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The Mu2e and COMET μ → e conversion experiments are expected to significantly advance limits on
new sources of charged lepton flavor violation. Almost all theoretical work in the field has focused on just
two operators. However, general symmetry arguments lead to a μ → e conversion rate with six response
functions, each of which, in principle, is observable by varying nuclear properties of targets. We construct a
nucleon-level nonrelativistic effective theory (NRET) to clarify the microscopic origin of these response
functions and to relate rate measurements in different targets. This exercise identifies three operators and
their small parameters that control the NRET operator expansion. We note inconsistencies in past
treatments of these parameters. The NRET is technically challenging, involving 16 operators, several
distorted electron partial waves, bound muon upper and lower components, and an exclusive nuclear matrix
element. We introduce a trick for treating the electron Coulomb effects accurately, which enables us to
include all of these effects while producing transition densities whose one-body matrix elements can be
evaluated analytically, greatly simplifying the nuclear physics. We derive bounds on operator coefficients
from existing and anticipated μ → e conversion experiments. We discuss how similar NRET formulations
have impacted dark matter phenomenology, noting that the tools this community has developed could be
adapted for charged lepton flavor violation studies.
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μ → e conversion and other charged lepton flavor
violation (CLFV) processes have long been recognized
as sensitive tests of new physics beyond the standard model
[1–4]. The Mu2e [5,6] experiment at Fermilab and the
COMET [7,8] experiment at J-PARC aim to improve
existing limits on the ratio of rates

Rμe ¼
ω½μ− þ ðA; ZÞ → e− þ ðA; ZÞ�

ω½μ− þ ðA; ZÞ → νμ þ ðA; Z − 1Þ� ð1Þ

by 4 orders of magnitude, probing new physics to scales of
∼104 TeV. Both experiments will use the relatively light
target 27Al and focus on captures that leave the nucleus in its
ground state. The elastic process maximizes the energy of
the outgoing electron Ee ∼mμ − Ebind

μ neglecting nuclear
recoil, where Ebind

μ is the (positive) muon binding energy.
This minimizes the standard model background from the
three-body decay μ− → e− þ νμ þ ν̄e, as few electrons are
produced near the end point.
Consequently, the CLFVoperators contributing to μ → e

conversion are constrained by the nearly exact parity and

CP of the nuclear ground state: These symmetries eliminate
some CLFVoperators entirely and restrict the contributing
multipoles of those that do survive. Our aim is to determine
the constraints that can be imposed on the coefficients of
the operators of a general nucleon-level effective theory of
CLFV, thereby identifying what can and cannot be learned
from elastic μ → e conversion.
The form of the μ → e rate can be deduced from general

considerations, including Galilean or rotational invariance,
the good parity (P) and CP of the nuclear ground state, and
the symmetry transformation properties of the available
charges and currents and their gradients and curls. The
detailed derivation is included in an accompanying tech-
nical paper [9]. The resulting rate consists of six response
functions (and two interference terms), each of which is, in
principle, observable by making measurements in multiple
nuclear targets selected for their ground-state properties,
allowing one to emphasize or suppress certain interactions.
Rates in different nuclei can be related using a nucleon-

level interaction, the general form of which is determined by
nonrelativistic effective theory (NRET). One constructs a
general CLFV interaction from the available operators,
including, in this Letter, the charge and spin operators for
the leptons and nucleons, the nucleon relative velocity
operator v⃗N (conjugate to the internucleon coordinate r⃗),
and the muon velocity operator v⃗μ (conjugate to the
coordinate describing the boundmuon relative to the nuclear
center of mass). The construction follows that performed for
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dark matter (DM) phenomenology [10–12]. When this
interaction is embedded in the nucleus, an additional
operator enters due to nuclear compositeness, q⃗ · r⃗ ∼ 1.
As in DM direct detection, the three-momentum transfer
q is comparable to the inverse nuclear size, implying
significant angular momentum transfer. Thus, the nuclear
physics is complex, requiring a multipole expansion.
NRET predictions of low-energy observables will be

