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It is desirable to relate entanglement of many-body systems to measurable observables. In systems with a
conserved charge, it was recently shown that the number entanglement entropy (NEE)—i.e., the entropy
change due to an unselective subsystem charge measurement—is an entanglement monotone. Here we
derive finite-temperature equilibrium relations between Rényi moments of the NEE, and multipoint charge
correlations. These relations are exemplified in quantum dot systems where the desired charge correlations
can be measured via a nearby quantum point contact. In quantum dots recently realizing the multichannel
Kondo effect we show that the NEE has a nontrivial universal temperature dependence which is now
accessible using the proposed methods.
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Entanglement is a key concept in quantum mechanics,
and its measures are being repeatedly used in many areas of
physics, including basic quantum theory, quantum infor-
mation, and many-body physics. For systems at zero
temperature or those described by a pure state, one can
quantify the entanglement by the system’s entanglement
entropy. However, the task of measuring entanglement
entropy in a many-body system is daunting as, in principle,
one needs to measure the full density matrix, requiring
access to all degrees of freedom (see, however, Refs. [1,2]).
As a result only very few experiments have been able to
measure the entanglement entropy in specific systems of
cold atomic Bose-Hubbard chains [3,4] and trapped-ion
quantum simulators [5,6]. Thus the measurement of entan-
glement entropy remains one of the outstanding challenges
in many-body physics. The task of experimental quantifi-
cation of entanglement at finite temperatures is even more
challenging, as the standard entanglement entropy measure
is no longer uniquely defined in this case.
An important step forward was the recognition [7–14] of

a relationship between entanglement entropy and fluctua-
tions in condensed matter systems. For example, for a
system with a conserved total number of particles N ¼
NA þ NB a ground state with fluctuating number of
particles in subsystem A directly implies a nonlocal
quantum correlation with subsystem B. These works
focused mainly on generating [7,8], measuring [9,10],
and understanding of the scaling of many-body quantum
entanglement [11–13]. In fact, for noninteracting fermions,
an exact relation between current moments and entangle-
ment entropy was found [10]. Note, however, that in
general, such current correlations do not fully capture
the charge-neutral contributions [9], often referred to as
configuration entropy [15–19].

Yet, while all these previous works considered pure
states, general condensed matter systems are described by
mixed states, e.g., due to finite temperature. Then, as
mentioned above, the entanglement entropy has to be
replaced by generalized entanglement measures, such as
negativity [20,21] or number entanglement entropy (NEE)
[22,23]. However, unlike the case of a pure state, men-
tioned above, relations between mixed state entanglement
quantifiers and charge or current correlations are not
known, which makes the task of measuring entanglement
at finite temperatures even harder. Previous successful
attempts to quantify entanglement for mixed states relied
on random unitary measurements [6,24–27], which are hard
to apply in general condensed matter systems. Here, we
provide exact thermodynamic relations betweenmoments of
the NEE and measurable subsystem charge fluctuations.
Consequently, measuring these quantities will facilitate
obtaining information about entanglement in many-body
condensed matter systems at finite temperatures.
The NEE ΔS is defined as the entropy change of a

density matrix ρ upon an unselective measurement of
NA [23],

ΔS ¼ −Tr½ρN̂A
log ρN̂A

� þ Tr½ρ log ρ�; ð1Þ

where ρN̂A
¼ P

NA
ΠNA

ρΠNA
and ΠNA

is a projector to a
subspace with subsystem charge NA. A similar quantity in
terms of the reduced density matrix was studied in
Ref. [28]. Equivalently, ρN̂A

is obtained from ρ by anni-
hilating all off-diagonal matrix elements with respect toNA.
When NA uniquely specifies the subsystem’s state, ΔS
coincides with the entanglement entropy for a pure state
(one can easily generalize NEE to include spin and other
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globally conserved quantum numbers). Note that even for a
mixed state, ΔS does not depend on which of the sub-
systems one traces over, unlike the standard entanglement
entropy.
In fact, our definition inEq. (1) is a quantifier of coherence

[29], associated with a conserved quantity [22]. As the
entanglement entropy reflects the coherence in the system,
the NEE measures charge coherence and cannot be simply
extracted from the charge distributionPðNAÞ. Instead, as we
showbelow, one has tomeasure charge correlation functions
in order to quantify the NEE in the system.
The difficult task of directly measuring the entanglement

entropy or negativity in many-body systems was circum-
vented in the literature by suggestions to measure instead
its first Rényi moments [6,30–34]. We will apply a similar
strategy for the NEE. The Rényi moments of ΔS are
defined by

