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We calculate the amount of entanglement shared by two intervals in the ground state of a (1þ 1)-
dimensional conformal field theory (CFT), quantified by an entanglement measure E based on the
computable cross norm (CCNR) criterion. Unlike negativity or mutual information, we show that E has a
universal expression even for two disjoint intervals, which depends only on the geometry, the central charge
c, and the thermal partition function of the CFT. We prove this universal expression in the replica approach,
where the Riemann surface for calculating E at each order n is always a torus topologically. By analytic
continuation, the result of n ¼ 1

2
gives the value of E. Furthermore, the results of other values of n also yield

meaningful conclusions: The n ¼ 1 result gives a general formula for the two-interval purity, which enables
us to calculate the Rényi-2 N-partite information for N ≤ 4 intervals; while the n ¼ ∞ result bounds the
correlation function of the two intervals. We verify our findings numerically in the spin-1=2 XXZ chain,
whose ground state is described by the Luttinger liquid.
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Introduction.—It is crucial to understand the structure of
entanglement in quantum many-body systems [1]. For
critical ground states (and the corresponding low energy
sector) described by conformal field theory (CFT), people
have derived rigorous results on numerous aspects of
entanglement [2–11], especially in one spatial dimension
with an infinite number of local conformal transformations.
Most notably, a single interval of length l has a universal
entanglement entropy (EE) S ¼ ðc=3Þ lnl proportional to
the central charge c of the CFT [2,3].
However, for two disjoint intervals A and B, it becomes

challenging to calculate either EE of them as a whole or the
classical correlation and quantum entanglement shared
between A and B. These quantities would no longer be
universal while depending on the full operator content of
the CFT [7,12–15], as we briefly overview below. Since A
and B share a mixed state, there is no unique measure that
quantifies the entanglement and correlation in between
[16]. Two measures have been mainly studied, namely,
mutual information [13] and positive partial transpose
(PPT) negativity [7]. These quantities are calculated in
the replica approach, where the Rényi version of order n is
expressed as a path integral on a Riemann surface com-
posed of n replicas of the system. Unlike the single-interval
case, the genus of the Riemann surface grows with n [7,14].
Since CFT calculations on high-genus surfaces become
nonuniversal, the result for general n is very complicated
even for free theories [14], which makes it difficult to
analytically continue to the one-replica limit. Despite the

progress that has been made [17–28], there was no closed-
form formula for either entanglement or correlation of two
disjoint intervals in general ð1þ 1ÞD CFT ground states.
In this Letter, we solve this problem by studying the

computable cross norm (CCNR) negativity as a different
measure for entanglement and correlation. The advantage
of this quantity is that the Riemann surface for any number
of replicas always has genus 1, which enables us to draw a
connection with CFT on the torus, a much better-
understood scenario than high-genus surfaces [29]. By
exploiting this quantity at each order n and assuming the
thermal free energy of the CFT is known, we derive
universal formulas for not only the CCNR negativity,
but also other quantifiers of entanglement and correlation
in the ground state. These quantifiers include the two-
interval purity (which generalizes the analytical result
in [13] to all CFTs), N-partite information for up to
N ¼ 4 intervals, and a bound on the correlation function
for two intervals. We verify our main results numerically in
a spin-1=2 XXZ model.
For any state ρ shared by two parties A and B, define a

realignment matrix R with matrix elements

hajha0jRjbijb0i ¼ hajhbjρja0ijb0i; ð1Þ

where fjaig and fjbig are the basis for A and B,
respectively. By definition, R is not necessarily a square
matrix. It can be proved that kRk1 ¼ trð

ffiffiffiffiffiffiffiffiffi
RR†

p
Þ ≤ 1 if ρ is
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separable, so a state is guaranteed to be entangled if
kRk1 > 1, the so-called the CCNR criterion [30]. As a
commonly used mixed-state criterion, it has a similar
detection capability as the PPT criterion [31]. Following
the definition of PPT negativity that originates from the
PPT criterion [32], the CCNR negativity is defined by

