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Recently, solid-state mechanical resonators have become a platform for demonstrating nonclassical
behavior of systems involving a truly macroscopic number of particles. Here, we perform the most
macroscopic quantum test in a mechanical resonator to date, which probes the validity of quantum
mechanics by ruling out a classical description at the microgram mass scale. This is done by a direct
measurement of the Wigner function of a high-overtone bulk acoustic wave resonator mode, monitoring the
gradual decay of negativities over tens of microseconds. While the obtained macroscopicity of μ ¼ 11.3 is
on par with state-of-the-art atom interferometers, future improvements of mode geometry and coherence
times could test the quantum superposition principle at unprecedented scales and also place more stringent
bounds on spontaneous collapse models.
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Understanding the quantum-classical transition is one of
the main challenges of modern physics. Is the Schrödinger
equation valid all the way from the microscopic to the
macroscopic world, with quantum effects increasingly hard
to observe due to environmental decoherence [1]? Or do the
laws of quantum mechanics break down at some point, so
as to reinstate “macrorealism” in our everyday life [2]? This
question is not philosophical, as it can be tackled by
demonstrating genuine quantum effects in ever more
macroscopic systems.
Single atoms have been delocalized over macroscopic

length and timescales, reaching meters and seconds in
state-of-the-art experiments [3–6]. On the other hand,
molecule interferometry has pushed the mass boundaries
by confirming the wave nature for compounds of more than
104 atomic mass units [7,8]. Future Earth- and space-based
experiments with freely falling or levitated nanoparticles
aim at even higher mass and timescales [9,10], but in such
schemes it is a single rigid-body degree of freedom that is
placed into a superposition.
This is to be contrasted with growing efforts in electro-

and optomechanics toward demonstrating quantum states
in the elastic deformation of condensed matter systems of
substantially higher mass. Recent experimental milestones
include the successful preparation of nonclassical states of
surface and bulk acoustic modes, demonstrated through the
observation of Wigner function negativities [11–15]. Such
nonclassical states of motion involve a truly macroscopic
number of atoms, on the order of 1016, vibrating in unison.
At the same time, each atom is delocalized only over a tiny

fraction of the size of an atomic nucleus, which makes
unclear how they compare to previous tests of the quantum-
classical transition.
Using an objective measure for the degree of macro-

scopicity of nonclassical states [16], we report here the
most macroscopic quantum test performed with a solid-
state mechanical resonator. The macroscopicity value
obtained in our experiment is surprisingly large, motivating
us to optimize the design specifications for future electro-
mechanical experiments to become competitive even with
matter-wave superposition tests.

FIG. 1. Illustration of the HBAR device used in this work (not
to scale, see Ref. [14] for details). A superconducting qubit
couples to a mechanical acoustic mode localized in the bulk of
a sapphire crystal through a piezoelectric material. This allows
the preparation and measurement of the quantum state of the
phonon mode.
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To justify the macroscopicity measure used, note that
any genuine quantum test probes the validity of quantum
mechanics against the hypothesis of macrorealism, which is
that a modification of quantum theory destroys coherence
above a certain size or mass scale, rendering superposition
phenomena unobservable in practice. Hence, the degree to
which a quantum experiment falsifies a broad, generic class
of minimally invasive, macrorealistic modifications of
quantum mechanics gives rise to an objective benchmark
[16]. Using the measurement data to rule out a range of
values of the coherence time parameter τe quantifying the
macrorealist modification, an experiment is justifiably the
more macroscopic the greater the τe values falsified through
Bayesian inference [17]. The macroscopicity measure μ is
then determined by the logarithm of the greatest ruled out
τe value [18]. To date, the highest macroscopicity μ ¼ 14
has been achieved in molecule interferometry [8].
In our experiment, we observe Wigner function neg-

ativities for up to 40 μs in an bulk acoustic vibration mode
of a sapphire crystal with an effective mass of 1 μg, which
is prepared in a single-phonon state and in a superposition
of Fock states. This quantum signature is detected by
measuring the displaced parity [19] of the quantum state
using a superconducting qubit; see Fig. 1. Our analysis
shows that it can be associated with a large macroscopicity
μ ¼ 11.3, despite the subnuclear delocalization of the
atoms involved. Based on this, we explain how future
experiments with bulk acoustic resonators may realize the
most macroscopic quantum test.
Macroscopicity of bulk resonator modes.—To evaluate

the macroscopicity of a demonstrated quantum effect, one
should consider the class of macrorealistic models possibly
falsified by the experiment. Keeping those models mini-
mally invasive in that they preserve linearity, the semigroup
nature of the time evolution, invariance under the chosen
nonrelativistic reference frame, and other basic consistency
principles [16], their observable impact can be formulated
as a Lindblad generator Lρ modifying the quantum
evolution of the system state ρ. For a large compound of
N ≫ 1 atomic constituents with masses m1;…; mN , the
generator reduces to [16]

