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Using a single calcium ion confined in a surface-electrode trap, we study the interaction of electric
quadrupole transitions with a passively phase-stable optical standing wave field sourced by photonics
integrated within the trap. We characterize the optical fields through spatial mapping of the Rabi
frequencies of both carrier and motional sideband transitions as well as ac Stark shifts. Our measurements
demonstrate the ability to engineer favorable combinations of sideband and carrier Rabi frequency as well
as ac Stark shifts for specific tasks in quantum state control and metrology.
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Light-matter interaction is a topic of fundamental inter-
est, which lies at the heart of our technological capability to
control quantum matter. The strongest interactions are due
to coupling of the field to the electric dipole moment, which
exhibit coupling rates dependent on the electric field
strength and polarization. These have diverse applications,
including laser cooling and optical trapping [1–3].
When dipole coupling is forbidden by symmetry, electric
quadrupole terms can become dominant. Because of their
narrow linewidths, such transitions have found an impor-
tant role in quantum simulation of interacting systems [4],
metrology [5–7], precision measurement [8], and quantum
computing [9,10] with both neutral atoms and atomic ions.
Quadrupole transitions are driven by electric field gra-
dients, which means that the matrix elements have a deeper
tensorial structure than for dipole transitions, as illustrated
in various studies, including those of the interaction of
single ions with structured light fields [11–13].
Spatial structuring of light fields, achieved through

phase-stable interference, is widely used in atomic physics
experiments with neutral atoms [14,15]. Standing waves
may also carry advantages for quantum information
processing with trapped ions, where spatial structure can
be exploited to control the coupling of an atom by tuning its
position inside the field. Driving transitions in a region of
zero electric field suppress any Stark shifts due to non-
resonant dipole couplings. These features can be relevant in
the context of achieving faster entangling gates [16,17],
for applying spin-dependent forces [18], and for
metrology [19]. However, these applications require a
phase-stable standing wave, which must be positioned
precisely relative to the position of the ion. Such control
has been achieved with free space laser beams using active
feedback stabilization [20], using reflections from the
trap surface [21], or using a standing wave produced by
a high-finesse optical cavity [11]. However, all of these

approaches pose significant challenges for scaling systems
up to many laser beams, such as will be required for
high-performance quantum computation, compact atomic
clocks, or sensing.
In this Letter, we demonstrate control of a 40Caþ

ion quadrupole transition in a phase-stable standing
wave [22–25] generated through the use of integrated
optics: An on-chip waveguide splitter feeds two grating
output couplers which emit into free space. The resulting
optical field is a standing wave in the direction parallel to
the chip plane and a traveling wave in the direction
perpendicular to the chip, which causes a spatial variation
in the relative strength of the allowed transitions dependent
on the ion position inside the electric field pattern. We
characterize the matrix elements of the allowed transitions
of the trapped ion as a function of its position. We separate
for each of them the strength of the resonant coupling
measured by the Rabi frequency Ω from the ac Stark shift
induced by nonresonant excitations. We explore the rela-
tion between carrier transitions and the corresponding
sidebands along the axial motional mode aligned with
the direction of the standing wave and find positions
with favorable properties, e.g., offering sideband transitions
with no accompanying carrier excitation nor ac Stark shift.
This provides the basis for exploiting such a light field for
quantum computation, choosing the suitable ion position to
suppress unwanted off-resonant effects in gates performed
on the optical qubit of the ion.
Figure 1 shows the geometry of the trap and the

transitions relevant for our experiment. Two grating
outcouplers aligned along the trap axis x each emit a
Gaussian-like laser beam at 729 nm propagating at an angle
α ¼ 37° from the normal to the trap plane z. The beams
intersect at a height of 50 μm above the chip where an ion is
trapped, creating the standing wave interference pattern.
Both laser beams are linearly polarized along the y

PHYSICAL REVIEW LETTERS 130, 133201 (2023)

