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The topological superconducting state is a highly sought-after quantum state hosting topological order
and Majorana excitations. In this Letter, we explore the mechanism to realize the topological super-
conductivity (TSC) in the doped Mott insulators with time-reversal symmetry (TRS). Through large-scale
density matrix renormalization group study of an extended triangular-lattice #-J model on the six- and
eight-leg cylinders, we identify a d + id-wave chiral TSC with spontaneous TRS breaking, which is
characterized by a Chern number C = 2 and quasi-long-range superconducting order. We map out the
quantum phase diagram with by tuning the next-nearest-neighbor (NNN) electron hopping and spin
interaction. In the weaker NNN-coupling regime, we identify a pseudogaplike phase with a charge stripe
order coexisting with fluctuating superconductivity, which can be tuned into d-wave superconductivity by
increasing the doping level and system width. The TSC emerges in the intermediate-coupling regime,
which has a transition to a d-wave superconducting phase with larger NNN couplings. The emergence of
the TSC is driven by geometrical frustrations and hole dynamics which suppress spin correlation and
charge order, leading to a topological quantum phase transition.
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Introduction.—The fractional quantum Hall states dis-
covered in two-dimensional (2D) electron systems under
external magnetic fields [1,2] are remarkable states of
matter demonstrating topological orders and fractionalized
excitations [3-5]. In 2D Mott insulators, geometrical
frustration and quantum fluctuations can suppress magnetic
order and lead to a topologically ordered quantum spin
liquid (QSL) [6-8]. Tuning Mott insulators with doping,
more exotic phases including unconventional supercon-
ductivity (SC) and non-Fermi liquid emerge [9-17], which
are central topics in condensed matter physics.
Interestingly, there is a class of time-reversal-symmetry
(TRS) breaking QSL named the chiral spin liquid (CSL),
which was first proposed by Kalmeyer and Laughlin (KL)
as the analog of the fractional quantum Hall state [18].
Remarkably, doping a CSL may lead to d + id-wave
topological superconductivity (TSC) through the conden-
sation of paired fractional quasiparticles [19-21].

Recently, the KL-CSL has been theoretically discovered
in the kagome spin systems with competing interactions
[22-25], and near the metal-insulator transition in the
triangular Hubbard model [26-28] through spontaneous
TRS breaking. Numerical studies on the doped CSL in
these systems [25,26] have uncovered either a Wigner
crystal solid or a nonsuperconducting chiral metal [29-31],
which challenge the original proposal of realizing a TSC
[19-21] and demonstrate the richness of doped frustrated
systems [32-48]. A breakthrough comes from density
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matrix renormalization group (DMRG) studies, which have
identified a d 4+ id-wave TSC by doping either a CSL
[49,50] or a weak Mott insulator [50] in the triangular-
lattice #-J model with three-spin chiral coupling J, break-
ing TRS explicitly. Despite the exciting progress, the
mechanism of realizing TSC in the systems with TRS
remains an outstanding issue, which demands unbiased
numerical study beyond mean-field and variational treat-
ments [33-40,51-54]. Focusing on TRS triangular sys-
tems, previous DMRG study of the doped J;-J, QSL
identified a d-wave SC [55] while the rich interplay among
conventional orders, hole dynamics, and spin fluctuations
has not been extensively explored in such systems, which
may provide a new mechanism to realize TSC through
spontaneous TRS breaking.

Experimentally, triangular-lattice compounds are among
the most promising candidates for hosting topological
states, including the QSL candidates of weak Mott insula-
tors [56-58], the d + id-wave TSC candidates Na,CoO, -
yH20 [59-61] and Sn/Si(111) systems [62], and the
twisted transition metal dichalcogenides (TMD) moiré
systems which can simulate the Hubbard and related 7-J
model [63,64]. The correlated insulators and possible SC
states discovered in these systems [65-67] also call for
theoretical understanding of the rich interplay among
the experimentally tunable parameters such as electronic
hopping and interaction.

© 2023 American Physical Society
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In this Letter, we study the quantum phases in the
extended triangular 7-J model using DMRG simulations.
By tuning the ratios of the next-nearest-neighbor (NNN) to
nearest-neighbor (NN) hopping #,/¢, and spin interaction
J>/J,, we find a pseudogaplike phase with charge density
wave (CDW) order at small NNN couplings, which coexists
with both the strong spin density wave fluctuation (SDWF)
and fluctuating superconductivity (FSC) showing a ten-
dency to develop into a d-wave SC on a wider nine-leg
cylinder. With growing t,/t; or (and) J,/J,, we identify a
phase transition to an emergent d + id-wave TSC [19-
21,40,68,69] characterized by a topological Chern number
C = 2, through spontaneous TRS breaking. The SC pairing
correlations show algebraic decay with the power exponent
Kgc ~ 1.0 dominating other spin and charge correlations,
which are the quasi-1D descendent states of 2D topological
superconductors. For even larger NNN couplings, a nematic
d-wave SC phase emerges with anisotropic pairing corre-
lations breaking rotational symmetry, which belongs to the
same SC phase found in the doped J;-J, QSL [55]. Our
results establish a new route to the TSC by doping either a
magnetic Mott insulator or a QSL with TRS, in which hole
dynamics and geometrical frustrations play essential roles to
suppress magnetic correlations and induce the TSC.

