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In gauge theory, it is commonly stated that time-reversal symmetry only exists at θ ¼ 0 or π for a 2π-
periodic θ angle. In this Letter, we point out that in both the free Maxwell theory and massive QED, there is
a noninvertible time-reversal symmetry at every rational θ angle, i.e., θ ¼ πp=N. The noninvertible time-
reversal symmetry is implemented by a conserved, antilinear operator without an inverse. It is a
composition of the naive time-reversal transformation and a fractional quantum Hall state. We also find
similar noninvertible time-reversal symmetries in non-Abelian gauge theories, including the N ¼ 4 SU(2)
super Yang-Mills theory along the locus jτj ¼ 1 on the conformal manifold.
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Introduction.—In gauge theory with a 2π-periodic θ
angle, there can be a manifest time-reversal symmetry at
θ ¼ 0. At θ ¼ π, there is a slightly more subtle time-
reversal symmetry, which is a composition of the naive
time-reversal transformation with θ ↦ θ þ 2π. In both
cases, the time-reversal symmetry is implemented by an
antiunitary operator T obeying T† × T ¼ 1. The relation
between T and T† depends on the details of the quantum
system. Different time-reversal algebra, e.g., T2 ¼ 1,
T2 ¼ ð−1ÞF, etc., can be used to place the quantum field
theory (QFT) on manifolds with different tangential struc-
tures. In this Letter, we discuss more subtle time-reversal
symmetries at other values of θ.
Our discussion follows closely the recent developments

of a novel kind of generalized global symmetry, the
noninvertible symmetry. (See Refs. [1,2] for reviews of
generalized global symmetries.) It is implemented by
conserved operators, or more generally, topological defects
]3 ] in a relativistic setting, that do not obey a group
multiplication law. Yet, they are invariants under renorm-
alization group flows and lead to nontrivial selection rules
as well as constraints on the low-energy phase diagram.
Recently, based on earlier works in 1þ 1 dimensions
[4–21], a large class of noninvertible symmetries was
discovered in many familiar quantum systems in general
spacetime dimensions [22–40], including the standard
model [32,33]. (See also [11,41–46] for discussions of
noninvertible higher-form symmetries and [47,48] for

related discussions under the name of algebraic higher
symmetry.) The key for constructing some of these sym-
metries is to compose a duality transformation (or more
generally, an isomorphism of the quantum system) with
the gauging of a discrete higher-form symmetry. See
also [22,49–58] for lattice realizations of noninvertible
symmetries.
In this Letter, we extend this construction to time-

reversal symmetries. This was first discussed in [24],
and we further generalize it to the free Maxwell theory,
massive QED, N ¼ 4 super Yang-Mills theory, and invert-
ible one-form symmetry-protected topological (SPT)
phases. We also discuss the possible generalized anomalies
of noninvertible time-reversal symmetries.
In Maxwell theory and massive QED, we find that for

any rational θ angle, (More precisely, by a rational θ angle
we mean θ=π is a rational number. We hope this slight
abuse of terminology does not cause any confusion.) the
composition of the naive time-reversal transformation and a
fractional quantum Hall state leads to a conserved, anti-
linear operator. However, since the fractional quantum Hall
state is a noninvertible phase, the resulting operator is not
anti-unitary and it does not have an inverse—it is a
noninvertible time-reversal symmetry. More specifically,
the product T† × T ¼ C ≠ 1 is a nontrivial condensation
operator [25,30,48,59–63] (see also [23,24]), which plays a
pivotal role in the recent developments of noninvertible
symmetry. By composing the noninvertible time-reversal
symmetry with the CPT transformation, which exists in
every relativistic QFT, we can also obtain a noninvertible
CP symmetry.
It is surprising that Abelian gauge theory is almost

always time-reversal invariant in the space of the θ angle.
Indeed, the free Maxwell theory and QED has a non-
invertible time-reversal symmetry for a dense subset of the
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possible values for the θ-angle, in addition to the invertible
ones at θ ¼ 0; π. This is perhaps related to the reason why
the θ angle for an Abelian gauge group is often overlooked,
say, in the discussion of the strong CP problem. [Another
reason for this is that there is no nontrivial instanton
configuration in noncompact space for Uð1Þ because
π3½Uð1Þ� ¼ 0.] Nonetheless, the θ angle of an Abelian
gauge theory (say the massive QED for the real world) is
generally a physical CP-violating parameter in the
Lagrangian that cannot be removed by any field redefinition.
This Letter is accompanied by Supplemental Material