E ¼ ln kRk1; ð2Þ

as an entanglement measure. Note the similarity with the
operator entanglement [33,34].
Now we are ready to set up the problem and present our

main result for E. For an infinite 1D system at its ground
state described by a 2D CFT, we study the CCNR
negativity E between two intervals A ¼ ½ua; va�
and B ¼ ½ub; vb�, with ua < va ≤ ub < vb and lengths
lα ¼ vα − uα (α ¼ a, b). We show that E is related to
the torus partition function Zðτ=2Þ of the CFT with a
universal function:

eE ¼ Zðτ=2Þ
ðlalbjua − ubjjva − vbjjua − vbjjub − vajÞc=24

; ð3Þ

where the pure imaginary modular parameter τ=2 of the
torus is related to the four-point ratio

x ¼ ðua − vaÞðub − vbÞ
ðua − ubÞðva − vbÞ

∈ ð0; 1Þ; ð4Þ

by

x ¼
�
θ2ðτÞ
θ3ðτÞ

�
4

; ð5Þ

with θν being Jacobi theta functions. Zðτ=2Þ is the partition
function of the theory on a unit circle at finite temperature
2=jτj, which depends on the CFT model [see Eq. (S2) in
Supplemental Material [35] for the explicit expression].
Other than this dependence, the entanglement measure E is
completely determined by the central charge and geometry.
This universality also holds for the correlation measures
Zn’s that we will introduce. We note that Eq. (3) is also
universal in the strong sense: different microscopic models
described by the same CFTwill have the same E in Eq. (3)
(up to an additive constant).
A replica approach.—Following previous works

[3,36,37], E can be computed via a “replica trick” method
(see Supplemental Material [35] for a rigorous proof):

E ¼ lim
n→1=2

lnZn; where Zn ≡ tr½ðR†RÞn�; ð6Þ

and limn→1=2 means analytic continuation from integer
values of n to 1

2
. Zn can be expressed as contracting 2n

copies of ρ as tensors [see Figs. 1(a) and 1(b)]. Using
imaginary time path integral, any matrix element of ρ for

the subsystem A ∪ B in the ground state equals the partition
function on a 2D plane C with open cuts at the two
intervals, as shown in Fig. 1(c). The boundary conditions at
the cuts correspond to the four states jai, ja0i, jbi, jb0i
specified by the given matrix element. Connecting the
matrix elements according to Fig. 1(b), Zn is then the
partition function on a Riemann surface Rn depicted in
Fig. 1(d). The most important observation of this Letter is
that, as the complex plane C is topologically equivalent to a
sphere when compactified, Rn is topologically equivalent
to a torus for any value of n. We take the case n ¼ 2 as an
example to show this equivalence in Fig. 1(e). This is the
key property that make the CCNR negativity easier to
calculate than the PPT negativity in CFT.
When compressed to a single plane, Zn can be further

viewed as the correlation function of some twist fields
T 0

2nðzÞ in 2n copies of the original theory [38]

Zn ¼ hT 0
2nðuaÞT 0

2nðvaÞT̃ 0
2nðubÞT̃ 0

2nðvbÞi; ð7Þ

where the fields locate at the four end points of A and B. In
a nutshell, each sheet ofRn corresponds to a flavor (labeled
by 1; 2;…; 2n) in the compressed plane, and T 0

2n and T̃ 0
2n

permute the flavors by ð1 ↔ 2; 3 ↔ 4;…; 2n − 1 ↔ 2nÞ

(a) (c)

(b)

(e)

(d)

FIG. 1. (a) Density matrix ρ as a tensor. (b) Tensor representa-
tion of Zn with n ¼ 2, where the gray dashed lines represent the
periodic boundary condition. (c) Path integral formulation for a
matrix element of ρ, which is also a matrix element of realign-
ment matrix R. (d) The Riemann surface R2 on which path
integration yields Z2. Note that sheets 1 and 4 are connected at the
right interval B. (e) Smooth deformation of the surface in (d),
which shows the topological equivalence to a torus. The blue
spheres stand for the blue sheets in (d) and the colored cylinders
stand for the connections between the same area of the two
neighboring sheets. The yellow dots are the points at infinity of
the sheets.
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and ð2 ↔ 3;…; 2n ↔ 1Þ, respectively. Note that these
twist fields differ from T 2n for calculating EE and PPT
negativity in the literature [3,7], where the permutation is
cyclic ð1 → 2; 2 → 3;…; 2n → 1Þ. This replica approach
also works for general systems beyond 2D CFT.
Two adjacent intervals.—In 2D CFT, the Riemann

surface Rn can be conformally transformed to more
tractable geometries, with well-known transformation
properties of primary fields such as T 0