Theoretical model and method.—We study the following
extended #-J model on the triangular lattice:

PO |
H= Z — (2] ¢, +He.) +ZJ"J' (Si 'Sj_z_lﬁiﬁj>’
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where 6;0 (¢;,) creates (annihilates) an electron on site i
with spin ¢ = +1/2, S, is the spin-1/2 operator, #1; =
> éj'_géi,g is the electron number operator. We tune the
ratios of neighboring couplings #,/¢; and J,/J; to explore
their interplay in driving different phases in the system. We
set J; = 1 as the energy unit and ¢;/J; = 3 to mimic a
strong Hubbard interaction U/t = 12.

We perform large scale DMRG simulations with charge
U(1) and spin SU(2) symmetries [70-72] on a cylinder
system, which has an open boundary in the e, or x direction
and periodic boundary conditions in the e, or y direction
[Fig. 1(a)]. The number of sites along the x (y) direction is
denoted as L, (L,) and the total number of sites is
N =L, x L. The electron number N, is related to hole
doping level §as N, /N = 1 — 6. We focus on the results on
the L, =6 systems, which are supplemented with the
studies on wider L, = 8, 9 cylinders [73]. We keep up to
M =20000 SU(2) multiplets [equivalent to about
60000 U(1) states] to obtain accurate results with the
truncation error € < 2 X 1073 see more details in Sec. I. of
the Supplemental Material (SM) [74].

Phase diagram and Chern number characterization.—
We map out the phase diagram for § = 1/12 based on the
results of the Chern number [50] and pairing correlation. As
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FIG. 1. Global quantum phase diagram. (a) Schematic figure of

the triangular 7-J model with the NN and NNN hoppings ?;, t,
and spin interactions Jy, J;. O is the magnetic flux threading in
the cylinder. A, ,, . define the pairing order parameters of the NN
bonds along the ¢, ;. directions. (b) The relative phases between
A, =|A,le% (a=a, b, c), defined as 6,5 = 0, — 05. (c) The
quantum phase diagram obtained on the L, = 6 cylinder with
doping level 5§ = 1/12. We identify a pseudogaplike (PGL) phase
with CDW/SDWEF, a d + id-wave TSC phase, and a d-wave SC
phase. The dotted dashed line denotes J,/J, = (t,/t;)*. The
symbols mark the studied parameters, and the cyan triangle marks
the studied parameter in Ref. [55]. (d)-(f) The charge density
profile in the three phases. n(x) is the charge density per site in
each column x, obtained on the 40 x 6 cylinder with M = 12 000.

shown in the phase diagram [Fig. 1(c)], in the smaller J,
and t, regime we identify a pseudogaplike phase [75,76]
with dominant CDW order and short-range d-wave SC
fluctuation. The TSC emerges in the intermediate coupling
regime while the previously identified d-wave SC phase
[55] appears at the larger NNN couplings.

To identify the topological nature of the phases, we
perform the inserting flux simulation [23,50] using the
infinite DMRG [77] with increasing the flux adiabatically
with 0y — 0 + AOr and Afr = 27/16. We measure the
accumulated spin Q = n4 — n at left edge for each 0 (n,
is the total charge with spin ¢ near the edge [50]). For a
range of intermediate NNN couplings, nonzero pumped
spin AQ, is obtained, which increases almost linearly with
0r [Fig. 2(a)], indicating the uniform Berry curvature [78].
By threading a flux quantum (6 = 0 — 2x), the Chern
number C = AQ, ~ 2.0 characterizes a robust TRS-
breaking topological state. The energy per site E; varies
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FIG. 2. Identifying the TSC phase and phase transitions along

(t,/t,)? = J,/J;. (a) Spin pumping simulation by adiabatically
inserting flux @ for J,/J; = 0.05. m is the U(1) bond dimen-
sion. By inserting a flux quantum, we obtain the Chern number
C = AQ, ~ 2 with an error smaller than +0.03. The inset shows
the flux dependence of ground-state energy per site E. (b) Cou-
pling dependence of the obtained Chern number with m = 8000.
(c) Spin chiral order (y) = (S; - (Sj x 8)) of the triangles in each
column versus the column position x for J,/J; = 0.05. M is the
SU(2) bond dimension. (d) Double-logarithmic plot of the
pairing correlation |Py,(r)| obtained with M = 12 000.

smoothly with 6y [the inset of Fig. 2(a)], indicating a
gapped spectrum flow and robust topological quantization
[79]. Here C = 2 identifies the number of chiral Majorana
edge modes [68,69]. In Fig. 2(b), we show the obtained
Chern number along (t,/t,)* = J,/J,, where the quantized
C = 2 clearly distinguishes the TSC from the topologically
trivial phases with C = 0 nearby (see more results in SM
Sec. II. [74]). We further show the chiral order (y) = (S, -

(S ;X S,)) (the sites i, j, k belong to the smallest triangle)
along the x direction [Fig. 2(c)]. The chiral orders after bond-
dimension scaling to M — oo limit remain finite, supporting
the spontaneous TRS breaking in the TSC.