ΔSðαÞ ¼ 1

1 − α
log

�Tr½ρα
N̂A
�

Tr½ρα�
�
: ð2Þ

While the Rényi moments of the NEE do not inherit its
monotonicity, for general mixed states, ðTr½ρα� ≠ 1Þ, it can
be shown that ΔSðαÞ > 0 is a sufficient condition for quan-
tum entanglement or quantum coherence [35]. One can
formally extract the NEE from its moments (see also
Refs. [39,40]) via ΔS ¼ limα→1ΔSðαÞ [41]. Hereafter we
write the NEE as ΔSð1Þ for convenience. For pure states
Tr½ρα� ¼ 1 and ΔSðαÞ ¼ ½1=ð1 − αÞ� logPNA

½PðNAÞ�α be-
comes the Rényi entropy of the subsystem charge distri-
bution PðNAÞ. As mentioned above, for general mixed
states, the NEE and its Rényi moments cannot be obtained
from PðNAÞ alone (see examples in [35]). When the
subsystem charge NA uniquely specifies its state, ΔSðαÞ
coincides with the usual Rényi entropy.
Typically, Rényi moments are obtained using multiple

copy methods [3,30–33,43–45], which are quite difficult to
generate experimentally, especially in condensed matter
systems. Here, focusing on general thermal states, rather
than physically implementing α copies of the system, we
demonstrate that the αth Rényi moment of the NEE of a
thermal state at temperature T is directly related to a
correlation function of the same system at temperature T=α.
Substituting ρðTÞ ¼ ZðTÞ−1 Pi e

−Ei=T jiihij, where
ZðTÞ ¼ P

i e
−Ei=T , and jii are the eigenstates of H,

Hjii ¼ Eijii, for all the factors of ρ in the numerator in
Eq. (2), we find

Tr½ðρN̂A
Þα� ¼

X
NA

Tr½ðρΠNA
Þα�

¼
X
j1;…jα

e−ðEj1
þ���þEjα Þ=T

ZðTÞα hj1jΠNA
jjαi

× hjαjΠNA
jjα−1i…hj2jΠNA

jj1i: ð3Þ

We now note that this expression is identical up to a
multiplicative factor of ZðT 0Þ=ZðTÞα to the α-point imagi-
nary time Green’s function of projection operators,

hΠNA
ð−iτα−1ÞΠNA

ð−iτα−2Þ � � �ΠNA
ð−iτ1ÞΠNA

ð0ÞiT 0

¼
X
j1;…jα

e−Ej1
=T 0

ZðT 0Þ hj1jΠNA
jjαi � � � hj2jΠNA

jj1i

× eðEj1
−Ejα Þτα−1eðEjα−Ejα−1 Þτα−2 � � � eðEj3

−Ej2
Þτ1 ; ð4Þ

evaluated at temperature T 0 ¼ T=α and imaginary times
τj ¼ j=T. We also note that the denominator of Eq. (2) can
be written as Tr½ρα� ¼ ZðT=αÞ=ZðTÞα. Combining these
results, we obtain

ΔSðαÞ ¼ 1

1 − α
log

�X
NA

�
ΠNA

�
α − 1

iT

�
ΠNA

�
α − 2

iT

�
� � �

× ΠNA

�
1

iT

�
ΠNA

ð0Þ
�

T=α

�
: ð5Þ

This equation, which is the main result of this Letter,
expresses the Rényi NEE at temperature T in terms of a
correlation function at temperature T=α.
In order to demonstrate the power of this relation, let us

focus on a many-body system in the Coulomb blockade
regime, such as a quantum dot (QD) or a metallic grain with
a large charging energy. In this case, the subsystem
supports only two charge states, and we provide an explicit
protocol to extract the 2nd and 3rd Rényi moments solely
from the 2-point charge correlation function of the QD.
These relations allow us to measure an entanglement
quantifier in mesoscopic systems at finite temperatures.
Consider a subsystem A with only two charge states,

denoted for NA ¼ 0, 1. In this case the projection operators
become linear in NA, ΠNA¼1 ¼ N̂A, ΠNA¼0 ¼ 1 − N̂A. Thus
Eq. (5) becomes a sum of q-point (q ≤ α) charge
correlators.
Notably, the 2nd and 3rd Rényi moments of the NEE in

Eq. (5) can be written explicitly in terms of hN̂AiT=α, the
occupation number of A and hN̂Að−iðα − 1Þ=TÞN̂Að0ÞiT=α,
the two-point imaginary time charge correlator.
Furthermore, at thermal equilibrium the imaginary time
correlator hN̂Að−iτÞN̂Að0ÞiT can be related with the Fourier
transform of the real-time correlator, defined as