2n. As a warm up,
consider the case va ¼ ub, so that A and B are adjacent.
Then Zn corresponds to a three-point function
Zn ¼ hT 0

2nðuaÞT ⊗2
n ðubÞT̃ 0

2nðvbÞi, where T ⊗2
n , the compo-

sition of T 0
2n and T̃

0
2n, permutes the flavors by ð1 → 3; 3 →

5;…; 2n − 1 → 1Þ and ð2 → 2n; 4 → 2;…; 2n → 2n − 2Þ.
This justifies the notation T ⊗2

n , which means the odd and
even groups of flavors factorize, and there is a cyclic
permutation in each group. In CFT, three-point functions
take a universal form [39] that only depends on the
geometry, the central charge c, and the conformal dimen-
sions of the three operators that we compute as follows. To
obtain the conformal dimension hT 0

2n
¼ h̄T 0

2n
for T 0

2n (the

dimension for T̃ 0
2n would be the same), consider the two-

point function hT 0
2nðuÞT 0

2nðvÞi ∼ ju − vj−4hT 0
2n . The corre-

sponding Riemann surface is n independent copies of the
n ¼ 1 case, where two sheets are connected by a cut linking
u to v, so that T 0

2 ¼ T 2. Therefore we have

hT 0
2n
¼ nhT 2

¼ n
c
24

�
2 −

1

2

�
¼ n

16
c; ð8Þ

where we use the well-known value of hT n
[3]. Similarly,

we have hT ⊗2
n

¼ 2hT n
¼ ðc=12Þðn − 1=nÞ.

As a result, we find

Zn ∝ ðlalbÞ−2hT ⊗2
n ðla þ lbÞ2hT ⊗2

n
−4hT 0

2n

¼ ðlalbÞ−c
6
ðn−1

nÞðla þ lbÞ− c
12
ðnþ2

nÞ: ð9Þ

In the limit n → 1=2, we get for two adjacent intervals

E ¼ c
8
½2 lnðlalbÞ − 3 lnðla þ lbÞ� þ const: ð10Þ

Using standard CFT techniques, this result can be easily
generalized to finite size or finite temperature [3].
For example, if the system is of length L with periodic
boundary condition, E at zero temperature is still
given by Eq. (10), but with each length l replaced by
ðL=πÞ sinðπl=LÞ.
Two disjoint intervals.—If A and B are disjoint, we

should use the four-point function Eq. (7), which can be
rewritten as

Zn ¼
� jua − ubjjva − vbj
lalbjua − vbjjub − vaj

�nc
4

F 2nðxÞ; ð11Þ

using global conformal transformations and the conformal
dimension in Eq. (8). Here the four-point ratio x is given by
Eq. (4), and the function

F 2nðxÞ ¼ jxð1 − xÞjnc4 hT 0
2nð0ÞT 0

2nðxÞT̃ 0
2nð1ÞT̃ 0

2nð∞Þi;
ð12Þ

is proportional to Zn defined at ðua; va; ub; vbÞ ¼
ð0; x; 1;∞Þ. From now on, we focus on this particular
geometry, with the operator at∞ normalized by T̃ 0

2nð∞Þ ¼
limw→∞jwjðnc=4ÞT̃ 0

2nðwÞ. The subscript 2n makes F 2ðxÞ
agree with previous notations [7,14,15], where the two-
sheet Riemann surface for calculating EE or PPT negativity
is exactly the same as CCNR negativity here. F 2nðxÞ is not
universal and depends on the full operator content of the
theory since the topology of the Riemann surface Rn is no
longer a plane (strictly speaking, a sphere). However, the
topology is just a little more complicated than a plane: it is a
torus for all n [see Fig. 1(d)]. This special property about E,
which does not hold for EE and PPT negativity, enables us
to derive universal relations between entanglement and
finite temperature physics described by a torus.
We show the universal relation by first considering the

simplest case n ¼ 1, where we introduce our main tech-
nique depicted in Fig. 2. Namely, there is a one-to-one
mapping between the Riemann surface R1 and a torus Tτ,
first introduced in [40]. We parametrize R1 by w ∈ C with
one value of w corresponding to two points in R1 (except
for the four end points of A and B). On the other hand, the
torus Tτ is defined by the coordinate t ∈ C with periodic
identifications t ≅ tþ pþ qτ, where p and q are integers.
Here τ is the modular parameter determined by Eq. (5).
Using this parametrization, the map is written as