Next, we show the evolution of the dominant spin-singlet
pairing correlations P;(r) = (Al(rg)Ay(ry +r)) where
the pairing order is defined as A,(r) = (CrpCrpe,y —
CryCriet)/ V2 (@=a, b, ¢). The pairing correlation
|Py,(r)| decays very fast for #, = J, = 0 and is enhanced
at short distance for (t,/t,)* = J,/J, = 0.02 inside the
CDW + SDWF phase [Fig. 2(d)]. With larger NNN cou-
plings in the TSC and d-wave SC phases, pairing corre-
lations are strongly enhanced at all distances.

Spin structure factor and charge occupation.—Now
we discuss the spin correlation and charge occupation.

S(k), (tZ/tl)QZJQ/JIZO.O.Z

S(k), (iz/t1)2:J2/J1:0_0%

J(a)

S(k), (tQ/t1)2=J2/J1=040§

FIG. 3. Spin structure factor S(k) and electron density in
momentum space n(k) in the three phases. The results are
obtained using the middle N,, = 24 x 6 sites of a long cylinder,
which are calculated with M = 12000 and well converged. The
dashed hexagon denotes the Brillouin zone. (a) and (d) belong to
the CDW + SDWF phase, (b) and (e) belong to the TSC phase,
(c) and (f) belong to the d-wave SC phase.

In the CDW + SDWF phase, the spin structure factor
S(k) = (1/N,,) 32148, - §;)e™ =) has prominent peaks
at the K points representing strong 120° spin fluctuation
[Fig. 3(a)]. In the TSC, the K point peaks are significantly
suppressed and dispersed along one of the edges of Brillouin
zone [see Fig. 3(b) and SM Sec. I1I. [74] ], consistent with
the emergence of the CSL in spin background. In the d-wave
SC phase, weak peaks emerge at two M points [Fig. 3(c)],
indicating nematic spin fluctuation. Furthermore, we inves-
tigate the electron occupation number in the momentum
space n(K) = (1/N,,) 3=, ,(¢],2; )€™ T ) and find that
from the CDW + SDWEF phase to the TSC, the hole pockets
at the K points disperse along the edge of the Brillouin zone,
while in the d-wave SC phase the hole pockets concentrate at
two M points [Figs. 3(d)-3(f) and SM Sec. VIL. [74] ]. Inreal
space, the charge density profile in the CDW + SDWF
phase shows a strong stripe pattern with the wavelength
A= 10 while in the SC phases, the CDW becomes much
weaker with A ~ 4 [Figs. 1(d)-1(f)].

Fluctuating superconductivity in the CDW + SDWF
phase.—To reveal the nature of the CDW + SDWEF phase,
we focus on the correlation functions. At ¢, = J, = 0, the
extrapolated spin correlations S(r) = (S, - S, ) decay
exponentially with a large correlation length £g ~ 9.2 (6.9)
on the L, =6 (9) system [Fig. 4(a)], confirming the
absence of magnetic order and short-range SDWF. We fur-
ther compare S(r) with single-particle correlation G(r) =
S (@l or ir)s density correlation D(r) = (fig, g, 1 x)—
(fig,) {7y, +r)» and pairing correlation |Py,(r)| using the
extrapolated M — oo data (rescaled with doping ratio for
direct comparison) as shown in Fig. 4(b). While the spin
correlation is relatively strong, single-particle |G(r)| decays
exponentially with a short correlation length &; =~ 3.7.
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FIG. 4. Correlation functions and SC orders in the CDW + SDWF phase with extrapolated M — oo data for (a)—(d). (a) Logarithmic-
linear plots of the spin correlations on the 40 x 6 and 24 x 9 cylinders, with the correlation length &g = 9.2(2) (6.9(2)) for L, =6(9).
The number in the bracket gives the standard deviation from linear fitting. (b) Comparing correlations which are rescaled with doping
ratio for a direct comparison. The fittings give ¢ = 9.2(2) and {; = 3.7(6). (¢) Double-logarithmic plot of pairing correlation | P, (r)|.
The extrapolated results with » < 10 can be fitted algebraically with K5~ = 1.05(8). (d) Comparing correlations where the fittings give
£ =15.22(8) and &; = 2.7(4). We choose the reference site at x, = L, /4 for demonstrating correlations. (e) Different SC orders A,
versus each column x for a system in a grand canonical ensemble with M = 8000 and the averaged electron density n(x). The coupling
parameters are the same as (d). A varying chemical potential yu; = u(x) = pg + x/L,[a + b(x/L,)] is used to adjust the range of n(x).