0031-9007=23=130(13)=133201(6) 133201-1 © 2023 American Physical Society

https://orcid.org/0000-0002-6838-7999
https://orcid.org/0000-0002-7162-4836
https://orcid.org/0000-0001-8448-2139
https://orcid.org/0000-0002-6595-7992
https://orcid.org/0000-0001-9654-8350
https://orcid.org/0000-0003-2053-8505
https://orcid.org/0000-0002-2557-6589
https://orcid.org/0000-0001-7291-8169
https://orcid.org/0000-0002-4093-1550
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.133201&domain=pdf&date_stamp=2023-03-27
https://doi.org/10.1103/PhysRevLett.130.133201
https://doi.org/10.1103/PhysRevLett.130.133201
https://doi.org/10.1103/PhysRevLett.130.133201
https://doi.org/10.1103/PhysRevLett.130.133201


direction, and the resulting field can be described in the
vicinity of the ion as a combination of two plane waves:

EðrÞ ¼ E0eikzz cosðkxΔxÞey; ð1Þ

where kx ¼ k sinðαÞ and kz ¼ k cosðαÞ are the components
of the beam wave vector, x is the ion position, k ¼ 2π=λ, ey
is the unit vector along y, and Δx ¼ ðx − x0Þ, where x0
accounts for the shift in the standing wave phase relative to
the coordinate system.
This field is used to drive quadrupole transitions between

our chosen ground state j4S1=2; mj ¼ −1=2i ¼ jgi and the
3D5=2 level. Multiple transitions exist from jgi to states in
the 3D5=2 manifold differing in their magnetic quantum
number by Δmj, each of which are spectrally resolved.
For a given component with resonant frequency ωo, the
strongest resonant excitations (carrier transitions) occur
when the laser frequency ωl ¼ ωo, resulting in the
Hamiltonian Ĥc ¼ ðℏ=2ÞðΩcσ̂þ þ H:c:Þ, where σ̂þ ¼
jeihgj and σ̂− ¼ jgihej are the atomic raising and lowering
operators, respectively, and Ωc is the carrier Rabi fre-
quency, given by

Ωc ¼
eE0

ℏ
FðΔmj;BÞ · κcðxÞ; ð2Þ

where κc ¼ f− sinðαÞ sinðkxΔxÞ; 0; i cosðαÞ cosðkxΔxÞg
encodes the gradient of the electric field as a function of

the ion position and the matrix elements FaðΔmj;BÞ ¼
ðk=2Þhejr̂ar̂yjgi depend on the change in the magnetic
quantum number in the selected transition Δmj, as well

as the direction of the external magnetic field B ¼ ðex þ
eyÞ=

ffiffiffi

2
p

defining the quantization axis. In this configura-
tion, at the antinodes of the standing wave (i.e.,
kxΔx ¼ pπ, p ∈ Z) there are only gradients of the fields
in the out-of-plane z direction which are maximized at this
position. At the nodes (kxΔx ¼ �½pþ 1=2�π), there are
only gradients of the fields along the trap axis x
direction, which are maximized at this position. Explicit
calculation of the matrix elements gives FzðΔmj ¼ 0Þ ¼
FxðΔmj ¼ �1Þ ¼ 0 such that at the antinodes the carrier
transition with Δmj ¼ 0 is suppressed while the Δmj ¼
�1 transitions are maximized. The opposite happens at the
nodal positions. Furthermore, the relative phase of 90°
between FzðΔmj ¼ �2Þ and FxðΔmj ¼ �2Þ allows one to
tune the coupling strength of these transitions, maximizing
(and minimizing) them in between the nodes and antinodes
of the standing wave. Detailed calculations of the matrix
elements Fa are provided in Supplemental Material [26].
Since the center of mass of the ion oscillates in its

confining potential, the laser light is phase modulated in
the rest frame of the atom, and the spectrum of the
light-matter interaction exhibits motional sidebands.
Tuning the laser frequency to the blue sideband of a
given transition ωl ¼ ωo þ ωx, where ωx denotes the
axial trapping frequency, produces the Hamiltonian
Ĥbsb ¼ ðℏ=2ÞðΩsâ†σ̂þ þ H:c:Þ. Here, Ωs ¼ ax∂xΩc is the
sideband Rabi frequency, which is defined by the spatial
gradient of the carrier coupling along the respective
oscillation direction, ax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2mωx