equivalent to those of higher-energy effective field theory
(EFTs) (if both theories are expanded to the same order),
but as fewer degrees of freedom are relevant at low
energies, the NRET operator basis will be leaner and more
efficient. The information extracted from experiment can
then be ported upward, constraining higher-level theories.
A conceptual depiction of the process is captured in Fig. 4
of a DM Snowmass report [12], where considerable work
has been invested in matching theories, most of which can
be readily adapted to μ → e conversion.
In NRET, one identifies a theory’s small parameters and

organizes the operator expansion accordingly. We find for
the expansion parameters q⃗ · r⃗, v⃗N , and v⃗μ, the numerical
values for 27Al

y ¼
�
qb
2

�
2

∼ 0.24 >

����
�
v⃗N
2

����� ∼ 0.11 >

����
�
v⃗μ
2

����� ∼ 0.03;

where the nuclear-averaged value of v⃗μ is computed from
the Dirac solution of Eq. (2). Here, b is the oscillator
parameter representing the nuclear size. The hierarchy of
operators and the expansion parameters they generate
should guide all treatments of μ → e conversion, but this
typically has not been the case. Table 1 of Ref. [9] provides
a summary of the literature. Rate calculations have been
done repeatedly for just two nuclear operators, 1L1N and
σ⃗L · σ⃗N . The velocity operator v⃗μ, which generates the
muon’s lower component, has been explored frequently but
always with a restriction on the included electron partial
waves of jκj ¼ 1, where κ is the Dirac quantum number,
thereby limiting the expansion in y so that only the leading
nuclear multipole is retained. This is done because other-
wise the algebra is complicated, but the restriction—para-
metrically and numerically—typically generates an error
larger than the v⃗μ correction being made [9]. Here, we
describe a formalism that treats v⃗μ accurately and elegantly,
including all multipoles. We find that v⃗μ is a relatively
uninteresting operator, playing no symmetry role and
contributing only a 5% numerical correction to Al nuclear
form factors.
In contrast, prior to the present work, v⃗N has not been

treated. This operator, parametrically larger than v⃗μ, rep-
resents the A − 1 internal (Jacobi) internucleon velocities in
the bound state. (The Ath Jacobi velocity is v⃗μ.) Without the
inclusion of v⃗N , the NRET rate is not consistent with the
general form derived from symmetry arguments:
Potentially important physics has been omitted. Further,

this operator produces a novel form of coherence that
operates only in certain nuclei like Al and Cu, where the
Fermi sea fills only one of two spin-orbit subshells,
ðlsÞj ¼ l� 1

2
. While one would expect v⃗N-dependent

operators to be subleading of Oðq=mNÞ ∼ ð1=10Þ, this
coherence can elevate certain velocity-dependent operators
to O(1), where they can dominate rates even if operators
like 1N and σ⃗N are also present.
Leptonic interactions: μ → e conversion proceeds

through the capture of a 1s muon bound by the nuclear
Coulomb field and the emission of a highly relativistic
electron. It is desirable, especially in heavier targets, to
obtain the lepton wave functions from the Dirac equation,
using an extended nuclear charge distribution [13–16]. The
transition density then depends on a convolution of a
nuclear density (which depends on the operator being
studied), the muon wave functions, and various electron
distorted waves that, in the absence of the Coulomb
interaction, would correspond to the spherical wave expan-
sion of eiq⃗·r⃗.
The muon quickly cascades to the 1s orbital as it comes

to rest in a target. The Dirac solution is related to the
muon’s velocity operator through the approximate relation-
ship [9]

ψκ¼−1 ¼
�

igðrÞξs
fðrÞσ⃗ · r̂ξs

�
1ffiffiffiffiffiffi
4π

p ∼
� ξs
σ⃗·v⃗μ
2
ξs

�
igðrÞffiffiffiffiffiffi
4π

p ; ð2Þ

where ξs is the Pauli spinor. The normalization is

Z
∞

0

dr r2½g2κðrÞ þ f2κðrÞ� ¼ 1:

A linear expansion in v⃗μ corresponds to retaining fðrÞ.
The electron produced in μ → e conversion is ultra-

relativistic. Deviations from a Dirac plane wave arise from
the nuclear Coulomb attraction, which modestly enhances
the wave function amplitude near the nucleus and shortens
the wavelength. We account for these effects by a procedure
familiar from electron scattering studies [17–19], replace-
ment of q⃗ in the Dirac plane wave by a shifted momentum
q⃗eff , yielding

Uðq; sÞeiq⃗·x⃗ →
ffiffiffiffiffiffiffiffi
Ee

2me

s �
ξs

σ⃗ · q̂ξs

�
qeff
q

eiq⃗eff ·x⃗: ð3Þ

The local momentum qeff is obtained from a constant
potential whose depth is equated to the average of the
Coulomb potential over the nuclear charge distribution. We
find qeff ¼ 110.81 and 112.43 MeV for 27Al and 48Ti,
respectively. The effective momentum approximation, the
Dirac plane-wave solution, and the Dirac Coulomb solution
for 27Al and 48Ti are shown in Fig. 1. The qeff approxi-
mation nicely accounts for the distortion. The results shown
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correspond to the κ ¼ −1 state, but this approximation
works equallywell for otherDirac partial waves and remains
accurate for high-Z targets of interest, such as tungsten [9].
The NRET construction.—Equations (2) and (3) allow

one to construct a nucleon-level NRET for μ → e con-
version that operates between Pauli spinors. Available
operators include the lepton and nucleon identities 1L
and 1N and five dimensionless Hermitian three-vectors

iq̂ ¼ iq⃗
jq⃗j ; σ⃗L; σ⃗N; v⃗N; v⃗μ: ð4Þ

The nuclear velocity operator has the symmetrized
form v⃗N ¼ ðp⃗i þ p⃗fÞ=ð2mNÞ.
Omission of the velocity operators will produce a rate

appropriate for a point nucleus but not generate all
projections of the vector current allowed by symmetry
[9]. The addition of v⃗N completes the NRET, and interest-
ing new physics arises when v⃗N-dependent operators are
embedded in the nucleus. In contrast, v⃗μ’s only role is to
generate nuclear form factor corrections suppressed by the
ratio of average values of the muon’s lower and upper
components hfi=hgi. We will omit this operator presently.
The NRET includes v⃗N only linearly, as certain ambi-

guities arise in bound-state applications beyond first order
[20]. The nucleon operators can be combined as v⃗N · σ⃗N
and v⃗N × σ⃗N , but not as the rank-two tensor ½v⃗N ⊗ σ⃗N �2,
which would not triangulate between spin-1

2
nucleon states.

As the interaction occurs at a fixed q ∼mμ, any propagator
effects can be absorbed into the operator coefficients.
We identify a total of 16 independent operators

O1 ¼ 1L1N; O9 ¼ σ⃗L · ðiq̂ × σ⃗NÞ;
O0

2 ¼ 1Liq̂ · v⃗N; O10 ¼ 1Liq̂ · σ⃗N;

O3 ¼ 1Liq̂ · ½v⃗N × σ⃗N �; O11 ¼ iq̂ · σ⃗L1N;

O4 ¼ σ⃗L · σ⃗N; O12 ¼ σ⃗L · ½v⃗N × σ⃗N �;
O5 ¼ σ⃗L · ðiq̂ × v⃗NÞ; O0

13 ¼ σ⃗L · ðiq̂ × ½v⃗N × σ⃗N �Þ;
O6 ¼ iq̂ · σ⃗Liq̂ · σ⃗N; O14 ¼ iq̂ · σ⃗Lv⃗N · σ⃗N;

O7 ¼ 1Lv⃗N · σ⃗N; O15 ¼ iq̂ · σ⃗Liq̂ · ½v⃗N × σ⃗N �;
O8 ¼ σ⃗L · v⃗N; O0

16 ¼ iq̂ · σ⃗Liq̂ · v⃗N: ð5Þ
With the inclusion of isospin to allow for distinct proton
and neutron couplings, the ET Lagrangian takes the form

L ¼
ffiffiffi
2

p
GF

X
τ¼0;1

X16
i¼1

c̃τiOitτ; ð6Þ

where t0 ¼ 1, t1 ¼ τ3. The coefficients c̃i are the low-
energy constants (LECs) that contain the CLFV physics.
The tildes denote that c̃ and R̃ (see below) are dimension-
less, normalized to the scale

ffiffiffi
2

p
GF.