Although the pairing correlation also decays fast, it is much
stronger compared to the two single-particle correlator |G ()
indicating the more suppressed single-particle channel.

At (t/1,)* = J,/J, = 0.02, |Py,(r)| is enhanced and
decays algebraically with an exponent K- ~ 1.05 within
short distance, which indicates a strong local pairing order
[Fig. 4(c) and Fig. 2(d)] representing the FSC. Remarkably,
the difference between |P,,(r)| and |G*(r)| dramatically
increases with |P,,(r)| larger than |G*(r)| by around 4
orders of magnitude at large distances [Fig. 4(d)], unveiling
the “pseudogap” behavior. To further explore the FSC, we
compute the SC order in the grand canonical ensemble with
varying chemical potential H — H — ). u;n; following the
method in Ref. [80] (see SM Sec. VIII. [74]). As shown in
Fig. 4(e), a finite d-wave SC order develops with increased
L, =9 and the doping level over 20%.

d + id-wave TSC phase.—Next we turn to the charac-
terization of the TSC phase. By bond-dimension extrapola-
tion, we identify the algebraic decay of the pairing
correlation. For (1,/t,)* = J;/J, = 0.05 and L, = 6, we
find | Py, (r)| ~ r=%sc with Kgc ~ 1.03 [Fig. 5(a)], indicating
a divergent SC susceptibility in the zero-temperature limit
[81]. Similar results are also obtained on the wider L, = 8
system (see SM Sec. V.A. [74]), supporting the robust TSC.

To identify the pairing symmetry, we rewrite A,(r) =
|A,(r)|e() and Py(r) = |Ps(r)|e'?+¥) with the relative
phases  ¢,5(r) = Op(rg +1) = 6,(ry). Thus, 6G,4(r) =
0,(r) = O45(r) = hya(r) — hop(r) [see Fig. 1(b)]. As shown
in Fig. 5(b), ¢,p(r) are nearly uniform in real space and
are obtained as [Py, Dpe, Pra) = [0.000(4),0.61(2)7, —
0.61(2)z] (0,37, —%x] for L, =6, which give 6, =
0,. = 0., ~2x/3 characterizing an isotropic d + id-wave
pairing symmetry, while 8,, = 6., = 7z is observed in the
d-wave SC phase. We also confirm this robust pairing
symmetry on the wider N = 36 x 8 system [see Fig. 5(b)
and SM Sec. V.A. [74] ], providing compelling evidence for

k]
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FIG. 5. Correlation functions for (t,/t,)?>=J,/J, =0.05 in the
TSC phase using the extrapolated data. (a) Double-logarithmic
plot of the pairing correlations |P,(r)| obtained by keeping
different SU(2) bond dimensions. The extrapolated correlations
decay algebraically with Kgc = 1.03(6). (b) d + id-wave pairing
symmetry identified by the phase differences of pairing corre-
lations on the L, = 6 (8) cylinder using bond dimensions M =
15000 (20 000). (c) The ratios of the magnitudes of the pairing
correlations at different bonds. The dashed dotted line indicates
the averaged ratio of 1.2(1) for the TSC phase. The dotted line
indicates the averaged ratio of 0.45(5) for the d-wave SC phase.
We choose r < L,/2 to calculate the averages to minimize the
boundary effect. (d) Comparing the correlations which are
rescaled with the doping ratio. The fittings give & = 2.2(1)
and &; = 3.3(2). We choose x, = L,/4 and fit the data to the
distance r = L, /2 to avoid a boundary effect.
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the emergent TSC through spontaneous TRS breaking.
Furthermore, as shown in Fig. 5(c), we find that
|Ppo(r)/Pyy(r)| and |Py.(r)/Py,(r)| averaged over r are
around 1.2 for the near isotropic TSC phase, while they
drop to around 0.45 in the nematic d-wave SC phase.

In comparison, both spin and single-particle correlations
decay exponentially with small correlation lengths [Fig. 5(d)]
while the density correlations seem also to decay algebrai-
cally but with a large exponent K cpw = 2.4, showing that the
pairing correlation dominates all other correlations.

Summary and discussion.—Through DMRG simulation
on the extended triangular 7-J model, we identify a d + id-
wave TSC through spontaneous TRS breaking, by doping
either a magnetic order state or a time-reversal symmetric
QSL. The driving mechanism is the balanced spin frustra-
tions and hole dynamics induced by NNN couplings, which
suppress magnetic correlations and lead to the TSC for
doping level 6 = 1/12 — 1/8 (see additional results in SM
Sec. V.B. [74]). Physically, frustration to spin background
can be built up by NNN coupling J,, or f,, or both terms
acting jointly. Our findings open a new route for discovering
TSC in correlated materials, with the TMD Moiré super-
lattices [64—67] being the most promising platform [63].