Lρ ¼ 1

τe

Z
d3q gðq; σqÞD½LðqÞ�ρ; ð1Þ

with D½L�ρ ¼ LρL† − fL†L; ρg=2. The strength of the
modification is specified by the coherence time parameter
τe and the standard deviation σq of the isotropic Gaussian

momentum distribution gðq;σqÞ¼e−q
2=2σ2q=ð2πσ2qÞ3=2. The

Lindblad operators are mass-weighted sums of single-
particle momentum kicks by q, LðqÞ¼P

N
n¼1ðmn=meÞ×

eiq·rn=ℏ, with rn the particle position operators and me a
reference mass chosen to be that of an electron.
We note that the theory of continuous spontaneous

collapse (CSL) can be described by Eq. (1), but it is

usually parametrized in terms of a rate per atomic mass unit
λCSL ¼ ð1 u=meÞ2=τe, and a localization length rCSL ¼
ℏ=

ffiffiffi
2

p
σq [20]. The strongest bounds on these CSL para-

meters are currently achieved by so-called noninterfero-
metric tests [21], where one measures the noise experienced
by a classical system by exploiting the fact that macrorea-
listic modifications are accompanied by a heating effect.
However, a genuine quantum signal, such as interference
fringes or a negative Wigner function, is required for a CSL
test to also probe the validity of quantum mechanics in the
system.
In the following, we consider a collective acoustic

excitation in the bulk condensed matter, taking the form

uðrÞ ¼ exp

�
−
y2 þ z2

w2
0

�
cos

�
π
lx
L

�
ex ð2Þ

of waist w0, mode index l, and length L. (The mode
vanishes for x ∉ ½0; L�, and is laterally well confined within
the material.) The effective volume of the mode is defined
as Veff ¼

R
d3r u2ðrÞ ¼ πw2

0L=4 and, given the mass
density ϱ, the effective mass is defined as meff ¼R
d3r ϱðrÞu2ðrÞ. This way one consistently obtains the

total bulk volume and mass in the limiting case of a center
of mass motion, corresponding to a uniform displacement
with uðrÞ ¼ 1, so that meff can be understood as the mass
fraction taking part in the displacement [22].
The mode is quantized by means of the ladder operator

a ¼ ðXþ iPÞ= ffiffiffi
2

p
, involving a conjugate pair of dimen-

sionless position and momentum quadrature operators,
½X;P� ¼ i. A single phononic excitation thus displaces
the atoms by amplitudes of the order of the zero-point
fluctuation x0=

ffiffiffi
2

p
, with x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=meffω

p
, around their

equilibrium positions rn according to the mode displace-
ment field, i.e., rn ¼ rn þ uðrnÞx0X. The Lindblad oper-
ators thus become

LðqÞ ¼ 1

me

Z
d3r ϱðrÞeiq·r=ℏeiq·uðrÞx0X=ℏ: ð3Þ

In the relevant regime of modification length scales ℏ=σq
larger than the interatomic distances, it is safe to assume a
homogeneous mass density ϱðrÞ ¼ ϱ̄ and to expand the
operator in Eq. (3) to first order in X [17]. This results in
momentum diffusion, Lρ ¼ 2ΓD½X�ρ, with a diffusion rate
amplified by the effective oscillator mass,

Γ ¼ ϱ̄2x20
2m2

eτeℏ2

Z
d3q gðq; σqÞq2x

����
Z

d3r uxðrÞeiq·r=ℏ
����
2

¼ m2
eff

m2
eτe

ð4x0=LÞ2
1þ σ2w

Z
dζ

e−ζ
2=2σ2Lffiffiffiffiffiffi
2π

p
σL

1 − ð−Þl cos ζ
ð1 − π2l2=ζ2Þ2 : ð4Þ

The rate depends on how the modification length scale
ℏ=σq compares to the geometric length scales of the
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oscillator mode, as determined by σw ¼ w0σq=ℏ,
σL ¼ Lσq=ℏ, x0, and l. The integral can be given analyti-
cally, leading to a lengthy expression for Γ. In the limit
σL; σw ≪ 1 and for l even, we find Γ ∝ meffσ