FIG. 2. Schematic depiction of the one-to-one mapping in
Eq. (13) between the torus Tτ above, represented by a rectangle
with opposite sides identified, and R1 below. Points with the
same color are mapped to each other.
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wðtÞ ¼ ℘ðtÞ − e3
e1 − e3

; ð13Þ

where ℘ðtÞ is the Weierstrass elliptic function on a lattice
generated by 1 and τ [41], and e1, e2, e3 equal to
℘ð1=2Þ;℘ðτ=2Þ;℘½ð1þ τÞ=2�, respectively, with constraint

e1 þ e2 þ e3 ¼ 0: ð14Þ

wðtÞ maps Tτ one-to-two to the complex plane, except for
the four points t ¼ ð1þ τÞ=2; 1=2; 0; τ=2 that map to the
four end points w ¼ 0; 1;∞; x, respectively, due to Eq. (5).
To obtain F 2ðxÞ, we insert a stress tensor TðwÞ in

Eq. (12) and calculate the five-point function first [43]. This
is equivalent to a single-point function of the stress tensor
TðwÞR1

on R1 with an extra prefactor 2, since it has two
sheets. According to the map in Eq. (13), this is then related
to the single-point function of TðtÞ on Tτ from the trans-
formation rule

TðwÞR1
¼

�
dw
dt

�
−2
�
TðtÞ − c

12
fw; tg

�
; ð15Þ

where fw;tg¼w000=w0− 3
2
ðw00=w0Þ2¼℘000=℘0− 3

2
ð℘00=℘0Þ2 is

the Schwarzian derivative. To simplify, observe that
℘00 ¼ ℘0ðd℘0=d℘Þ ¼ 6ð℘2 þ ϵÞ, where 3ϵ≡ e1e2 þ e2e3þ
e3e1, and we have used the identity

℘02 ¼ 4ð℘ − e1Þð℘ − e2Þð℘ − e3Þ; ð16Þ

together with Eq. (14). Then ℘000 ¼ 12℘℘0 follows, and
we get

1

12
fw; tg ¼ ℘ðtÞ − 9ð℘2 þ ϵÞ2

8ð℘ − e1Þð℘ − e2Þð℘ − e3Þ
; ð17Þ

for the second term in Eq. (15). For the first term, we derive
its expectation in Supplemental Material [35]:

hTðtÞiTτ
¼ 2πi∂τ lnZðτÞ: ð18Þ

Taking the expectation value of Eq. (15), we obtain

hTðwÞT 0
2ð0ÞT 0

2ðxÞT̃ 0
2ð1ÞT̃ 0

2ð∞Þi

¼ 2hTðwÞR1
iR1

¼
�
e1 − e3
℘0ðtÞ

�
2
�
2hTðtÞiTτ

−
c
6
fw; tg

�

¼ 1

w − x

� hTðtÞiTτ

2ðe1 − e3Þxðx − 1Þ −
c
24

2x − 1

xðx − 1Þ
�
þ � � � :

ð19Þ

In the third line we have used Eq. (16)(17) and extracted the
pole of order 1 at w ¼ x. According to the conformal Ward
identity, the residue of the five-point function Eq. (19)

should equal to ∂xhT 0
2ð0ÞT 0

2ðxÞT̃ 0
2ð1ÞT̃ 0

2ð∞Þi. Using the
identity

2ðe1 − e3Þxðx − 1Þ ¼ −2π2xθ4ðτÞ4 ¼ 2πi
dx
dτ

; ð20Þ

and Eq. (12), we then integrate over x to get

F 2ðxÞ ¼ ZðτÞjxð1 − xÞjc6: ð21Þ

This establishes a universal relation between the Rényi-2
EE (or, equivalently, purity) S2 ¼ − lnZ1 of two disjoint
intervals and the torus partition function. As an example,
Ref. [13] reports F 2ðxÞ for the free compactified boson
(CB) model with a critical exponent η. This is easily
reproduced using Eq. (21) and the partition function [29]