The nuclear embedding.—The embedding of a NRET in
a nucleus can have interesting consequences in exclusive
processes, enhancing sensitivity to some operators, reduc-
ing through selection rules sensitivity to others. The
embedding also alters the interpretation of the LECs:
Various corrections associated with more complicated
currents, operator mixing that arises from the incomplete
nuclear Hilbert space, and other many-body effects can
shift LEC values. The NRET’s complete operator basis can
accommodate mixing effects that redistribute strength
among the operators. The LECs remain a very useful
way to represent the CLFV physics extracted from experi-
ment, including correlating results from different targets,
but the extracted LECs require some interpretation [9].
One proceeds by generating one-body charge and current

operators from Eq. (6) and performing a standard multipole
analysis [21]. While this generates 11 nuclear response
functions Wττ0

O , five are eliminated by parity and CP
constraints on elastic scattering [9,11]. The μ → e decay
rate is

ω ¼ G2
F

π

q2eff
1þ q

MT

jϕZeff
1s j2

X
τ¼0;1

X
τ0¼0;1

× f½R̃ττ0
M Wττ0

M þ R̃ττ0
Σ00Wττ0

Σ00 þ R̃ττ0
Σ0 Wττ0

Σ0 �

þ q2eff
m2

N
½R̃ττ0

Φ00Wττ0
Φ00 þ R̃ττ0

Φ̃0Wττ0
Φ̃0 þ R̃ττ0

Δ Wττ0
Δ �

−
2qeff
mN

½R̃ττ0
Φ00MW

ττ0
Φ00M þ R̃ττ0

ΔΣ0Wττ0
ΔΣ0 �g; ð7Þ

FIG. 1. Free and Coulomb Dirac solutions GðrÞ ¼ rgðrÞ and
FðrÞ ¼ rfðrÞ are compared to the qeff -shifted free Dirac solution
for the relativistic electron. The nuclear charge distribution
(shaded) used in the Coulomb calculation is also shown (arbitrary
normalization).
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where MT is the target mass, and ϕZeff
1s is a Coulomb factor

described below. This result agrees with the general rate
formula deduced from symmetry considerations [9] and
provides microscopic forms for the nuclear response
functions Wττ0

O ðqeffÞ, allowing them to be evaluated in
the shell model. These response functions can be viewed
as “dials" that an experimentalist can tune by selecting
appropriate targets.
The operator notation is standard in semileptonic weak

interactions [11,22] corresponding to charge MJ, longi-
tudinal spin Σ00

J , transverse electric spin Σ0
J, and transverse

magnetic velocity ΔJ operators. The longitudinal Φ00
J and

transverse electric Φ̃0
J operators are generated from the

spin-velocity current v⃗N × σ⃗N . CP and parity limit the
contributing J to even (MJ, Φ00

J , Φ̃0
J) or odd (Σ00

J , Σ0
J, ΔJ)

values. The multipole operators are defined in Ref. [9].
Taking mN → ∞ in Eq. (7) yields the point-nucleus rate.
The R̃ττ0

O are our key result, as they define what can be
learned from elastic μ → e conversion:

R̃ττ0
M ¼ c̃τ1c̃

τ0�
1 þ c̃τ11c̃

τ0�
11 ;

R̃ττ0
Φ00 ¼ c̃τ3c̃

τ0�
3 þ ðc̃τ12 − c̃τ15Þðc̃τ

0�
12 − c̃τ

0�
15 Þ;

R̃ττ0
Φ00M ¼ Re½c̃τ3c̃τ

0�
1 − ðc̃τ12 − c̃τ15Þc̃τ

0�
11 �;

R̃ττ0
Φ̃0 ¼ c̃τ12c̃

τ0�
12 þ c̃τ13c̃

τ0�
13 ;