2
qσ

4
L=l

4,
whereas for σL ≫ πl and σw ≫ 1, we get Γ ∝ meff=σ2w.
The maximum Γ with respect to σq is located in between

at ℏ=σq ≈
ffiffiffi
3

p
L=πl, provided that πl ≫ 1 and

πlw0=
ffiffiffi
3

p
L ≫ 1 [22],

max
σq

Γ ≈
ffiffiffiffiffiffiffi
3π

2e3

r
6ℏϱ̄

m2
eωτe

L
l
: ð5Þ

Given a fixed sound velocity v, and noting ω ¼ 2πvl=L,
the maximum rate value is proportional to the square of the
mode wavelength L=l.
In the corotating frame of the oscillator, and including

energy decay at rate γ↓, the modified time evolution of the
oscillator state ρ is given by the master equation

_ρ ¼ ΓD½ae−iωt þ a†eiωt�ρþ γ↓D½a�ρ
≈ ðΓþ γ↓ÞD½a�ρþ ΓD½a†�ρ: ð6Þ

In the second line we average over the rapidly oscillating
cross terms, as we are interested in decoherence on time-
scales much longer than the oscillation period.
The coarse-grained isotropic master equation, Eq. (6),

admits a compact solution in the Wigner function repre-
sentation

WðX;P; tÞ ¼ eγ↓t

πSðtÞ
Z

dX0dP0WðX0eγ↓t=2; P0eγ↓t=2; 0Þ

× e−½ðX−X0Þ2þðP−P0Þ2�=SðtÞ; ð7Þ

with SðtÞ ¼ ð1þ 2Γ=γ↓Þð1 − e−γ↓tÞ. This expression can
be computed analytically for several states of interest, such
as Fock states and their superposition [22]. Bayesian
parameter estimation based upon Eq. (7) allows us to
identify from the measured Wigner functions the threshold
value Γ5% that corresponds to the most conservative 5%
quantile of the coherence time τe at any σq [17,22]. Greater
τe are also compatible with the data, as the observed
decoherence might as well be due to unspecified conven-
tional noise sources, but smaller times can be ruled out with
confidence. Macroscopicity is then defined as follows. We
convert Γ5% into the corresponding macrorealistic coher-
ence time parameter τe ¼ τeðσq;Γ5%Þ by virtue of Eq. (4),
maximize over σq to obtain the greatest excluded τe, and
assign a macroscopicity value μ ¼ log10ðτe=1 sÞ.
By modeling the state evolution with Eq. (6), we thus

assume a zero-temperature environment and attribute any
heating or decoherence beyond energy relaxation at the rate
γ↓ to the impact of a macrorealistic modification described
by infinite-temperature diffusion at the rate Γ. This amounts

to a conservative assessment of the macroscopicity, since,
by overestimating the hypothetical contribution of macro-
realistic diffusion to the observed decoherence, we over-
estimate Γ and thus underestimate τe. We characterize the
energy relaxation rate γ↓ independently, by a standard
measurement of the phonon decay time T1 and the steady-
state population [22].
Experiment.—Our measurements are carried out on a

high-overtone bulk-acoustic wave resonator (HBAR)
device cooled down at millikelvin temperature (see
Fig. 1), which makes use of a superconducting qubit to
prepare, control, and read out the quantum excitation of a
mechanical mode localized in the bulk of a sapphire
substrate [14].
The acoustic vibration mode is described to a very good

approximation by Eq. (2), as also verified by numerical
simulations. It oscillates over the bulk length L ¼ 435 μm
at angular frequency ω ¼ 2π · 5.961 GHz with wavelength
λ ¼ 1.8 μm, corresponding to the mode index l ¼ 2L=λ ¼
486. Assuming a homogenousmass density ϱ̄¼3.98 g=cm3,
and given the transverse waist w0 ¼ 27 μm, we obtain the
effective oscillator mass meff ¼ πw2