χðω; TÞ ¼
Z

dteiωthN̂AðtÞN̂Að0ÞiT: ð6Þ

This is the charge noise of the QD. As a result Eq. (5)
becomes [35]
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ΔSð2Þ ¼ − log

�
1 − 2hN̂AiT=2 þ 2

Z
dω
2π

χðω; T=2Þe−ω
T

�
;

ΔSð3Þ ¼ −
1

2
log

�
1 − 3hN̂AiT=3 þ 3

Z
dω
2π

χðω; T=3Þe−2ω
T

�
:

ð7Þ
This is our main result for Coulomb blockaded systems. It
allows one to measure Rényi moments of the NEE in
thermal states at temperature T, from charge correlations
measured at temperature T=α. The advantage of our
approach is that these charge correlations have been
repeatedly measured in mesoscopic systems using charge
sensing techniques (see, e.g., [46–50]). In the Supplemental
Material [35] we relate explicitly χðω; TÞ to the voltage-
dependent noise [51] in a quantum-point-contact charge
detector electrostatically coupled to the QD as depicted in
Fig. 1(a).
When subsystem A fluctuates between more charge

states, the projectors ΠNA
become nonlinear functions of

the charge operator. For example for three charge states de-
noted NA ¼ 0, 1, 2 we have ΠNA¼0 ¼ 1

2
ðN̂A − 1ÞðN̂A − 2Þ,

and so on. Then in order to measure the NEE, Eq. (5)
involves higher-point charge correlators. In the context of
full counting statistics [56], higher moments such as the
third moment of current correlations hIðt1ÞIðt2ÞIðt3Þi have
been measured, see, for example, Refs. [57,58]. Such
techniques may allow to extend our results to the case
with multiple-charge states, and similarly for higher Rényi
moments.
Equations (7) apply generally to Coulomb blockaded

systems. The simplest possible example is a spinless double
dot system. The entanglement of log 2 due to coherent
hopping of an electron between the two dots can be directly
computed from the density matrix, or, equivalently, from
the charge-charge correlation via Eqs. (7), as demonstrated
in the Supplemental Material [35]. However, the power of
the relations (7) lies in the prospect of applying them to
strongly correlated systems, such as magnetic impurities
embedded in a continuum, which can lead to a multitude of
Kondo effects and to a competition between spin correla-
tions and screening in multiple-impurity systems (for a
review see, e.g., [59]). Here we exemplify the usefulness of
these relations for multichannel Kondo systems.
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FIG. 1. (a) The charge-multi-channel-Kondo setup [52–55], shown here for two channels (2CK). In each of the channels (j ¼ 1, 2) an
electron can hop from the metallic dot to its respective lead with matrix elements Jj and thus change the dot occupancy by unity,
Nd ¼ 0 ↔ 1, effectively flipping the “impurity spin.” The gate detuning from charge degeneracy ΔE serves as an effective magnetic
field. The asymmetry T− ∝ ðJ1 − J2Þ2 allows us to study the crossover between two- and one-channel Kondo models. An additional
quantum point contact coupled electrostatically to the dot allows measurements of the dot charge and its fluctuations. (b) The charge
NdðTÞ and (c) its fluctuations χðωÞ, required for the evaluation of the Rényi moments ΔSðαÞ of the number entanglement entropy (NEE).
NdðTÞ is shown for ΔE ¼ TK=2 (yellow), 0 (red), −TK=2 (blue), with T− ¼ 0. χðωÞ is shown for T ¼ 0.01TK (solid lines) and
T ¼ 0.5TK (dashed line) for T− ¼ ΔE ¼ 0 (2CK), T− ¼ TK (resonant level model—RLM) with ΔE ¼ 0, and for ΔE ¼ TK=2 with
T− ¼ 0. In the plot, δ function peaks [35] are not drawn. (d) The Rényi moment of NEE ΔSð2Þ obtained from Nd and χðωÞ using Eq. (7)
(solid lines). The NEE ΔSð1Þ is also shown for comparison (dashed lines). We compare the 2CK case, the RLM case, and also the 2CK
with finite level detuning ΔE. (e) log− log plot of logð2Þ − ΔSðαÞðTÞ for the 2CK and RLM cases, demonstrating distinct power law
behavior; up (down) triangles refer to α ¼ 1 (α ¼ 2). (f) logð2Þ − ΔSðαÞðTÞ for a small channel anisotropy scale T−=TK ¼ 0.1,
displaying a 1CK–2CK crossover.
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The multichannel Kondo (MCK) model describes an
impurity spin-1=2 interacting antiferromagnetically withM
spinful channels with continuous density of states. For
M ¼ 1 the impurity is perfectly screened at T ¼ 0, while
for M > 1 the ground state is a non-Fermi liquid, due to
overscreening of the impurity by the M channels [60]. In
both cases, though, the spin-screening cloud (see, e.g.,
[61,62]) leads to a zero-temperature entanglement entropy
of log 2. Recently, finite-temperature entanglement mea-
sures, such as the entanglement of formation (EOF) and
negativity (N ), have been applied to this model [63,64],
demonstrating, for both quantities, a low-temperature
scaling behavior of