[64], which includes Refs. [65–71], where we provide
alternative derivations of noninvertible time-reversal sym-
metries via half gauging higher-form symmetries and
explain the relation to mixed anomalies. We also review
the condensation operators and discuss noninvertible
time-reversal symmetries in pure PSUðNÞ Yang-Mills
theories there.
Free Maxwell theory.—Consider the free Maxwell

theory of a dynamical U(1) gauge field A without any
matter fields:

LQτ
¼ −

1

2e2
F ∧ ⋆F þ θ

8π2
F ∧ F; ð1Þ

where F ¼ dA [72]. The theory is parameterized by the
complexified coupling constant τ¼ðθ=2πÞþð2πi=e2Þ∈H
where H denotes the upper half-plane. We will denote the
free Maxwell theory at a given value of τ as Qτ [73].
The Maxwell theory has the SLð2;ZÞ duality generated

byS andT . They act on the complexified coupling asS∶τ ↦
−1=τ and T∶τ ↦ τ þ 1. Although S2 ¼ −1 ∈ SLð2;ZÞ
acts trivially on τ, it acts nontrivially on operators as the

Zð0Þ
2 charge conjugation symmetry A ↦ −A, which

exists at every value of τ. Inequivalent Maxwell theories
are thus labeled by elements in the fundamental domain
F ≡ H=PSLð2;ZÞ.
At a generic value of the complexified coupling τ, we

define a naive time-reversal transformation

K∶ τ ↦ −τ̄; t ↦ −t; ð2Þ

where t is the (Lorentzian) time coordinate. We emphasize
that K is generally not a symmetry of the Maxwell
theory Qτ at a generic τ, but it maps Qτ to its orientation
reversal Q−τ̄; that is, it flips the sign of θ. We choose K to
act on the gauge field A as A0ðt; x⃗Þ ↦ −A0ð−t; x⃗Þ and
Aiðt; x⃗Þ ↦ Aið−t; x⃗Þ.
We first review the invertible time-reversal symmetries

of the Maxwell theory, which are well known in the
literature. See, for instance, [74,75]. The Maxwell theory
has an invertible time-reversal symmetry along the follow-
ing loci inside the fundamental domain F :

θ ¼ 0 or θ ¼ π or jτj ¼ 1: ð3Þ

The nature of the time-reversal symmetries in diffe-
rent cases are slightly different. At θ ¼ 0, the naive
transformation K is a symmetry, which we denote as
Tθ¼0. At θ ¼ π, the theory is left invariant under the TK
transformation, and we denote the corresponding time-
reversal symmetry as Tθ¼π . Finally, when jτj ¼ 1, the
theory is left invariant under the SK transformation.
This is because the S transformation when jτj ¼ 1 leaves
the electric coupling constant e invariant but flips the sign
of the θ-angle. Therefore, we have a time-reversal sym-
metry Tjτj¼1 associated with SK. All these time-reversal
symmetries are invertible and square to the identity,
ðTθ¼0Þ2 ¼ ðTθ¼πÞ2 ¼ ðTjτj¼1Þ2 ¼ 1.
At special values of τ, we have enhanced symmetries. At

τ ¼ i, the S transformation combines with the invertible
time-reversal symmetry Tθ¼0 to generate the dihedral group
of order 8, DT

8 . Similarly, at τ ¼ eπi=3, the TS−1 trans-
formation and the time-reversal symmetry Tθ¼π generate
the dihedral group of order 12, DT

12.
We now turn to the new noninvertible time-reversal

symmetries in Maxwell theory. We claim that for every
rational value of the θ angle,