0Lϱ̄=4 ¼ 1.0 μg and a
zero-point fluctuation of x0=

ffiffiffi
2

p ¼ 1.2 × 10−18 m. For these
parameters, we find from Eq. (4) a maximal diffusion rate of
Γmax ¼ 3.5 × 1013=τe at a critical length scale ℏ=σq≃
0.5 μm, which is of the same order as the modewavelength.
The coherence properties of the phonon mode are

characterized by a small one-phonon steady-state popula-
tion of 1.6� 0.2%, by the relaxation time T1 ¼ 85.8�
1.5 μs, and by the Ramsey dephasing time T2 ¼ 147.3�
2.6 μs [22]. These imply a much longer pure dephasing
time of Tϕ ¼ ð1=T2 − 1=2T1Þ−1 ¼ 1.0� 0.2 ms. Relax-
ation, which originates from the coupling to the environ-
ment through, e.g., surface scattering or diffraction loss,
thus dominates the degradation of quantum features over
time, and we can safely assume γ↓ ≈ 1=T1 within error
tolerance.
Using the toolbox of circuit quantum acoustodynamics,

we can use the qubit to prepare and measure the HBAR in
nonclassical states of motion [11]. In particular, an arbitrary
superposition with the first excited state, aj0i þ bj1i, can
be prepared by swapping the qubit state aj↓i þ bj↑i to the
mechanical mode through the resonant Jaynes-Cummings
interaction. For any b ≠ 0 we obtain a nonclassical state of
motion with negativities in the Wigner function that will
degrade over time due to relaxation. To monitor this effect,
we let the system evolve for a time t, and then obtain the
Wigner function of the mechanical state by measuring its
displaced parity [14,22]. Figure 2 shows how the measured
Wigner function degrades over time for an initial Fock state
j1i (top row) and an initial superposition state ðj0i þ
j1iÞ= ffiffiffi

2
p

(bottom row). Note the disappearance of negative
(blue) regions in the quasiprobability distribution, turning it
into a classical phase-space distribution.
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In the first part of the experiment, we prepare the
resonator in the single-phonon Fock state j1i and measure
its Wigner quasiprobability distribution as a function of
time (Fig. 2, top row). We observe that the region of
negative values around the phase-space origin shrinks
gradually, persisting for tens of microseconds, before the
Wigner function turns purely positive and becomes indis-
tinguishable from a classical distribution. The longer and
more pronounced the initial negativity remains, the stronger
the experiment falsifies macrorealist modifications of
quantum mechanics. We estimate the impact of such
modifications by first fitting the initial measurement at
t ¼ 0 with the Wigner function of an incoherent mixture of
j0i and j1i, thus accounting for imperfections in the state
preparation and measurement. The measured Wigner func-
tions at t ¼ 10 μs, 20 μs, and 40 μs are then compared to
the theoretical expectation, Eq. (7), including energy
relaxation with the measured rate γ↓ ≈ 1=T1 as well as
modification-induced diffusion with variable rate Γ.
Bayesian parameter estimation and subsequent maxi-
mization with respect to σq shows that any Γ > Γ5% ¼
1.6 × 102 s−1 can be excluded with 95% confidence (at
ℏ=σq ≃ 0.5 μm) [22]. This corresponds to a macroscopicity
of μ ¼ 11.3, by far the highest value reported on mechani-
cal resonators; see Table I. We note that the obtained
diffusion rate Γ5% ¼ 1.6 × 102 s−1 is consistent with what
is found by using our system to perform a so-called
noninterferometric test of macrorealistic models based
on the observed residual excitation of the mode [22].
Thus, our analytic results can be straightforwardly adopted
in such schemes, as recently proposed in Ref. [30].

In the second part of the experiment, we prepare the
resonator in the superposition state ðj0i þ j1iÞ= ffiffiffi

2
p

. As
shown in the bottom row of Fig. 2, the measured Wigner
function again takes negative values, confirming the non-
classicality of the initial state. The asymmetry around the
origin, whose phase can be controlled by the qubit state,
rotates due to a small detuning between the oscillator and
the displacement pulse frequencies. This rotation is
accounted for in our data processing. Following the
previous analysis, we find that the superposition state
data is compatible with a maximal diffusion rate of
Γ5% ¼ 6.4 × 102 Hz, which is a factor of 4 larger than
the rate found from the Fock state j1i and from the
noninterferometric test [22]. This discrepancy can be
explained by the presence of an additional pure dephasing
channel with a rate of 1=Tϕ ∼ 103 Hz. While circularly
symmetric Wigner functions such as single Fock states are

parity

–1.0

–0.5

0

0.5

1.0

parity

–1.0

–0.5

0

0.5

1.0

FIG. 2. Measured Wigner functions of a bulk acoustic mode initially prepared in the Fock state j1i (top row) and in the superposition
state ðj0i þ j1iÞ= ffiffiffi