EOF;N ≃ log 2 − aMT2ΔM ; ð8Þ
where aM is anM-dependent numerical coefficient and ΔM
is the scaling dimension of the impurity spin operator in the
M-channel problem. As determined by the conformal field
theory solution [65], ΔM ¼ 2=ð2þMÞ for M ≥ 2, and for
the single channel case Δ1 ¼ 1. Unfortunately, these
entanglement measures, while calculable, are practically
impossible to measure (as they require measurements of all
elements of the density matrix). Below we demonstrate that
the entanglement measure NEE for the charge-Kondo
model, and its Rényi moments, which can be directly
measured by applying Eqs. (7), obey the same scaling
relation as Eq. (8), and thus allow direct measurement of
the finite-temperature entanglement and the scaling dimen-
sions of MCK systems.
Unlike the commonly observed one-channel Kondo

effect, signatures of a two-channel spin-Kondo behavior
in quantum dots have only been reported in [66,67]. A
major step forward has been recently taken in Refs. [54,55]
which utilized a mapping between the two charge states of a
metallic dot Nd ¼ 0, 1 and spin Sz ¼ �1=2 [52,53] to
demonstrate scaling and crossover between single and
multichannel M ¼ 1, 2, 3 Kondo effects [here the number
of channels is controlled by the number of one-dimensional
leads attached to the dot, see Fig. 1(a)]. Since, in this case
of a charge-Kondo effect, the role of spin is played by the
deviation of the occupation from half-filling, then charge
correlations in the charge-Kondo system map onto spin
correlation in spin-Kondo systems, thus allowing us to
extract the finite temperature entanglement measure NEE
for non-Fermi liquid MCK systems by utilizing Eqs. (7). In
this case the NEE reduces at T ¼ 0 to the full entanglement
entropy.
To be specific, the charge-MCK Hamiltonian is given by

[52,53]

H ¼
XM
j¼1

Jj
X
k;k0

ðc†j↑kcj↓k0S− þ c†j↓kcj↑k0SþÞ

þ
X
j;k;σ

kc†jσkcjσk þ ΔESz: ð9Þ

The system is depicted in Fig. 1(a) for the case M ¼ 2.
Here Jj is the tunneling between the jth lead and the dot,
cjσk and c†jσk denote annihilation and creation operators,
respectively, for electrons with momentum k in the leads for
σ ¼ ↑ or in the dot for σ ¼ ↓. Here the spin flip operator
changes the charge state of the dot, Sþj0i ¼ j1i, and
Sz ¼ ðj1ih1j − j0ih0jÞ=2 ¼ N̂d − 1=2, where j0i and j1i
are the empty and occupied dot states, and N̂d is the dot
number operator. ΔE is a gate voltage detuning away from
the charge degeneracy point, which corresponds to a
magnetic field in the conventional MCK model. The
electrons are assumed to be spinless, e.g., due to a large
magnetic field. The Hamiltonian (9) is identical to the spin-
MCK Hamiltonian, where the role of the local spin is
played by the occupation states of the metallic dot.
Consider now the NEE between the QD and the leads.

Using Eqs. (7), which expresses the NEE as a correlation
function, we find for the second Rényi NEE

ΔSð2Þ ¼ − log

�
1

2
þ 2

�
Sz

�
1

iT

�
Szð0Þ

�
T=2

�
: ð10Þ

The second term is a two-point correlation function of the
impurity spin operator in imaginary time. Using the general
conformal field theory correlation function hOð−iτÞOð0ÞiT ¼
ðπT= sin πτTÞ2ΔO for an operator O with scaling dimension
ΔO, we obtain [35]

