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An ergodic system subjected to an external periodic drive will be generically heated to infinite
temperature. However, if the applied frequency is larger than the typical energy scale of the local
Hamiltonian, this heating stops during a prethermal period that extends exponentially with the
frequency. During this prethermal period, the system may manifest an emergent symmetry that, if
spontaneously broken, will produce subharmonic oscillation of the discrete time crystal (DTC). We
study the role of dissipation on the survival time of the prethermal DTC. On one hand, a bath coupling
increases the prethermal period by slowing down the accumulation of errors that eventually
destroy prethermalization. On the other hand, the spontaneous symmetry breaking is destabilized
by interaction with environment. The result of this competition is a nonmonotonic variation, i.e., the
survival time of the prethermal DTC first increases and then decreases as the environment coupling gets
stronger.
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Introduction.—For static systems, the spontaneous sym-
metry breaking (SSB) is paradigm dividing matter into
phases, most notably through the Landau-Ginzburg theory.
It is important to ask whether SSB can manifest in dynamic
systems, in particular those with time translation symmetry.
The no-go theorem prohibits the SSB of continuous time
translation symmetry [1,2]. Many attempts have been made
to circumvent this situation but are still debatable using
long-range multispin interaction [3–5] or interacting gauge
theory [6–10]. On the other hand, SSB is established to
manifest under discrete time translation symmetry (in
Floquet systems) [11–14], producing an exotic phase called
the discrete time crystal (DTC). The signature of this phase
is the many-body collective response exhibiting a longer
periodicity than that of the drive, usually an integer
multiple. Several experiments have successfully created
DTC in atomic systems or quantum simulators [15–22].
One of the main problems in realizing DTC is the heating

to infinite temperature by the periodic driving field.
Therefore, it is crucial to prevent thermalization or at least
delay it by a sufficiently long time. The first discovered
strategy for this task is to utilize many-body localization
(MBL) by introducing disorder to the Hamiltonian [11–13]
or a static electric field [23]. Since MBL violates the
eigenstate thermalization hypothesis, the information of the
initial state still persists in the longtime dynamics [24,25],
thus we can expect the DTC, if protected by MBL, to
survive to infinite time. However, disorder-induced MBL
requires tuning and might be difficult to engineer, not to
mention that the validity of MBL in the thermodynamic
limit is still not settled [26–28]. Another approach—
prethermalization, on the other hand, only requires the

applied frequency to be larger than the smallest energy
scale of the Hamiltonian [29–34]. During the prethermal
regime, the dynamics manifests an emergent symmetry
with exponentially small error even though it is not an exact
symmetry of the Hamiltonian. If the symmetry is repre-
sented by a ZN group and is spontaneously broken, the
subharmonic response will emerge in some collective
degree of freedom with periodicity NT. In some exotic
case, the multiplicity can even be noninteger [35]. Unlike
the MBL proposal, the prethermal DTC survives only a
finite time before being eventually thermalized, but this
time can be exponentially extended by simply increasing
the driving frequency. This characteristic has been observed
[20–22]. The key point is that prethermal DTC should exist
independent of whether MBL exists or not.
The above strategies were initially developed for closed

systems which may not reflect the realistic situation as a
system is always coupled to the environment not only in
terms of heat bath but also noise. In the presence of a bath,
MBL is most likely destroyed, while the fate of prethermal
DTC is less straightforward. For example, a cold bath can
potentially preserve the DTC to infinite time as it absorbs
excessive heat generated by the drive [31]. We show that
the prethermal formalism extends to open systems, i.e., up
to a timescale exponentially long in the applied frequency,
the dynamics is approximated by that under a time-
independent Lindbladian. However, unlike a constant
Hamiltonian that defines a conserved energy, a constant
Lindbladian eventually drives the system to a steady state
regardless of the initial condition. Therefore, the effect of
dissipation on the observability of time crystal is more
complicated, involving different timescales.
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The emergence of prethermal DTC is based on two
conditions: the prethermal regime and the SSB of the
emergent symmetry. We note that a true SSB has infinite
lifetime by definition, but in a finite system, we can only
achieve quasi-SSB whose large fluctuations of the order
parameter must eventually vanish to recover the sym-
metry. The shorter lifetime between the prethermalization
and quasi-SSB thus determines the survival time of DTC.
Our result is summarized in Fig. 1. We show that as the
environment coupling gets stronger, the prethermal
regime is extended, while the quasi-SSB lifetime is
reduced, leading to a nonmonotonic behavior of the
DTC. Additionally, in the early increasing phase, the
exponential dependence on the applied frequency is
prominent; while in the later decreasing phase, the
frequency becomes irrelevant. This statement is demon-
strated numerically in the main text and argued analyti-
cally in Supplemental Material [36]. We mention that for
some specific forms of noise operators, the decreasing
trend may start at a very weak noise amplitude, making the
first increasing phase almost invisible. Before proceeding
to the details, we contrast our study with the dissipative
time crystal that does not require emergent symmetry or
MBL [42–46]. This proposal, on the other hand, requires
the steady states to be degenerate or quasidegenerate,
which does not hold generically but can be enforced by
tuning the system across a phase transition. As such, DTC
only emerges near the critical point of a phase transition
and is protected by the dissipative gap between the
quasidegenerate manifold and the rest of the spectrum,
necessitating a fine-tuned engineering of the Lindbladian.
Prethermalization in open systems.—We first translate