θ ¼ πp=N; ð4Þ

the Maxwell theory has a noninvertible time-reversal
symmetry. Here N and p are arbitrary integers satisfying
N > 1, −N < p < N, and gcdðp;NÞ ¼ 1.
We first note that there is a topological interface I2πp=N

separating the Maxwell theory at θ and θ − 2πp=N (both
sharing the same electric coupling e). For simplicity, we
start with p ¼ 1, then the world volume Lagrangian was
derived in [32]:

I2π
N
≡ exp

�
i
I
M

�
N
4π

a ∧ daþ 1

2π
a ∧ dA

��
: ð5Þ

HereM is a three-manifold where the interface is supported
on and a is a dynamical one-form gauge field that only lives
onM. This can be viewed as a ν ¼ 1=N fractional quantum
Hall state onM for the bulk electromagnetic gauge field A.
We omit the path integral over a in the definition of the
interface I2π=N . To see that this is the correct topological
interface, we insert it alongM: x ¼ 0, and assume that the θ
angles in the x < 0 and x > 0 regions are θ− and θþ,
respectively. The equations of motion of a on M and the
bulk electromagnetic gauge field A, respectively, give
Ndaþ F ¼ 0 and ð1=2πÞðθþ − θ−ÞF ¼ da. Combining
the two equations, we find θþ − θ− ¼ −2π=N, so (5) is
indeed the world-volume Lagrangian for the topological
interface separating the Maxwell theory with θ and
θ − 2π=N.
Starting at θ ¼ π=N, we can compose the naive time-

reversal interface K (which separates a QFT with its
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orientation reversal) with the topological interface I2π=N ,
which maps the θ angle back to itself:

θ ¼ π=N⟶
I2π
N
θ ¼ −π=N⟶

K
θ ¼ π=N: ð6Þ

We therefore conclude that

Tθ¼π
N ≡ K∘I2π

N
ð7Þ

is an orientation-reversing, topological defect in Maxwell
theory at θ ¼ π=N. When we choose M to be the whole
space at a given time, Tθ¼π=N becomes an antilinear,
conserved operator that flips the sign of the Lorentzian
time. Thus, it is a time-reversal symmetry. Intuitively,
Tθ¼π=N is a composition of the naive time-reversal trans-
formation and a fractional quantum Hall state (5).
Interestingly, the antilinear operator Tθ¼π=N is not anti-

unitary. To see this, we compute

ðTθ¼π
NÞ†×Tθ¼π

N ¼ðI2π
N
Þ†× I2π

N

¼ exp

�
i
I
M

�
N
4π

ada−
N
4π

ādāþ 1

2π
ða− āÞdA

��
≡CðNÞ:

ð8Þ

Here ðI2πp=NÞ† is the orientation reversal of the interface
I2π=N , and ā is the dynamical one-form gauge field living on
ðI2π=NÞ†. The operator CðNÞ is known as the condensation
operator, see Refs. [25,30,32] and Supplemental Material
[64] for more details. The important point is that CðNÞ is not
a trivial operator; it acts nontrivially on the
‘t Hooft lines [32]. Thus, the time-reversal symmetry
Tθ¼π=N is noninvertible, and, in particular, is not imple-
mented by an anti-unitary operator.
For θ ¼ πp=N at a more general p, we generalize the

topological interface (5) to

I2πp
N
≡ exp

�
i
I
M
AN;p½dA=N�

�
; ð9Þ

where AN;p½B� is the 2þ 1D minimal ZN TQFT [76] (see

also [77–79]) coupled to the Zð1Þ
N background two-form

gauge field B. It describes a ν ¼ p=N fractional quantum
Hall state. The noninvertible time-reversal symmetry at θ ¼
πp=N is defined as Tθ¼πp=N ≡ K∘I2πp=N . Following a
similar calculation in [32], we find that it obeys the
noninvertible fusion rule ðTθ¼πp=NÞ† × Tθ¼πp=N ¼ CðNÞ.
At the intersection between θ ¼ πp=N and jτj ¼ 1, i.e.,