�
Sz

�
1

iT

�
Szð0Þ

�
T=2

∝
�

πT=2
sinðπT T=2Þ

�
2ΔM

∼ T2ΔM : ð11Þ

Furthermore, we find that at low temperature the NEEΔSð1Þ is
also dominated by the same two point correlator [35].
Accordingly, the entanglementmeasureNEEand its Rényi

moments obey the exact same scaling behavior as EOF
and N in Eq. (8). For example, for the 1CK case we ob-
tain a quadratic temperature dependence, ΔSðαÞ1 CK ≃ log 2−
a1αT2, whereas in the 2CK case the dependence is linear,
ΔSðαÞ2 CK ≃ log 2 − a2αT, where now the nonuniversal coef-
ficients aMα depend also on the Rényi moment α. As pointed
out in Refs. [63,64], this linear behavior, corresponding to
Δ2 ¼ 1=2, is an indication of the existence of a Majorana
fermion in the ground state.
The temperature dependence obtained in Eq. (11) is

based on a general scaling argument. In order to make a
more quantitative comparison with experiments for the case
of the 1CK and 2CK models, we can use the exact solution
of the corresponding low-temperature Hamiltonian. This
allows us to obtain results for the temperature behavior
along the crossover between 1CK and 2CK behaviors.
Also, the same model allows us to provide quantitative
results for the simpler resonant level model.
After a renormalization process at low temperatures, the

Hamiltonian for the M ¼ 2 MCK model can be mapped
into a Majorana resonant level model [68,69]
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H ¼
X
k

kγx;−kγx;k þ kηx−kηx;k þ i

ffiffiffiffiffiffiffiffiffi
2TK

L

r X
k

γkηd

þ i

ffiffiffiffiffiffiffiffi
2T−

L

r X
k

ηkγd þ iΔEγdηd: ð12Þ

Here TK is the Kondo energy scale and T− ∝ ðJ1 − J2Þ2
[70] is an energy scale associated with channel asymmetry.
Here γd and ηd are local Majorana zero modes, and
γx;k, ηx;k represent the mode expansion of a Majorana
field. The charge occupation operator of the metallic dot
is written in terms of the local Majorana operators as
N̂d ¼ 1

2
þ iγdηd ≡ N̂A.

This model describes different regimes. The 2CK state
corresponds to ΔE ¼ T− ¼ 0. As long as maxfΔE; T−g ≪
TK , this model describes the vicinity of the 2CK fixed
point. As T− increases, it faithfully describes the crossover
[71,72] from the 2CK to the 1CK fixed point. Additionally,
for the special value T− ¼ TK, this model maps into the
noninteracting resonant level model (RLM), which can be
realized in a single level spinless QD, with on site energy
ΔE and width Γ≡ TK .
This model can be solved exactly [68]. The results for the

occupation number Nd and χðωÞ, which can be measured
using the charge detector, were obtained by solving
numerically the resulting integral expressions [35] and
are shown in Figs. 1(b) and 1(c) for selected model
parameters. For ΔE ¼ 0 (either 2CK or RLM), by sym-
metry Nd ¼ 1=2, and the NEE Rényi moments ΔSðαÞ can
be extracted using Eqs. (7) solely from the charge noise
χðωÞ. We plot in Fig. 1(d) the resulting ΔSð2Þ, and for
comparison [35] the NEE (¼ ΔSð1Þ) which is an entangle-
ment monotone [23], with very similar behavior.
Specifically, the resulting ΔSðαÞ for the 2CK state is in
agreement with our field theory scaling results as seen in
the log− log plot in Fig. 1(e). For the RLM the temperature
scaling is quadratic.
In Fig. 1(f) we show the crossover from 2CK to 1CK

behavior which can be observed for a small channel
anisotropy T−. While limT→0ΔSðαÞ remains log 2 for any
J−, since by symmetry Nd ¼ 1=2, the temperature depend-
ence becomes quadratic log 2 − ΔSðαÞ ∝ T2 for T < T−.
For a finite gate voltage detuning from the fixed point
(ΔE ≠ 0) we have that hNdi ≠ 1=2 as seen in Fig. 1(b). As
a result, limT→0 ΔSðαÞ decreases below log 2 as shown in
Fig. 1(d). Since ΔE is a relevant perturbation, we observe a
nonmonotonic temperature dependence for some range of
values of ΔE as shown in Fig. 1(d) (finite ΔE).
To conclude, we proposed an experimental procedure to

measure entanglement at finite temperatures. In particular
we demonstrated that an entanglement measure—the num-
ber entanglement entropy (NEE)—can be obtained solely
from the subsystems charge distribution function and
correlation functions. We formulated exact thermodynamic

relations between moments of the NEE and subsystem
charge correlation functions. A similar observation was
made for the quantum Fisher information [73]. The setup
we propose for measurement of the NEE in quantum dot
systems has already been utilized to measure the charge
noise, thus we expect that it can be readily extended to
measure finite temperature entanglement measures in
various systems, including multichannel Kondo systems.
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