory at T → 0. The vertical arrows indicate the location of
σ̄act and −σ̄act extracted from ΔEðσ̄actÞ with the activation energy
barrier in Fig. 1(a). Recall that σc ¼ 1.
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For instance, DH is not only associated with hetero-
geneity in space but also with stretched exponential
relaxation [74]. In the EPM-Q presented in this study,
there is no heterogeneity (or disorder) in the solid state, as
all the parameters associated with local relaxation events
[σc, z0, and K in Eq. (1)] are the same on all sites. In a more
realistic version, which considers the disorder of the
amorphous solid [66], they should be random variables
to be redrawn after a local relaxation. This would lead to a
more heterogeneous distribution of barriers and hence of
relaxation times, providing a possible mechanism for
stretched relaxation. Furthermore, a more realistic model
should also consider that local stress relaxation is not
instantaneous [75], and that a complete description should
be tensorial instead of scalar [76–78].
Another important generalization concerns the behavior

of the relaxation time and the nature of the “local
relaxation event.” Even if the elementary dynamical
process were truly local and noncooperative, the typical
value of the local energy barriers could depend on the
temperature [13]. Taking into account that elastic con-
stants correlate with slow dynamics [13,71–73,79], intro-
ducing a realistic T dependence of K and σc would
provide a simple way to describe DH and super-
Arrhenius behavior at the same time. Another possibility
is that the single (mesoscopic) site relaxation process of
our model could actually correspond to a cooperative
many-particle rearrangement as the one envisioned to take
place in RFOT. Within this perspective, the local degrees
of freedom in our model correspond to what has been
called activons (rearrangements on the point-to-set corre-
lation length scale) in Ref. [5] and are represented as local
traps in Refs. [6,42]. It would certainly be interesting to
estimate the typical coarse-graining length scale associ-
ated with a local relaxation event (corresponding to a
single site in the model). This could be done by measuring
the size of shear transformation zones [39,80] or by a
mapping from a molecular simulation to an elastoplastic
model [81–83]. Moreover, in order to study the connec-
tion with KCMs thoroughly, in particular with models
with softened kinetic constraint [84], it would be inter-
esting to study whether EPM-Q-like models present the
space-time dynamical transition predicted in the dynamic
facilitation scenario [85], and how it relates to the physical
ingredients of EPM-Q, such as elasticity and local
structural disorder [86].
EPMs have been fruitfully used to develop a scaling

theory of avalanches in sheared amorphous solids [29]. The
EPM-Q model paves the way for an analogous study of
the avalanches of motion in supercooled liquids [87]
which will allow a thorough comparison with the in-depth
characterization of DH of Ref. [6].
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[82] David F. Castellanos, Stéphane Roux, and Sylvain Patinet,
History dependent plasticity of glass: A mapping between

PHYSICAL REVIEW LETTERS 130, 138201 (2023)

138201-7

https://doi.org/10.1103/PhysRevE.98.040901
https://doi.org/10.1103/PhysRevE.98.040901
https://doi.org/10.1103/PhysRevLett.129.228002
https://doi.org/10.1103/PhysRevLett.129.228002
https://arXiv.org/abs/2006.09725
https://doi.org/10.1103/PhysRevLett.95.195501
https://doi.org/10.1103/PhysRevLett.95.195501
https://doi.org/10.1103/PhysRevLett.105.266001
https://doi.org/10.1103/PhysRevB.87.020101
https://doi.org/10.1103/PhysRevB.87.020101
https://doi.org/10.1103/PhysRevE.101.032130
https://doi.org/10.1088/0305-4470/29/14/012
https://doi.org/10.1103/PhysRevE.52.4134
https://doi.org/10.1103/PhysRevE.71.026128
https://doi.org/10.1016/S0022-3093(02)01461-8
https://doi.org/10.1016/S0022-3093(02)01461-8
https://doi.org/10.1103/PhysRevE.76.041510
https://doi.org/10.1146/annurev.physchem.58.032806.104653
https://doi.org/10.1146/annurev.physchem.58.032806.104653
https://doi.org/10.1103/PhysRevLett.103.036001
https://doi.org/10.1103/PhysRevLett.103.036001
https://doi.org/10.1103/PhysRevLett.81.2934
https://doi.org/10.1140/epje/i2015-15071-x
https://doi.org/10.1140/epje/i2015-15071-x
https://doi.org/10.1103/PhysRevE.102.062110
https://doi.org/10.1103/PhysRevE.105.044601
https://doi.org/10.1103/PhysRevE.71.041505
https://doi.org/10.1016/j.jnoncrysol.2006.04.001
https://doi.org/10.1063/1.3656695
https://doi.org/10.1021/jz4018943
https://doi.org/10.1021/jp953538d
https://doi.org/10.1021/jp953538d
https://doi.org/10.1039/c2sm07090a
https://doi.org/10.1039/c2sm07090a
https://doi.org/10.1039/C4SM00395K
https://doi.org/10.1039/C4SM00395K
https://doi.org/10.1038/ncomms15928
https://doi.org/10.1038/ncomms15928
https://doi.org/10.1103/PhysRevE.101.043004
https://doi.org/10.1103/PhysRevE.101.043004
https://doi.org/10.1063/5.0051193
https://doi.org/10.1103/PhysRevE.57.7192
https://doi.org/10.1103/PhysRevE.57.7192
https://doi.org/10.1103/PhysRevLett.126.138005
https://doi.org/10.1103/PhysRevLett.126.138005


atomistic and elasto-plastic models, Acta Mater. 241,
118405 (2022).

[83] Ge Zhang, Hongyi Xiao, Entao Yang, Robert J. S. Ivancic,
Sean A. Ridout, Robert A. Riggleman, Douglas J. Durian,
and Andrea J. Liu, Structuro-elasto-plasticity model for
large deformation of disordered solids, Phys. Rev. Res. 4,
043026 (2022).

[84] Yael S. Elmatad and Robert L. Jack, Space-time phase
transitions in the east model with a softened kinetic
constraint, J. Chem. Phys. 138, 12A531 (2013).

[85] Lester O. Hedges, Robert L. Jack, Juan P. Garrahan,
and David Chandler, Dynamic order-disorder in atomistic
models of structural glass formers, Science 323, 1309
(2009).

[86] T. Speck, A. Malins, and C. P. Royall, First-Order Phase
Transition in a Model Glass Former: Coupling of Local
Structure and Dynamics, Phys. Rev. Lett. 109, 195703
(2012).

[87] Giulio Biroli, Misaki Ozawa, Marko Popović, Ali Tahaei,
and Matthieu Wyart (to be published).

PHYSICAL REVIEW LETTERS 130, 138201 (2023)

138201-8

https://doi.org/10.1016/j.actamat.2022.118405
https://doi.org/10.1016/j.actamat.2022.118405
https://doi.org/10.1103/PhysRevResearch.4.043026
https://doi.org/10.1103/PhysRevResearch.4.043026
https://doi.org/10.1063/1.4779110
https://doi.org/10.1126/science.1166665
https://doi.org/10.1126/science.1166665
https://doi.org/10.1103/PhysRevLett.109.195703
https://doi.org/10.1103/PhysRevLett.109.195703