the derivation of prethermal DTC from the unitary evolu-
tion in closed systems to the Liouvillian evolution of open
systems. The dynamics is driven by a time-periodic
Liouvillian LðtÞ ¼ Lðtþ TÞ with T ¼ 2π=ω being a fixed
applied period. We assume that the Liouvillian contains

both unitary and dissipative parts and is described by the
Lindblad equation

L½ρ� ¼ −i½H; ρ� þ
X
j

λj

�
LjρL

†
j −

1

2
fL†

jLj; ρg
�
: ð1Þ

In our work, the environmental coupling manifests as local
dephasing noise so the channel index j in the dissipative
part is also the site index and we choose λj ¼ λ. Another
approach to access the open system is to solve the
stochastic evolution of a pure state, known as
Heisenberg-Langevin equation [47].
To make connection with the standard unitary evolution

used to derive prethermalization, we promote the density
matrix to a supervector kρ⟫ (4L vector) and the LiouvillianL
to a superoperator L̂ (4L × 4Lmatrix).As a result, the density
matrix at a time t is given by an evolution similar to the

unitary case kρðtþ TÞ⟫ ¼ ÛfkρðtÞ⟫ ¼ T e
R

T

0
L̂ðsÞdskρð0Þ⟫

with T being the time ordering operator. The expectation
value of an operator is also brought into a Schrödinger-like
form hOðtÞi ¼ ⟪1kOkρðtÞ⟫ with k1⟫ corresponding to the
identity operator.Here,weuse thenormal definitionof vector
inner product. The derivation of the slow heating is similar to
the unitary case except for L̂ being non-Hermitian. Because
of the assumption that the dissipative dynamics is much
weaker than the coherent one, the emergent symmetry is

given byX ¼ T e−i
R

T

0
H0ðsÞds satisfyingXN ¼ 1 so that in the

DTC phase, the system repeats itself after N cycles. Here,
H0ðtÞ is the dominant part of the driving Hamiltonian, in
particular the energy scale Jres of the residueH −H0 ismuch
less than 1=T. By applying similar iterative optimization as
for close systems [30,31,33], we arrive at

eÂÛfe−Â ¼ X̂T e
R

T

0
½D̂þV̂ðsÞ�ds; ð2Þ

where eÂ is a time-independent trace-preserving map
½X̂; D̂� ¼ 0, and X̂ is the superoperator promotion of
X½:�X†. Importantly, the norm of residue term V̂ is exponen-
tially suppressed by the driving frequency. Because D̂ is a
complete positive trace preserving (CPT) map generator and
has a much larger norm than the other terms, the “rotated”
eÂÛfe−Â is also a CPT map. Within a time period ∼eω=Jres
only D̂ is relevant to the dynamics and X̂ becomes the
emergent symmetry of the system. If X̂ is spontaneously
broken, the prethermal DTC is observable. Up to this point, it
appears that DTC in open systems must behave similarly to
its closed system counterpart. In the following, we point out
two key distinctions in the residual error and the stability
of SSB.
Approximating the exact Lindbladian by that only the

symmetric time-independent D̂ incurs errors which

FIG. 1. Variation of the time window of the prethermalization,
quasi-SSB, and DTC with respect to the dephasing noise
strength. The survival time of DTC is the shorter one between
the prethermal and the SSB lifetime.
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accumulate with time and eventually suppress the prether-
mal period, thermalizing the system. For a local observable
O, the accumulation rate is bounded by the Lieb-Robinson
velocity and whether the interaction is short or long ranged
[48,49]. Obviously, decreasing Lieb-Robinson velocity
necessarily increases τprethermal. However, since our noise
model is strictly on site, it is not obvious how λ can enter
the expression of the Lieb-Robinson velocity v which is
responsible for the intersite information propagation, not to
mention that the noise magnitude is seemingly irrelevant
compared to the other scales. On the other hand, if the bath
coupling results in a unique steady state then information of
the initial state must be lost eventually. From this longtime
limit, Ref. [50] suggests that the velocity may decay
exponentially in the presence of environment coupling.
In our case, the on site noise induces a deceleration rate so
that ∂tvðtÞ ∝ −λ. As a result, we can relate the dissipative
prethermal period with that in the dissipationless limit