at τ ¼ ðp=2NÞ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðp2=4N2Þ

p
, there is an additional

noninvertible, linear symmetry, which we explain in detail
in the Supplemental Material [64].
We conclude that the free Maxwell theory is time-

reversal invariant at θ ¼ πp=N. The notion of naturalness
[80] becomes rather exotic as we vary the θ angle: at every

rational θ-angle, there is a different noninvertible time-
reversal symmetry. The situation is somewhat similar to the
1þ 1D compact boson conformal field theory, where at
every rational radius square R2 there is a different enhanced
chiral algebra.
In Fig. 1, we summarize the invertible and noninvertible

time-reversal symmetries as well as a few previously
known noninvertible linear symmetries in the Maxwell
theory across the fundamental domain.
Massive QED.—Consider QED with a single Dirac

fermion with mass m. The Lagrangian is given by

−
1

4e2
FμνFμν þ iΨ̄ð∂μ − iAμÞγμΨþmΨ̄Ψ

þ θ

32π2
εμνρσFμνFρσ: ð10Þ

Using a chiral rotation, we can take m > 0 to be a positive
real constant, so that the θ angle is physical. Alternatively,
we can set the θ angle to zero and work with a complex
mass term me−iθ whose phase is physical.
At θ ¼ 0 and θ ¼ π, massive QED has an invertible

time-reversal symmetryK and TK, respectively. The choice

of K is not unique: one can compose K with a unitary Zð0Þ
2

symmetry to obtain another time-reversal symmetry. We
will not commit to any particular choice of K.
In addition, we claim that the theory has a noninvertible

time-reversal symmetry at θ ¼ πp=N, similar to the free

FIG. 1. Some (anti)linear (non)invertible symmetries of the
Maxwell theory. The locus where the theory has an invertible
time-reversal symmetry is indicated by red lines. At τ ¼ i and at
τ ¼ eiπ=3, we have enhanced symmetries DT

8 and DT
12, respec-

tively. At every rational value of the θ-angle with θ ¼ πp=N,
there is a noninvertible time-reversal symmetry Tθ¼πp=N, which is
indicated by the vertical blue lines. Some of the linear non-
invertible symmetries of the Maxwell theory are also indicated.
At the green dots, i.e., at τ ¼ iN, the theory realizes a linear,
noninvertible duality defect [23]. At the cyan dots, i.e., at
τ ¼ Ne2πi=3, the theory realizes a linear, noninvertible triality
defect [30].
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Maxwell theory case. It was realized in [32,33] that the
classical axial Uð1ÞA symmetry of massless QED is not
completely broken by the ABJ anomaly, but it turns into a
linear, noninvertible symmetryDp=N labeled by the rational
numbers p=N. In addition, the massless QED has an
invertible time-reversal symmetry K. (When m ¼ 0, the
θ angle is not physical and can be set to zero by an axial
rotation.)
Now we turn on a mass term me−iθ. For a generic value

of θ, the mass deformation breaks both the invertible time-
reversal symmetryK and the noninvertible symmetryDp=N.
However, at a rational value of θ ¼ πp=N, the composition
of K and Dp=N is preserved by the mass deformation
me−iπp=N . The composed operator implements a noninver-
tible time-reversal symmetry

Tθ¼πp
N ¼ K∘Dp

N
: ð11Þ

In particular, if we set p ¼ N ¼ 1, then Dp=N becomes an
invertible defect shifting the θ angle by −2π, that is, it
reduces to the T−1 transformation. Correspondingly, the
invertible time-reversal symmetry at θ ¼ π is associated
with the KT−1 ¼ TK transformation.
Using Dp=N ×D†

p=N ¼ D†
p=N ×Dp=N ¼ CðNÞ from [32],

we immediately recover the noninvertible fusion rule. In
Fig. 2, we summarize the invertible and noninvertible
symmetries of massive QED across the complex mass
plane.
N ¼ 4 Super Yang-Mills theory.—Next, we discuss

noninvertible time-reversal symmetries in the 3þ 1DN ¼
4 SU(2) super Yang-Mills theory and relate them to various
linear and antilinear noninvertible symmetries in
[23,24,30,31]. For simplicity, we will assume the spacetime
manifold to be spin and in particular oriented.