ZCBðτÞ ¼
ffiffiffiffiffiffiffi
η

−iτ

r
θ3ðητÞθ3ð−η=τÞ

½θ2ðτÞθ3ðτÞθ4ðτÞ�2=3
: ð22Þ

Thanks to the torus topology, we generalize the calcu-
lation for all n ≥ 1 in Supplemental Material [35], where
the odd (even) sheets in Rn are compressed to the up
(down) sheet in Fig. 2, so that we can still use Eq. (13). We
obtain our main result

Zn ¼
ZðnτÞ

ðlalbjua − ubjjva − vbjjua − vbjjub − vajÞnc=12
;

ð23Þ

and Eq. (3), with simplified formulas for the two limits
x → 0, 1 reported in Supplemental Material [35]. As
Eq. (23) provides an infinite number of exact constraints
on the state ρ, it is an interesting question what useful
information beyond the CCNR negativity and purity that
one can extract from the Zns. In Supplemental Material [35]
we give a first attempt, according to the natural connection
between the matrix R and the correlation function
tr½ðOA ⊗ OBÞρ� ¼ hO�

AjRjOBi, where jOAi and jOBi are
the vectorizations of operators OA and OB, respectively.
Thus, according to the Cauchy-Schwarz inequality, we find
that Zn→∞ bounds the correlation function of low-rank
Hermitian operators OA, OB as

tr½ðOA ⊗ OBÞρ� ≲ lim
n→∞

ðZnÞ 1
2n ∝ ðlalbÞ−c=8: ð24Þ

Numerics.—We use the spin-1=2 XXZ chain with
periodic boundaries

H ¼
XL
j¼1

XjXjþ1 þ YjYjþ1 þ ΔZjZjþ1 ð25Þ

to test our findings, where the ground state is described by
the CFT of a free compactified boson (equivalently, the
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Luttinger liquid) with c ¼ 1 and critical exponent η ¼
1 − ð1=πÞ arccosΔ [13]. We numerically calculate the
ground state for L ¼ 24 sites by exact diagonalization
and extract the R matrix and CCNR negativity for different
geometries and values of Δ. As shown in Figs. 3(a) and 3
(c), the data agrees well with our predictions Eq. (10) and
(3) using Eq. (22) for the partition function. In Fig. 3(b), the
general formula Eq. (23) is also verified for Δ ¼ −0.8.
Discussion.—In conclusion, we discover that the entan-

glement of two disjoint intervals in ð1þ 1ÞD CFTs, as
quantified by CCNR negativity, is universally related to the
thermal partition function. Furthermore, similar relations
hold for the Rényi counterparts Zn that provide extra
information about the state ρ, such as the purity and a
boundoncorrelation function.OurLetter thus adds to a series
of rigorous findings onmany-body problems [44–47], where
it is crucial to choose the suitable entanglementmeasures that
echo with the particular many-body structure.
We expect our results can be generalized in many

directions, such as going beyond 1D ground states to
excited states [6,8] and finite temperature [9] at higher
dimensions [4,10]. The quantity Zn naturally appears in the
replica trick for the reflected entropy [48–50], which is
nicely dual to the entanglement wedge cross section [51] in
AdS=CFT. Thus it is worth exploring the meaning of
Eq. (23) in holographic settings, see Ref. [52] for a recent
discussion. Since our main results can be alternatively
viewed as solving four-point functions of twist fields, it is

interesting to ask whether a similar structure holds for
disorder operators [53–56], the generalization of twist field
operators in the symmetry perspective.
As one more generalization, one can ask about entan-

glement and correlation for N > 2 intervals. Our result for
the two-interval purity already yields the Rényi-2 N-partite
information [57], for N ¼ 3 intervals where at least two are
adjacent, and N ¼ 4 adjacent intervals. For example, the
Rényi-2 tripartite information for intervals A, B, C is

I2ðA∶B∶CÞ ¼ S2ðAÞ þ S2ðBÞ þ S2ðCÞ − S2ðABÞ
− S2ðACÞ − S2ðBCÞ þ S2ðABCÞ; ð26Þ

which only contains purities for one or two intervals, if A is
adjacent to B. On the other hand, for any N, one can
construct families of Riemann surfaces that are topo-
logically a torus, such as connecting each pair of neighbor-
ing sheets by only one interval. However, it is an open
question whether our technique Eq. (13) can be generalized
to such Riemann surfaces. It is also unclear whether these
Riemann surfaces lead to meaningful measures of entan-
glement and correlation.
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