p

is the zero point
motion root-mean-square amplitude, and â† and â are the
creation and annihilation operators, respectively, of the
oscillator. In the standing wave, the electric field gradient
and its derivative along the trap axis are out of phase;
therefore, for any given transition, jΩsj is maximized when
jΩcj is at a minimum and vice versa. This means that the
logic regarding the transition Rabi frequency at nodes and
antinodes given above for the carrier transitions is reversed
for the sidebands. Careful choice of the transition allows
suppression of unwanted couplings while implementing a
desired Hamiltonian.
We probe the generated light field by placing the ion at

different positions along the trap axis and measuring the
respective Rabi frequencies. Each repetition of the experi-
ment, we cool the axial motional mode of the ion near the
ground state (n̄x ∼ 1 quanta) and prepare the electronic state
in jgi via optical pumping. We then excite the transition of
interest using a fixed duration pulse of the standing wave
and subsequently measure the ion electronic state using
state-dependent fluorescence. This sequence is repeated
multiple times for each experimental setting to gain
statistics. Rabi frequencies for carrier transitions are

(a) (b)

FIG. 1. (a) Trap layout schematic. Two grating couplers emit
two 729-nm beams generated using an integrated waveguide
splitter. The off-axis coupler is used for 854- and 866-nm repump
light. Near-UV light is sent through free space. The ion is trapped
50 μm above the position of the blue dot. A set of dc electrodes is
used to position the ion along the trap axis (x) with a resolution on
the order of ∼10 nm. (b) Schematic of the intensity profile of
the light field along the xz plane near the position of the ion. The
inset shows the electronic structure of the 40Caþ ion, where the
numbers are the wavelengths of the transitions in nanometers.
Zeeman sublevels are not shown.

PHYSICAL REVIEW LETTERS 130, 133201 (2023)

133201-2



extracted from the time of minimum occupation of jgi,
with a precalibrated correction for finite switching times
of the pulse (see Supplemental Material [26]). For
sideband transitions, we extract the Rabi frequency from
multiple Rabi oscillations assuming a thermal distribution
of the excited motional mode (see Supplemental
Material [26]). We perform experiments at positions
separated by 15.7 nm over a full period of the standing
wave. For each position, we probe three of the allowed
transitions jgi ↔ j3D5=2; mj ¼ −5=2;−3=2;−1=2i that
have Δmj ¼ −2;−1, 0, respectively. In our magnetic field
of 5.8 G, the carrier transitions are separated by ∼9.7 MHz,
and the trap frequency is ωx ¼ ð2πÞ × 1.64 MHz.
Figure 2 shows the measured Rabi frequencies for

carriers and sidebands, compared with theoretical predic-
tions. We see broad agreement between experiment and
theory for both datasets. We fit Eq. (2) to the data for
Δmj ¼ 0 with E0 and x0 floated and the orientation of the
magnetic field fixed to B. The fit is plotted as well as the
resulting predictions for the other transitions (solid curves).
There are observable discrepancies between these predic-
tions and the data. We found that these can be reduced
by adjusting the direction of the magnetic field in the
model by 2°–3° in both the x-y and the x-z planes (dashed
lines). This adjustment is consistent with uncertainties in
the magnetic field direction estimated previously in this
setup [37]. As expected, the minimum values for the
excitation of carrier happen when the sideband excitation
is maximized. At these positions, the carrier Rabi frequen-
cies are suppressed relative to their maximal values by
14.07ð6Þ×, 16.9ð1Þ×, and 35.9ð4Þ× for Δmj ¼ 0;−1;−2,
respectively. We have observed suppression factors up to
300× but do not find that this is repeatable. This is likely
due to slight changes in the exact orientation of the
magnetic field, for which the transition with Δmj ¼ 0