The N ¼ 4 SU(2) super Yang-Mills theory is para-
metrized by a complexified coupling τ. Similar to the free
Maxwell theory, it enjoys an SLð2;ZÞ electromagnetic
duality, but the details differ as we discuss below. While the
T∶τ ↦ τ þ 1 transformation is an exact duality of the
SU(2) theory, the S∶τ ↦ −1=τ transformation maps the
latter to a theory with an SO(3) gauge group. The SLð2;ZÞ
duality transformation acts nontrivially on the spectrum of

line operators [81–83]. The SU(2) theory has a Zð1Þ
2 center

one-form symmetry. Below, S stands for the operation of

gauging a Zð1Þ
2 one-form symmetry, and T stands for the

operation of stacking a Zð1Þ
2 one-form SPT phase. See the

Supplemental Material [64] for more details.
Let us start with the antilinear, invertible symmetries of

the SU(2) theory. Along θ ¼ 0, there is an invertible time-
reversal symmetry Tθ¼0 associated with the naive time-
reversal transform K [84]. Along θ ¼ π, the coupling
constant τ is invariant under the TK transformation. If
we further track the dependence on the coupling to the

background gauge field of the Zð1Þ
2 one-form symmetry,

then the SU(2) theory at θ ¼ π is invariant under TTK ¼
TTK [31]. We denote the corresponding invertible time-
reversal symmetry by Tθ¼π. Similarly, at θ ¼ −π, we have
an invertible time-reversal symmetry Tθ¼−π that is asso-
ciated with the transformation T−1TK.
Next, we review the linear, noninvertible symmetries of

the SU(2) theory. It was shown in [24,30,31] that at τ ¼ i,
there is a duality defect D2 associated with the trans-
formation SS. Importantly, while this duality defect acts

invertibly on the local operators as a Zð0Þ
4 symmetry, it acts

noninvertibly on the line operators. Similarly, at τ ¼ e2πi=3,
there is a triality defect D3 associated with the trans-
formation STST [30,31]. At these two special points, we
can compose the duality and triality defects with the
invertible time-reversal symmetries to obtain noninvertible
time-reversal symmetries, i.e., D2∘Tθ¼0 at τ ¼ i and
D3∘Tθ¼−π at τ ¼ e2πi=3.
We now move on to the more general noninvertible time-

reversal symmetry along the locus jτj ¼ 1. While the
transformation SK leaves τ invariant, unlike the
Maxwell theory, it maps the SU(2) theory to an SO(3)
theory. To remedy this, we compose the above trans-
formation with the S transformation, which gauges the

Zð1Þ
2 one-form symmetry. The composite transformation

SSK then leaves the SU(2) theory at any point along jτj ¼
1 invariant. We denote the corresponding antilinear sym-
metry by Tjτj¼1. Since Tjτj¼1 involves the S transformation,
it is noninvertible. We have

ðTjτj¼1Þ† × Tjτj¼1 ¼ Cð2Þ0 ≡ 1

jH0ðM;Z2Þj
X

Σ∈H2ðM;Z2Þ
ηðΣÞ;

ð12Þ

FIG. 2. Invertible and noninvertible time-reversal symmetries
of QED on the complex mass plane. If the massme−iθ is real (i.e.,
if θ ¼ 0; π), the theory has an invertible time-reversal symmetry.
When the phase of the mass term is rational, i.e., θ ¼ πp=N, we
have the noninvertible time-reversal symmetry generated by
Tθ¼πp=N . At zero mass, we have a linear noninvertible symmetry
Dp=N for every rational number p=N and the invertible time-
reversal symmetry.
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where ηðΣÞ is the Zð1Þ
2 one-form symmetry operator on a

two-surface Σ, andM is the three-manifold on which Tjτj¼1

is supported. Cð2Þ0 is the untwisted condensation defect from

one-gauging the Zð1Þ
2 one-form center symmetry on M (see

Supplemental Material [64] for more details on condensa-
tion defects).
At τ ¼ i, the noninvertible time-reversal symmetry Tjτj¼1

is a composition of the duality defect D2 (which is
associated with SS) and the invertible time-reversal sym-
metry Tθ¼0 (which is associated with K). Similarly, at
τ ¼ e2πi=3, Tjτj¼1 is the composition of the triality defectD3