2
p

(bottom row). Both states are initially nonclassical, as indicated by the phase space regions with negative
quasiprobability (blue). As time evolves (left to right), both states approach the ground state j0i due to relaxation. Comparing the
measured data to the theoretical model Eq. (7) allows us to extract the maximal compatible diffusion rate Γ through Bayesian inference,
yielding the macroscopicity μ for the considered experiment.

TABLE I. Macroscopicities of solid-state mechanical resonator
experiments reporting Wigner function negativities (�, estimated),
and most macroscopic matter-wave interference experiments as-
sessed in [17,31]. The values with asterisks are estimates of what
could have been observed based on the stated T1 time [22].

Experiment Year μ

Mechanical
resonators

Bulk acoustic waves [this Letter] 2022 11.3
Phononic crystal resonator [13] 2022 ∼9.0�
Surface acoustic waves [12] 2018 ∼8.6�

Matter-wave
interference

Molecule interferometry [8] 2019 14.0
Atom interferometry [6] 2019 11.8
BEC interferometry [5] 2017 12.4
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unaffected by this decoherence channel, which corresponds
to a random rotation around the phase-space origin, a
superposition of Fock states, which is necessarily asym-
metric, gets washed out at rate 1=Tϕ, removing any
negativity. However, to fairly assess the macroscopicity
of the Fock state superposition, we do not include this
decoherence channel into the master equation, Eq. (6), so
that all decoherence is attributed to the macrorealistic
modification. This results in a greater diffusion rate, and
consequently in a lower macroscopicity of μ ¼ 10.7. If we
included the 1=Tϕ dephasing effect in the Bayesian
inference the resulting rate would be consistent with both
the Fock state j1i analysis and the noninterferometric test.
Beating the macroscopicity record.—Based on our

experimental results, and using the analytical result,
Eq. (4), we can now establish how to optimize future
quantum experiments with bulk acoustic resonators to
become competitive with the most macroscopic quantum
tests to date. In contrast to quantum tests based on the
interference of center-of-mass degrees of freedom, the
diffusion rate scales here only weakly with the mass and
length scales of the material: in the realistic case of
comparable lateral and longitudinal mode extension
(w0 ≈ L), we find that macrorealistic diffusion is strongest
at a length scale ℏ=σq comparable to the mode wavelength
L=l. To attain greater macroscopicity in a given material,
one should strive to increase the mode wavelength since the
maximum diffusion rate, Eq. (5), grows like ðL=lÞ2. Apart
from these geometric considerations, the macroscopicity
also benefits from longer relaxation and coherence times
T1, T2, and a better characterization of the measurement
noise. The latter can be incorporated into the Bayesian
parameter estimation to extract better bounds, instead of
adding a broad Gaussian noise channel as done in the
analysis above.
As an example, keeping the same device and mode

geometry as in the present experiment, but using a mode
with ω ¼ 2π × 2 GHz and T1 ¼ 10 ms, would result in
μ ¼ 14.4, surpassing all reported quantum tests; see
Table I. We obtain this estimate by setting l ¼ 160 and
rescaling the observed coherence time in proportion to T1;
the macroscopicity grows logarithmically with increasing
coherence time. Beyond that, out-of-plane drum modes
with frequencies in the low MHz range and huge quality
factors have been reported, corresponding to T1 > 100 ms
[32]. If genuine quantum effects could be demonstrated in
these devices, they might reach substantially greater macro-
scopicities μ > 17 [33].
Conclusion.—We demonstrated the most macroscopic

quantum test with bulk acoustic wave resonators, based on
monitoring the time evolution of nonclassical Wigner
functions. The reported macroscopicity is comparable to
the one obtained by an experiment holding cesium atoms in
a spatial superposition at 4 μm separation over 20 s [6].
In the future, we envisage improved resonator designs
that may surpass the most macroscopic matter wave

interferometers, testing the validity of quantum mechanics
at unprecedented scales.
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