τλprethermal ¼ τ0prethermalð1 − Cλτ0prethermalÞ−1; ð3Þ

with C being an Oð1Þ constant [36]. Therefore, even
though λ is the smallest scale by our assumption, it can
still result in visible effects on the DTC lifetime when
accompanying the exponentially long τ0prethermal.
The second aspect where the dissipative nature of the

system becomes relevant is the survival time of the quasi-
SSB. In a closed system, energy is conserved so a single
excitation, e.g., spin flip, is not favorable. On the other
hand, the creation of multiple excitations so that the ground
state is mapped to its degenerate partner requires higher
orders of perturbation and hence is suppressed exponen-
tially. Therefore, even for a finite system where the ground
state must be symmetric, the energy splitting can be
exponentially small. Unsurprisingly, the lifetime of the
quasi-SSB scales exponentially with system size and is
usually taken to be infinity even for systems with moderate
size. In an open system, however, energy can be exchanged
with the environment to stabilize the excitation, thus
destabilizing the quasi-SSB. In fact, the finite-size effect
is much more severe in open systems through the fact that
τSSB ∼ L1=2 in open 1D chains [51]. This necessitates a
careful analysis on the survival time of the quasi-SSB. In
Supplemental Material [36], we show that the decay rate of
the quasi-SSB increases monotonically with the bath
coupling strength. Unlike the effect of noise on the
prethermalization, different operational forms of noise Lj

may lead to vastly different decay rates. Under some form
of dephasing noise, the decreasing slope (see Fig. 1)
becomes much more prominent so that the increasing slope
is most likely unobservable.
Numerical model.—As a demonstration, we study the

driven Heisenberg chain subjected to dephasing noise.
Referring to Eq. (1)

HðtÞ ¼
X
i

hðtÞ
2

σi þ Jxx
4

σixσ
iþ1
x þ

X
j>i

J
4jj − ijα σ

i
zσ

j
z; ð4Þ

where σi ¼ fσix; σiy; σizg is the collection of Pauli matrices
at site i. The periodic Zeemann field h is given by

hðtÞσi ¼
�
hsσi for nT < t ≤ ðnþ 1ÞT − tp;

πt−1p σix for ðnþ 1ÞT − tp < t ≤ ðnþ 1ÞT;
ð5Þ

with finite but small constant hs and in the limit tp → 0.
The former condition ensures the drive frequency is larger
than other energy scales and the latter limit describes an
instant spin flip. We note that the physics does not change
significantly given a finite-width π pulse. With this setup,
the emerging symmetry arises from the dominant π-pulse
sequence and is given by X ¼ Q

j σ
j
x. Since X2 ¼ 1, the

DTC oscillation features doubled periodicity of 2T. The
long-range zz interaction with 1 ≤ α ≤ 2 is vital to drive
the transition to the spontaneous Ising symmetry breaking
phase [52,53]. Last, the term Jxx breaks integrability so that
the symmetrized D̂ is not trivially diagonal.
For the bath coupling, we use two representative cases of

dephasing noise: (i) Lj ¼ sjz and (ii) Lj ¼ sjx where the
quantum channel index j is also the site index. Physically,
this quantum channel describes the coupling between the
spin and an isolated harmonic oscillator reservoir sitting on
the same site. In their respective basis, the dephasing noise
keeps the diagonal entries of the density matrix while
suppressing off-diagonal ones. In both cases, we set λj ¼ λ
thus the system does not have any spatial disorder. Because
the entanglement grows much faster under long-range
interaction, we limit the system to L ¼ 12 and use exact
diagonalization to evaluate the longtime behavior [36]. We
check that a closed analog of this rather small lattice is
already sufficient to demonstrate all the signatures of
the DTC.
Sz-dephasing noise.—With the Z2 Ising symmetry as the

emergent symmetry, an observable associated with an
extensive degree of freedom in the DTC phase should
repeat itself after 2T. A typical choice is the magnetization
or magnetization density. In this Letter, we compute the
normalized magnetization, following Ref. [33]