(which is associated with STST) and the invertible time-
reversal symmetry Tθ¼−π (which is associated with
T−1TK).
Finally, we note that the locus jτj ¼ 1 of the SU(2)

theory is mapped to θ ¼ π of the SOð3Þ− theory under the

TST duality transformation (up to a counterterm of Zð1Þ
2

which can be fixed by a T transformation). In [24], it was
found that the SOð3Þ− pure Yang-Mills theory has a
noninvertible time-reversal symmetry at θ ¼ π. [Recall
that the θ angle is 4π periodic for the SO(3) gauge group.]
When embedded into the N ¼ 4 SOð3Þ− theory, this
noninvertible time-reversal symmetry is related to our
Tjτj¼1 of the SU(2) theory by an electromagnetic duality
transformation.
See Table I for the summary. Intuitively, the Zð1Þ

2 one-
form symmetry of the SOð3Þ− theory makes it possible to
define a noninvertible time-reversal symmetry at half of the
naive allowed values of θ, i.e., θ ∈ 2πZ. In contrast, the
Uð1Þð1Þ magnetic one-form symmetry cures the time-
reversal symmetry at every rational θ angle for the
Abelian gauge theory.
Generalized anomalies and trivially gapped phases.—

Are our noninvertible time-reversal symmetries anoma-
lous? While we do not know the general definition of
anomalies for a noninvertible global symmetry, one can
alternatively ask if the global symmetry is compatible with
a trivially gapped phase. Indeed, one of the most important
consequences of a ‘t Hooft anomaly for an ordinary global
symmetry is that it cannot be matched by a trivially
gapped phase.
For the noninvertible time-reversal symmetries Tθ¼πp=N

in the free Maxwell theory and massive QED, there is a
simple argument that they are compatible with a trivially
gapped phase. In this sense they do not have a generalized
anomaly. This is to be contrasted with the linear, non-
invertible symmetries of the Maxwell theory, which
are generally incompatible with a trivially gapped phase
[23,30].
The proof proceeds as follows. We start with the free

Maxwell theory, and couple it to a charge 1 complex scalar
field. This coupling does not break the magnetic one-form
symmetry, and the noninvertible time-reversal symmetry

Tθ¼πp=N is preserved by the coupling to this complex scalar
field. Then we can turn on a Higgs potential, and drive the
whole system to a trivially gapped phase while preserving
Tθ¼πp=N . This proves that the noninvertible time-reversal
symmetries in the Maxwell theory are compatible with a
trivially gapped phase.
Below, we explicitly find trivially gapped quantum field

theories which realize our noninvertible time-reversal
symmetries. This serves as a consistency check that
these symmetries in the Maxwell theory and QED are
nonanomalous.
Our noninvertible time-reversal symmetries always arise

from the invariance of a QFT under the CKS ¼ SK
transformation (modulo duality transformations), provided
we choose the appropriate counterterm of the background

gauge field for the Zð1Þ
N one-form symmetry. Here, C is the

“charge conjugation” operation which flips the sign of the
background gauge field, and S is the operation of gauging

the Zð1Þ
N one-form symmetry.