R̃ττ0
Σ00 ¼ ðc̃τ4 − c̃τ6Þðc̃τ

0�
4 − c̃τ

0�
6 Þ þ c̃τ10c̃

τ0�
10 ;

R̃ττ0
Σ0 ¼ c̃τ4c̃

τ0�
4 þ c̃τ9c̃

τ0�
9 ;

R̃ττ0
Δ ¼ c̃τ5c̃

τ0�
5 þ c̃τ8c̃

τ0�
8 ;

R̃ττ0
ΔΣ0 ¼ Re½c̃τ5c̃τ

0�
4 þ c̃τ8c̃

τ0�
9 �: ð8Þ

A program of μ → e conversion experiments can in
principle place eight constraints on the LECs. Four
CLFV ET operators, O2, O7, O14, and O16, are not probed
due to parity and CP constraints.
As the CLFV LEC space has 32 degrees of freedom, we

turn on each LEC separately to assess sensitivity along each
operator “axis" in this space. The LEC limits obtained from
the existing Ti branching ratio bound [23] and from a
projected 27Al limit of 10−17 are shown in Table I. Targets
differ in sensitivity to the various operators, reflecting
aspects of their ground-state structure. We compare the
strength of nuclear responses in Al and Ti in Fig. 2. The
next-generation target 27Al proves to be versatile in its
range of sensitivities [9].
The tabulated LEC limit can be converted into a CLFV

mass scale through the relation

Λτ
i ∼

ð ffiffiffi
2

p
GFÞ−1=2ffiffiffiffiffiffiffijc̃τi j
p ∼

246.2 GeVffiffiffiffiffiffiffijc̃τi j
p : ð9Þ

The LECs c̃01 and c̃011, for which the nuclear response is
fully coherent, will be probed by Mu2e and COMET at

scales ≳104 TeV, while most of the remaining couplings
are tested at levels ∼103 TeV.
Matching.—The NRET provides a complete Galilean

operator basis suitable for use with nuclear many-body
Schrödinger solutions. Once the nuclear response functions
are evaluated, operator LECs can be constrained by fitting
to μ → e conversion rates, encoding the available exper-
imental information. Higher-level EFTs can then be
reduced to the nucleon level and matched to the NRET,
using the generated Wilson coefficients. This program has
become very popular in DM phenomenology [12], estab-
lishing an efficient bridge between DM nuclear and particle
physics. The NRET application to CLFV has similar
potential and can exploit much of the work the DM
community has done on operator matching.
Nuclear physics, enhancement, selection rules.—

Nuclear response functions were evaluated using fully
correlated shell-model wave functions constructed from

FIG. 2. Comparison of Al and Ti response functions, which
govern sensitivities to the CLFV bilinears defined in the text.

TABLE I. LEC limits imposed by the indicated μ → e con-
version branching ratios.

Target (branching ratio)

Al (10−17) Ti ð6.1 × 10−13Þ
LEC τ ¼ 0 τ ¼ 1 τ ¼ 0 τ ¼ 1

jc̃1j; jc̃11j 4.0 × 10−10 1.2 × 10−8 7.4 × 10−8 1.3 × 10−6
jc̃3j; jc̃15j 1.6 × 10−8 1.9 × 10−7 3.8 × 10−6 7.3 × 10−6
jc̃4j 1.4 × 10−8 1.7 × 10−8 1.5 × 10−5 1.7 × 10−5
jc̃5j; jc̃8j 7.8 × 10−8 1.2 × 10−7 5.8 × 10−5 6.5 × 10−5
jc̃6j; jc̃10j 2.0 × 10−8 2.2 × 10−8 1.8 × 10−5 2.0 × 10−5
jc̃9j 2.1 × 10−8 2.8 × 10−8 2.8 × 10−5 3.4 × 10−5
jc̃12j 1.6 × 10−8 1.4 × 10−7 3.8 × 10−6 7.3 × 10−6
jc̃13j 1.8 × 10−6 2.1 × 10−7 8.4 × 10−5 3.7 × 10−4
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Slater determinants in an oscillator basis. Spurious center-
of-mass motion was removed numerically, preserving
Galilean invariance. Wave functions for 27Al and Ti were
computed using BIGSTICK [24] and the USDB 2s1d [25] and
KB3G 2p1f [26] interactions, respectively. The Ti calcu-
lations were summed over stable isotopes and weighted by
their abundances. The adopted oscillator parameters b, 1.84
(Al) and 1.99 (Ti) fm, are consistent with the measured rms
charge radii [27].
The nuclear embedding alters the NRET: First, the