We also reveal the pseudogaplike physics in the CDW +
SDWEF phase, which demonstrates a tendency to evolve into
d-wave SC by increasing the phase coherence of pairing
correlations. Our Letter suggests a new direction for future
studies on doped Mott insulators [72,80-89], which may
provide insights to the challenging issues related to the
normal states of the high-T .. cuprate superconductors [75,76].

The data and simulation code are available from the
corresponding author upon reasonable request.
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Note added.—Recently, we noticed a related work,
Ref. [90], which studies possible superconductivity with
different hopping signs.

*shoushu.gong@buaa.edu.cn
Tdonna.shengl @csun.edu

[1] D.C. Tsui, H. L. Stormer, and A.C. Gossard, Phys. Rev.
Lett. 48, 1559 (1982).

[2] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

[3] B. 1. Halperin, Phys. Rev. Lett. 52, 1583 (1984).

[4] X.-G. Wen, Int. J. Mod. Phys. B 04, 239 (1990).

[5] X.G. Wen, Phys. Rev. B 44, 2664 (1991).

[6] L. Balents, Nature (London) 464, 199 (2010).

[7]1 Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89,
025003 (2017).

[8] C. Broholm, R. Cava, S. Kivelson, D. Nocera, M. Norman,
and T. Senthil, Science 367, 6475 (2020).

[9] P. W. Anderson, Science 235, 1196 (1987).

[10] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78,
17 (2006).

[11] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J.
Zaanen, Nature (London) 518, 179 (2015).

[12] C. Proust and L. Taillefer, Annu. Rev. Condens. Matter
Phys. 10, 409 (2019).

[13] X.-G. Wen and P. A. Lee, Phys. Rev. Lett. 76, 503 (1996).

[14] E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Rev. Mod.
Phys. 87, 457 (2015).

[15] T. Senthil and P. A. Lee, Phys. Rev. B 71, 174515 (2005).

[16] L. Balents and S. Sachdev, Ann. Phys. (Amsterdam) 322,
2635 (2007).

[17] S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010).

[18] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095
(1987).

[19] R. B. Laughlin, Phys. Rev. Lett. 60, 2677 (1988).

[20] X.G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413
(1989).

[21] D.-H. Lee and M. P. A. Fisher, Phys. Rev. Lett. 63, 903 (1989).

[22] Y.-C. He, D. N. Sheng, and Y. Chen, Phys. Rev. Lett. 112,
137202 (2014).

[23] S.-S. Gong, W. Zhu, and D.N. Sheng, Sci. Rep. 4, 6317
(2014).

[24] B. Bauer, L. Cincio, B.P. Keller, M. Dolfi, G. Vidal, S.
Trebst, and A. W. W. Ludwig, Nat. Commun. 5, 5137 (2014).

[25] S.-S. Gong, W. Zhu, L. Balents, and D. N. Sheng, Phys.
Rev. B 91, 075112 (2015).

[26] A. Szasz, J. Motruk, M. P. Zaletel, and J. E. Moore, Phys.
Rev. X 10, 021042 (2020).

[27] B.-B. Chen, Z. Chen, S.-S. Gong, D. Sheng, W. Li, and A.
Weichselbaum, Phys. Rev. B 106, 094420 (2022).

[28] A. Wietek, R. Rossi, F. Simkovic, M. Klett, P. Hansmann,
M. Ferrero, E. M. Stoudenmire, T. Schifer, and A. Georges,
Phys. Rev. X 11, 041013 (2021).

[29] H.-C. Jiang, T. Devereaux, and S. A. Kivelson, Phys. Rev.
Lett. 119, 067002 (2017).

[30] C. Peng, Y.-F. Jiang, D.-N. Sheng, and H.-C. Jiang, Adv.
Quantum Technol. 4, 2000126 (2021).

[31] Z.Zhu, D. N. Sheng, and A. Vishwanath, Phys. Rev. B 105,
205110 (2022).

[32] X.-Y. Song, A. Vishwanath, and Y.-H. Zhang, Phys. Rev. B
103, 165138 (2021).

[33] G. Baskaran, Phys. Rev. Lett. 91, 097003 (2003).

[34] B. Kumar and B. S. Shastry, Phys. Rev. B 68, 104508 (2003).

[35] Q.-H. Wang, D.-H. Lee, and P. A. Lee, Phys. Rev. B 69,
092504 (2004).

[36] T. Watanabe, H. Yokoyama, Y. Tanaka, J.-i. Inoue, and M.
Ogata, J. Phys. Soc. Jpn. 73, 3404 (2004).