A trivially gapped phase which realizes the noninvertible
time-reversal symmetry is represented by a Zð1Þ

N one-form
SPT phase, that is invariant under the CKS transformation.
We will consider oriented SPT phases, both bosonic and
fermionic. Our analysis is an antilinear version of the ones
in [23,30].
For odd N, the possible SPT phases are labeled by an

integer q ∼ qþ N, where the partition function is given by
exp ½ð2πiq=NÞ R B ∪ B�. Here and below, B is a back-

ground gauge field for the Zð1Þ
N one-form symmetry,

whereas b denotes a dynamical gauge field. If we apply
the S transformation, the resulting theory is again invertible
if and only if gcdðq;NÞ ¼ 1. Under this condition, we
obtain

X
b

exp

�Z �
2πiq
N

b ∪ bþ 2πik
N

b ∪ B

��

¼ exp

�
2πi
N

�
−
k2

4q

�Z
B ∪ B

�
; ð13Þ

TABLE I. Some (anti)linear (non)invertible symmetries of the
N ¼ 4 SU(2) super Yang-Mills theory. Here K is the naive time-
reversal transformation, S, T generate the electromagnetic
duality, and S, T generate the (projective) SLð2;Z2Þ trans-

formation via gauging the Zð1Þ
2 center one-form symmetry.

Complexified coupling τ Symmetry Invertible? Linear?

θ ¼ 0 K Yes Antilinear
θ ¼ π TTK Yes Antilinear
jτj ¼ 1 SSK No Antilinear
τ ¼ i SS No Linear
τ ¼ e2πi=3 STST No Linear
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where we are neglecting the overall normalization and the
gravitational counterterms.
On the other hand, the K transformation acts as complex

conjugation on the partition function. Therefore, under the
KS transformation, q ↦ þk2=4q. The C transformation
acts trivially on the SPT phase, since its action is quadratic
in B. Thus, the CKS invariance of the SPT phase requires
q ¼ þk2=4q mod N, or, equivalently,

4q2 ¼ k2 mod N: ð14Þ

Since N is odd, 2 is invertible mod N, and q ¼ 2−1kmod N
is always a solution of the equation. We conclude that the
CKS invariance is compatible with a trivially gapped phase
for any N and p.
For even N, the possible SPT phases are

exp ½ð2πiq=2NÞ R PðBÞ�, where PðBÞ is the Pontryagin
square of B. We have q ∼ qþ 2N for the bosonic case, and
q ∼ qþ N for the fermionic case. In the even N case, the S
transformation acts as

X
b

exp

�Z �
2πiq
2N

PðbÞ þ 2πik
N

b ∪ B

��

¼ exp

�
2πi
2N

�
−
k2

q

�Z
PðBÞ

�
: ð15Þ

Next, under the CKS transformation, q ↦ þk2=q.
Therefore, the condition for the SPT phase to be CKS
invariant is

q2 ¼ k2
�
mod 2N if bosonic

mod N if fermionic
: ð16Þ

We see that q ¼ k is always a solution, consistent with the
claim that there is no generalized anomaly.
Conclusion and outlook.—We find that the free Maxwell

theory and massive QED for the real world at a rational θ
angle is time-reversal invariant. The time-reversal sym-
metry is implemented by a conserved, antilinear operator
Tθ¼πp=N , but it is noninvertible because of the fractional
quantum Hall state attached to the operator. By composing
with the CPT transformation, the noninvertible time-
reversal symmetries that we found also imply the existence
of noninvertible CP symmetries in these theories. Similar
noninvertible time-reversal symmetries also exist inN ¼ 4
super Yang-Mills theories and in various SPT phases.
In this Letter, we only identify the existence of these new

time-reversal symmetries, and defer their applications for
future investigations. Below we outline a few interesting
future directions: (i) In the context of the strong CP
problem, it is natural to wonder if there is a hidden
noninvertible T or CP symmetry when the SU(3) θ angle
vanishes in the standard model [85]. (ii) It is known that at
θ ¼ 0, there are 7 different versions of time-reversal

symmetric Maxwell theory, distinguished by the quantum
numbers of the Wilson and ‘t Hooft lines [87,88]. It would
be interesting to generalize this discussion to Maxwell
theory with noninvertible time-reversal symmetry at a
rational θ angle. (iii) It would be interesting to compute
the partition function of the Maxwell theory at θ ¼ πp=N
on an unoriented manifold using our noninvertible time-
reversal symmetry, extending the classic results of [89,90].
Similar generalizations of [91,92] can be explored for the
N ¼ 4 super Yang-Mills theory along jτj ¼ 1.
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