has the highest sensitivity and the transition with
Δmj ¼ −2 has the lowest, in agreement with our
observations. The measurements of the sideband Rabi
frequencies exhibit higher uncertainties than the carrier
counterparts given their dependence on the phonon occu-
pation which follows a shot-to-shot thermal distribution.
Also, since jΩsj is η ¼ kxax ∼ 0.05 times lower than jΩcj,
jΩsj is more sensitive to detunings arising from miscali-
bration in the carrier transition frequency, ac Stark shift,
and trap frequency.
When resonantly exciting one of the transitions between

the 4S1=2 and 3D5=2 manifolds, all the other transitions in
the ion are driven off-resonantly. This results in a net ac
Stark shift of the desired transition [38]. The main con-
tribution to the ac Stark shift comes from off-resonantly
driving 3D5=2 ↔ 4P3=2, 4S1=2 ↔ 4P1=2, and 4S1=2 ↔
4P3=2 transitions, which are all dipole allowed and, there-
fore, proportional to the intensity of the field, while a
second contribution applies from off-resonantly exciting
other quadrupole transitions in the 4S1=2 ↔ 3D5=2

manifold [see Fig. 1(b)]. At the node of the standing wave,
we can maximally drive the carrier transition withΔmj ¼ 0

or for the sideband transition with Δmj ¼ −1, allowing us
to suppress the dipole contribution of the ac Stark shifts.
When maximally driving any sideband, the dominant ac
Stark shift contribution from off-resonantly driving the
carrier is suppressed. Figure 3 shows the measured ac Stark
shifts for the carrier and the sidebands. Around the nodal
position where the Δmj ¼ 0 carrier and the Δmj ¼ −1
sideband are strongly driven, we observe a high suppres-
sion of the ac Stark shift for both transitions. The observed
residual shift is due to off-resonant couplings to neighbor-
ing quadrupole transitions. In practice, this residual quadru-
pole ac Stark shift could be minimized by increasing the
Zeeman splitting with higher magnetic fields. Detailed
calculations on the separate contributions of the dipole and

(a)

(b)

(c)

FIG. 2. (a) Sketch of the spatial dependence of the y-polarized
electric field [Eq. (1)] as a function of z and x at a fixed instant in
time. The arrows indicate the direction of the electric field
gradient. The box in the top right corner indicates the directions
of the magnitude of the components of FðΔmjÞ in the xz plane,
with colors chosen to match the respective datasets in (b) and (c).
(b),(c) Measurements of absolute value of the carrier (b) and blue
sideband (c) Rabi frequencies as a function of the ion position.
Solid lines plot predictions from the theoretical model in Eq. (2)
with the nominal orientation of the magnetic field, while dashed
lines include a correction for the magnetic field orientation of 2.7°
and 3.1° for the out-of- and in-plane directions, respectively. Two
shaded lines are used to denote the positions of the nodes of the
standing wave.
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quadrupole ac Stark shifts can be found in Supplemental
Material [26].
The use of integrated photonics provides a reliable way

of passively controlling the relative phase of the beams
generating the standing wave. The degree with which the
ion can be placed with respect to the standing wave is
limited by stray electric fields. We studied the stability of
this positioning by repeatedly recording the carrier Rabi
frequency pattern and measuring the displacement of the
ion with respect to the standing wave pattern during 10 h.
The primary cause of shifts is due to ultraviolet light
at 389 and 423 nm used for loading ions by photoioni-
zation. This is illustrated in Fig. 4(a), which shows the
fitted value of x0. Between each of the first five measure-
ments, we turn on the photoionization (PI) beams for a
5-min duration. On both trials, we see a similar drift while
the PI light is on and residual drift at the level of ∼10nm
when it is off. The position displacement tends to saturate
after a few cycles of exposure to PI light and is then
followed by a discharge process that occurs within the first
hours but leaves a permanent displacement over longer
timescales. This behavior was repeatable over several
trials. The dependence of the fitted x0 on the presence
of PI light suggests that the origin of the displacement is
dominated by drifts in the ion position rather than shifts in
the relative phase between the beams forming the standing
wave [39].
At timescales faster than those required to obtain a single