[37] B. Braunecker, P. A. Lee, and Z. Wang, Phys. Rev. Lett. 95,
017004 (2005).

136003-5


https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevLett.52.1583
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1103/PhysRevB.44.2664
https://doi.org/10.1038/nature08917
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1038/nature14165
https://doi.org/10.1146/annurev-conmatphys-031218-013210
https://doi.org/10.1146/annurev-conmatphys-031218-013210
https://doi.org/10.1103/PhysRevLett.76.503
https://doi.org/10.1103/RevModPhys.87.457
https://doi.org/10.1103/RevModPhys.87.457
https://doi.org/10.1103/PhysRevB.71.174515
https://doi.org/10.1016/j.aop.2007.02.001
https://doi.org/10.1016/j.aop.2007.02.001
https://doi.org/10.1103/PhysRevLett.105.151602
https://doi.org/10.1103/PhysRevLett.59.2095
https://doi.org/10.1103/PhysRevLett.59.2095
https://doi.org/10.1103/PhysRevLett.60.2677
https://doi.org/10.1103/PhysRevB.39.11413
https://doi.org/10.1103/PhysRevB.39.11413
https://doi.org/10.1103/PhysRevLett.63.903
https://doi.org/10.1103/PhysRevLett.112.137202
https://doi.org/10.1103/PhysRevLett.112.137202
https://doi.org/10.1038/srep06317
https://doi.org/10.1038/srep06317
https://doi.org/10.1038/ncomms6137
https://doi.org/10.1103/PhysRevB.91.075112
https://doi.org/10.1103/PhysRevB.91.075112
https://doi.org/10.1103/PhysRevX.10.021042
https://doi.org/10.1103/PhysRevX.10.021042
https://doi.org/10.1103/PhysRevB.106.094420
https://doi.org/10.1103/PhysRevX.11.041013
https://doi.org/10.1103/PhysRevLett.119.067002
https://doi.org/10.1103/PhysRevLett.119.067002
https://doi.org/10.1002/qute.202000126
https://doi.org/10.1002/qute.202000126
https://doi.org/10.1103/PhysRevB.105.205110
https://doi.org/10.1103/PhysRevB.105.205110
https://doi.org/10.1103/PhysRevB.103.165138
https://doi.org/10.1103/PhysRevB.103.165138
https://doi.org/10.1103/PhysRevLett.91.097003
https://doi.org/10.1103/PhysRevB.68.104508
https://doi.org/10.1103/PhysRevB.69.092504
https://doi.org/10.1103/PhysRevB.69.092504
https://doi.org/10.1143/JPSJ.73.3404
https://doi.org/10.1103/PhysRevLett.95.017004
https://doi.org/10.1103/PhysRevLett.95.017004

PHYSICAL REVIEW LETTERS 130, 136003 (2023)

[38] C. Weber, A. Lauchli, F. Mila, and T. Giamarchi, Phys. Rev.
B 73, 014519 (2006).

[39] J. Y. Gan, Y. Chen, and F.C. Zhang, Phys. Rev. B 74,
094515 (2006).

[40] S. Zhou and Z. Wang, Phys. Rev. Lett. 100, 217002 (2008).

[41] K.S. Chen, Z. Y. Meng, U. Yu, S. Yang, M. Jarrell, and J.
Moreno, Phys. Rev. B 88, 041103(R) (2013).

[42] O.I. Motrunich and P. A. Lee, Phys. Rev. B 69, 214516 (2004).

[43] M. L. Kiesel, C. Platt, W. Hanke, and R. Thomale, Phys.
Rev. Lett. 111, 097001 (2013).

[44] D.P. Arovas, E. Berg, S. A. Kivelson, and S. Raghu, Annu.
Rev. Condens. Matter Phys. 13, 239 (2022).

[45] Y. Gannot, Y.-F. Jiang, and S. A. Kivelson, Phys. Rev. B
102, 115136 (2020).

[46] C.Peng, Y.-F. Jiang, Y. Wang, and H.-C. Jiang, New J. Phys.
23, 123004 (2021).

[47] A.M. Aghaei, B. Bauer, K. Shtengel, and R. V. Mishmash,
arXiv:2009.12435.

[48] Y.-F. Jiang, H. Yao, and F. Yang, Phys. Rev. Lett. 127,
187003 (2021).

[49] Y.-F. Jiang and H.-C. Jiang, Phys. Rev. Lett. 125, 157002
(2020).

[50] Y. Huang and D. N. Sheng, Phys. Rev. X 12, 031009 (2022).

[51] Z.-C. Gu, H.-C. Jiang, D. N. Sheng, H. Yao, L. Balents, and
X.-G. Wen, Phys. Rev. B 88, 155112 (2013).

[52] C. Xu and L. Balents, Phys. Rev. Lett. 121, 087001 (2018).