nucleus can enhance interactions due to coherence. The
familiar coherent enhancement [28] of the isoscalar monop-
ole operator makes M0 dominant when it is present. In our
NRET, a second monopole charge operatorΦ00

0 is generated
from the spin-velocity current σ⃗N × v⃗N , which (packaging
NRET operators between Dirac spinors [9]) arises from
tensor-mediated interactions, e.g.,

χ̄eiσμνγ5χμN̄iσμνγ5N: ð10Þ

Enhancement occurs [10] when only one shell of a nuclear
spin-orbit pair is filled: For 27Al, 1d5=2 is full but 1d3=2
empty. Although Eq. (10) generates couplings to charge
and spin, the usually subdominant v⃗N-dependent contri-
butions double the rate [9].
Second, in elastic μ → e conversion, nuclear selection

rules eliminate certain NRET operators. For example,
multipoles of the axial charge σ⃗N · v⃗N violate either P or
CP and thus cannot contribute to the ground-state nuclear
process. Such operators are probed only in inelastic μ → e
conversion.
Response functions and v⃗μ.—The response functions in

Eq. (7) involve the convolution of a multipole nuclear
density with a gently varying muon wave function,

WO ≡ 4π

2jN þ 1

X
J

jhjN jjÔg
JðqÞjjjNij2:

Ôg
J ¼

XA
i¼1

1ffiffiffiffiffiffi
4π

p gðxiÞÔJMðqxiÞ: ð11Þ

A common practice [21] employed in Eq. (7) replaces the
muon wave function by an average value,

WO → jϕZeff
1s j2 4π

2jN þ 1

X
J

jhjN jjÔJðqÞjjjNij2;

ÔJ ¼
XA
i¼1

ÔJMðqxiÞ: ð12Þ

The most frequently used procedure for performing this
averaging is borrowed from the inclusive process of muon
capture and is not optimal [9]. We define ϕZeff

1s to reproduce
the exact value of the monopole charge amplitude and then
use this value for all other response functions. In Al, the

average error induced in the rate by this approximation is
1.8% [9], much less than typical nuclear structure errors in
evaluating the response functions. While it is not strictly
necessary, the use of ϕZeff

1s greatly simplifies the nuclear
physics, permitting all nuclear matrix elements to be
expressed as polynomial functions of y.
The NRET can be extended to include all effects linear in

v⃗μ [9], yielding a small correction to the nuclear responses

WO →
4π

2jN þ 1

X
J

jhjN jjÔg
J þ Ô0f

J jjjNij2; ð13Þ

where the new term is defined in analogy with Ôg
J with

gðrÞ → fðrÞ. The form of the rate is unchanged: v⃗μ only
alters the nuclear form factors at the level ∼2jhfi=hgij ∼
5% in 27Al. In the literature, v⃗μ has been included by
truncating the multipole expansion at leading order, a pro-
cedure that, depending on the operator, can introduce errors
that exceed the intended relativistic muon correction [9].
Technical details of the work reported here, a discussion

of the related CLFV processes μ → eγ and μ → 3e, and a
description of publicly availableMathematica and PYTHON

scripts that can be used for EFT analysis may be found
in Ref. [9].
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Simons Foundation (Grant No. 00F1C7).

Note added.—Recently, the arXiv paper corresponding to
Ref. [29] was posted. It evaluates the μ → e conversion
response in the allowed limit, supplemented by one of the
three new responses (Φ00) that we derived from treating the
nucleon velocity operator to first order. That paper explores
the same isotopes, Al and Ti, using the same model spaces
and interactions employed here.
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