Rabi frequency, changes in the ion position would produce

decay in the observed Rabi oscillations. We measured the
decay of the Rabi oscillations as a function of the position
of the ion in the standing wave for the carrier transition with
Δmj ¼ 0. Assuming shot-to-shot fluctuations of the Rabi
frequency sampled from a Gaussian distribution with width
σΩ, the population of the jS1=2i state as a function of time is
found to be PðjS1=2iÞ¼0.5þ0.5expð−σ2Ωt2=2ÞcosðjΩjtÞ.
Extracted values of the fractional Rabi frequency fluctua-
tions σΩ=jΩj as a function of the position of the ion are
shown in Fig. 4(b), exhibiting increased Rabi frequency
fluctuations around kxΔx ¼ 0. We fit these results with two
different models, where fluctuations of the Rabi frequency
are produced by fluctuations of (i) the out-of-plane direc-
tion of the magnetic field or (ii) small displacements
between the ion and the light field. Both models produce
satisfactory fits, allowing us to bound the shot-to-shot
magnetic field fluctuations to σB ¼ 0.25° or, alternatively,
the position fluctuations to σx ¼ 1.6 nm, the latter repre-
senting a fluctuation of ∼0.13% of the period of the
standing wave, arising from either changes of the relative
phase between the two beams or drifts in the ion position.
The offset to the curve due to Rabi frequency fluctuations
on the order of σΩ=jΩj ∼ 1.5% is consistent with the
expected thermal occupation of the atomic center of mass
motion [40]. Thermal effects in the carrier Rabi frequency
can be accounted by considering higher-order terms in the
Lamb-Dicke expansion, which modify the carrier Rabi
frequency to ΩcðnÞ ≈ Ωc½1 − η2ð2nþ 1Þ=2� for a given
Fock state n. Since the fluctuations are proportional to the

(a)

(b)

FIG. 3. Measurements of the ac Stark shifts on the carrier (a)
and on the sideband transitions (b) as a function of the ion
position in a period of the standing wave. Solid lines are
computed using the nominal magnetic field orientation and the
amplitude of the light field obtained from the Rabi frequency
pattern of the transition with Δmj ¼ 0. Dashed lines include a
correction for the magnetic field orientation.

(a)

(b)

FIG. 4. (a) shows the relative displacement of the ion position
with respect to the standing wave pattern over time (x0). Two
repetitions of the same experiment performed in different days are
shown. The green region shows the time span where 5 min of
exposure to PI light was interleaved between measurements.
(b) shows the relative standard deviation of the Δmj ¼ 0 Rabi
frequency as a function of the position of the ion in the standing
wave. Lines show two different fits, corresponding to Rabi
frequency fluctuation coming from position or magnetic field
orientation fluctuations.
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Rabi frequency, the fractional fluctuations are independent
of position.
Our Letter offers insight in the physics of atom-light

interaction at a fundamental level and demonstrates the use
of integrated photonics to create structured light fields with
chosen properties that can be exploited advantageously for
quantum computing and metrology. Specifically, the pos-
sibility of precisely locating an ion in the standing wave
without constant recalibration or active feedback allows us
to envision the use of such a device in large-scale quantum
information processors. In the specific field configuration
employed here, the choice of the Δmj ¼ −1 transitions
maximizes sideband Rabi frequency at intensity nulls,
where ac Stark shifts are minimal and the carrier transition
is suppressed. For quantum gates driven by motional
sidebands, this offers a route to reduced off-resonant
contributions to gate errors. The carrier transition with
lowest magnetic field sensitivity (Δmj ¼ 0) is driven with
maximal strength at the nodes of the standing wave,
facilitating use for optical clocks with reduced sensitivity
to ac Stark shifts. All of these features are available in an
integrated form, which greatly facilitates scaling and
portability.
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