[53] B. Zhou and Y.-H. Zhang, arXiv:2209.10023.

[54] M. Bélanger, J. Fournier, and D. Sénéchal, Phys. Rev. B
106, 235135 (2022).

[55] H.-C. Jiang, npj Quantum Mater. 6, 1 (2021).

[56] Y. Kurosaki, Y. Shimizu, K. Miyagawa, K. Kanoda, and G.
Saito, Phys. Rev. Lett. 95, 177001 (2005).

[57] T.Itou, A. Oyamada, S. Maegawa, M. Tamura, and R. Kato,
J. Phys. Condens. Matter 19, 145247 (2007).

[58] S. Yamashita, Y. Nakazawa, M. Oguni, Y. Oshima, H.
Nojiri, Y. Shimizu, K. Miyagawa, and K. Kanoda, Nat.
Phys. 4, 459 (2008).

[59] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. [zumi,
R. A. Dilanian, and T. Sasaki, Nature (London) 422, 53
(2003).

[60] R.E. Schaak, T. Klimczuk, M.L. Foo, and R.J. Cava,
Nature (London) 424, 527 (2003).

[61] T. Fujimoto, G.-q. Zheng, Y. Kitaoka, R.L. Meng, J.
Cmaidalka, and C. W. Chu, Phys. Rev. Lett. 92,047004 (2004).

[62] F. Ming, X. Wu, C. Chen, K. Wang, P. Mai, T. Maier, J.
Strockoz, J. Venderbos, C. Gonzalez, J. Ortega et al., Nat.
Phys. 1 (2023).

[63] F. Wu, T. Lovorn, E. Tutuc, and A. H. MacDonald, Phys.
Rev. Lett. 121, 026402 (2018).

[64] Y. Tang, L. Li, T. Li, Y. Xu, S. Liu, K. Barmak, K.
Watanabe, T. Taniguchi, A.H. MacDonald, J. Shan, and
K. F. Mak, Nature (London) 579, 353 (2020).

[65] L. An, X. Cai, D. Pei, M. Huang, Z. Wu, Z. Zhou, J. Lin, Z.
Ying, Z. Ye, X. Feng et al., Nanoscale Horiz. 5, 1309 (2020).

[66] C. Schrade and L. Fu, arXiv:2110.10172.

[67] M. M. Scherer, D. M. Kennes, and L. Classen, npj Quantum
Mater. 7, 100 (2022).

[68] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[69] T. Senthil, J. B. Marston, and M. P. A. Fisher, Phys. Rev. B
60, 4245 (1999).

[70] S.R. White, Phys. Rev. Lett. 69, 2863 (1992).

[71] 1. P. McCulloch, J. Stat. Mech. (2007) P10014.

[72] S. Gong, W. Zhu, and D. N. Sheng, Phys. Rev. Lett. 127,
097003 (2021).

[73] The DMRG simulations on the L, =4 system have not
found the topological superconductivity with spontaneous
time-reversal symmetry breaking in the intermediate-cou-
pling regime. Instead, a phase separation between the hole
rich region and electron rich region is found due to the
relatively small system circumference; see the supplemen-
tary information of Ref. [50].

[74] See  Supplemental ~Material at  http://link.aps.org/
supplemental/10.1103/PhysRevLett.130.136003 for de-
tailed numerical results and discussions.

[75] P. A. Lee, Phys. Rev. X 4, 031017 (2014).

[76] Z. Dai, T. Senthil, and P. A. Lee, Phys. Rev. B 101, 064502
(2020).

[77] A.G. Grushin, J. Motruk, M. P. Zaletel, and F. Pollmann,
Phys. Rev. B 91, 035136 (2015).

[78] D.N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane,
Phys. Rev. Lett. 97, 036808 (2006).

[79] Because the time-revesal symmetry is breaking spontane-
ously, we can identify nonzero Chern number C = £2 with
equal probability in our DMRG simulation with random
initial complex wavefunction.

[80] S. Jiang, D.J. Scalapino, and S. R. White, Proc. Natl. Acad.
Sci. U.S.A. 118, 2109978118 (2021).

[81] H.-C. Jiang and S.A. Kivelson, Phys. Rev. Lett. 127,
097002 (2021).

[82] S.R. White and D.J. Scalapino, Phys. Rev. B 79,
220504(R) (2009).

[83] P. Corboz, T. M. Rice, and M. Troyer, Phys. Rev. Lett. 113,
046402 (2014).

[84] B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin,
R. M. Noack, H. Shi, S.R. White, S. Zhang, and G. K.-L.
Chan, Science 358, 1155 (2017).

[85] E. W. Huang, C. B. Mend], S. Liu, S. Johnston, H.-C. Jiang,
B. Moritz, and T.P. Devereaux, Science 358, 1161
(2017).

[86] Y.-F. Jiang, J. Zaanen, T.P. Devereaux, and H.-C. Jiang,
Phys. Rev. Res. 2, 033073 (2020).

[87] M. Qin, C.-M. Chung, H. Shi, E. Vitali, C. Hubig, U.
Schollwock, S.R. White, and S. Zhang (Simons Collabo-
ration on the Many-Electron Problem), Phys. Rev. X 10,
031016 (2020).

[88] X. Wu, F. Ming, T.S. Smith, G. Liu, F. Ye, K. Wang, S.
Johnston, and H. H. Weitering, Phys. Rev. Lett. 125, 117001
(2020).

[89] J. Yang, L. Liu, J. Mongkolkiattichai, and P. Schauss, PRX
Quantum 2, 020344 (2021).

[90] Z. Zhu and Q. Chen, arXiv:2210.06847.

Correction: The omission of two affiliations for the first
author has been set right. This change necessitated
renumbering of the second author's affiliation indicator.
The omission of a support statement in the
Acknowledgments has been fixed.

136003-6


https://doi.org/10.1103/PhysRevB.73.014519
https://doi.org/10.1103/PhysRevB.73.014519
https://doi.org/10.1103/PhysRevB.74.094515
https://doi.org/10.1103/PhysRevB.74.094515
https://doi.org/10.1103/PhysRevLett.100.217002
https://doi.org/10.1103/PhysRevB.88.041103
https://doi.org/10.1103/PhysRevB.69.214516
https://doi.org/10.1103/PhysRevLett.111.097001
https://doi.org/10.1103/PhysRevLett.111.097001
https://doi.org/10.1146/annurev-conmatphys-031620-102024
https://doi.org/10.1146/annurev-conmatphys-031620-102024
https://doi.org/10.1103/PhysRevB.102.115136
https://doi.org/10.1103/PhysRevB.102.115136
https://doi.org/10.1088/1367-2630/ac3a83
https://doi.org/10.1088/1367-2630/ac3a83
https://arXiv.org/abs/2009.12435
https://doi.org/10.1103/PhysRevLett.127.187003
https://doi.org/10.1103/PhysRevLett.127.187003
https://doi.org/10.1103/PhysRevLett.125.157002
https://doi.org/10.1103/PhysRevLett.125.157002
https://doi.org/10.1103/PhysRevX.12.031009
https://doi.org/10.1103/PhysRevB.88.155112
https://doi.org/10.1103/PhysRevLett.121.087001
https://arXiv.org/abs/2209.10023
https://doi.org/10.1103/PhysRevB.106.235135
https://doi.org/10.1103/PhysRevB.106.235135
https://doi.org/10.1038/s41535-020-00300-7
https://doi.org/10.1103/PhysRevLett.95.177001
https://doi.org/10.1088/0953-8984/19/14/145247
https://doi.org/10.1038/nphys942
https://doi.org/10.1038/nphys942
https://doi.org/10.1038/nature01450
https://doi.org/10.1038/nature01450
https://doi.org/10.1038/nature01877
https://doi.org/10.1103/PhysRevLett.92.047004
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1038/s41586-020-2085-3
https://doi.org/10.1039/D0NH00248H
https://arXiv.org/abs/2110.10172
https://doi.org/10.1038/s41535-022-00504-z
https://doi.org/10.1038/s41535-022-00504-z
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.60.4245
https://doi.org/10.1103/PhysRevB.60.4245
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1088/1742-5468/2007/10/P10014
https://doi.org/10.1103/PhysRevLett.127.097003
https://doi.org/10.1103/PhysRevLett.127.097003
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.136003
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.136003
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.136003
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.136003
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.136003
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.136003
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.136003
https://doi.org/10.1103/PhysRevX.4.031017
https://doi.org/10.1103/PhysRevB.101.064502
https://doi.org/10.1103/PhysRevB.101.064502
https://doi.org/10.1103/PhysRevB.91.035136
https://doi.org/10.1103/PhysRevLett.97.036808
https://doi.org/10.1073/pnas.2109978118
https://doi.org/10.1073/pnas.2109978118
https://doi.org/10.1103/PhysRevLett.127.097002
https://doi.org/10.1103/PhysRevLett.127.097002
https://doi.org/10.1103/PhysRevB.79.220504
https://doi.org/10.1103/PhysRevB.79.220504
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1126/science.aam7127
https://doi.org/10.1126/science.aak9546
https://doi.org/10.1126/science.aak9546
https://doi.org/10.1103/PhysRevResearch.2.033073
https://doi.org/10.1103/PhysRevX.10.031016
https://doi.org/10.1103/PhysRevX.10.031016
https://doi.org/10.1103/PhysRevLett.125.117001
https://doi.org/10.1103/PhysRevLett.125.117001
https://doi.org/10.1103/PRXQuantum.2.020344
https://doi.org/10.1103/PRXQuantum.2.020344
https://arXiv.org/abs/2210.06847