CðtÞ ¼ L−1
X
j

hσjzðtÞihσjzð0Þi: ð6Þ

By definition, Cð0Þ is always normalized to unity. In
Fig. 2(a), we show the stroboscopic CðtÞ at even cycles
[CðtÞ at odd cycles is the reflection through zero] for weak
dephasing noise. Here, we can see that initially the survival
time of the DTC increases with the bath coupling strength.
It is remarkable that this extension is significant even
when λ is much smaller than any energy scales of the
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Hamiltonian. This is the result of Eq. (3), specifically λ ∼
Oð10−3Þ but when accompanied by τprethermal0 ∼Oð103Þ
can yield visible effect on the DTC lifetime. As we further
increase the noise amplitude, as shown in Fig. 2(b), the
DTC survival time begins to decrease after λ ¼ 0.001.
To understand these contrasting behaviors, we extract the

lifetime τDTC by fitting CðtÞ to an exponential decay and
compare among different drive frequencies increases from
5 to 6 and 7, as shown in Fig. 2(c). It is clear that in the
increasing phase, the prethermal protection is apparent, i.e.,
τDTC scales exponentially with ω. Unlike the previous
increasing phase, in this phase, there is no protection by the

drive frequency, showing that τDTC is now bounded by a
different timescale—the survival time of the quasi-SSB.We
also emphases the dephasing strength where the DTC
lifetime peaks shifts toward lower λ as ω increases,
consistent with the picture we described in Fig. 1.
Beside the magnetization, we also compute the bipartite

mutual information to understand which mechanism is
responsible for the DTC decay. A subsystem of the spin
chain either the rest of the chain (internal coupling) or the
thermal bath (external coupling). We define the mutual
information between the two halves of chain IL=2 ¼ SA þ
SB − SAB with A and B being the two halves and SA being
the Renyi entropy of the subsystem A. In Fig. 3(a), we
demonstrate the prethermal physics in close systems. Under
the thermalization generated by internal coupling, the
mutual information always increases until saturation with
slower rate for larger ω. On the other hand, if bath coupling
dominates, the system becomes purely classical with
vanished mutual information. In Fig. 3(b), we compare
the behavior of I within τDTC. For low λ, thermalization is
primarily driven by the internal coupling, characterized by
the increasing of I with time. However, the rate decreases,
consistent with the prolonged τDTC. When the dephasing is
sufficiently strong, the bath coupling takes over the
thermalization, as shown in the decreasing mutual infor-
mation. For ω ¼ 5, the transition happens around λ ≈ 0.002
which also coincides with the peak in Fig. 2(c). As such, the
nonmonotonic behavior reported in our Letter can be
associated with the transition from the quantum to classical
dynamics.
Sx-dephasing noise.—Compared to the previous case of

noise along the z direction, the decreasing trend is much
more visible while the increasing one is negligible (see
Fig. 4). In Fig. 4(b), we show the scaling with respect to
frequency. The invariance against the applied frequency
proves that τDTC ¼ τSSB, consistent with our general result.
The reason being the decay of SSB under Sx noise is much
faster than under Sz noise, making the observed variation of
τDTC with respect to λ being heavily biased toward the
decreasing phase.

1e-4 8e-42.5e-4 1e-3 8e-32e-3 4e-3

2e-4 4e-4 2e-3 4e-3 2e-2 4e-2

(a) (b)

(c)

FIG. 2. 2T-DTC oscillation sampled at t ¼ 2kT at ω ¼ 6
within the gain range (a) and the loss range (b). The color bar
is logarithmic in the dephasing strength. (c) Lifetime of the time
crystal for different frequency. In the gain regime, the DTC
survival time is enhanced exponentially by increasing the applied
frequency; while in the loss regime, the applied frequency is
almost irrelevant.

1e-4 1.6e-3 2.5e-2
(a) (b)

FIG. 3. (a) Bipartite mutual information for close spin chain at
different drive frequencies. (b) Mutual information at ω ¼ 5 with
different dephasing strengths.

(a) (b)

FIG. 4. DTC signal with dephasing strength at fixed ω ¼ 6 (a)
and DTC lifetime with applied frequency (b) under sx-dephasing
noise. In this case, the gain regime is almost invisible.
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Conclusion.—We establish the general trends of the
dissipative prethermal DTC in the presence of an environ-
mental coupling. The physics can be divided into two
phases. The first increasing phase where the DTC lifetime
increases with the environmental coupling, accompanied
by an exponential dependence on the frequency. The
second decreasing phase, by contrast, has the DTC lifetime
shortened with increasing noise strength and has no
frequency dependence. We note that in most of the DTC
literature in the presence of bath, the instability from bath
coupling is emphasized [54,55]. The stabilizing effect
reported in our work is surprising, but can be hard to
observe if the form of dissipation is chosen incorrectly. One
situation where the environmental coupling is beneficial is
the classical DTC where the bath manifests as a damping
force and noise [56]. In our case, the mechanism underlying
the stable branch is also the damping of nonsymmetric error
accumulation manifesting in the decreasing Lieb-Robinson
velocity. It is therefore interesting to draw some connection
between the classical and quantum DTC.
The physics reported in our Letter can be realized in

available quantum devices using stochastic trajectories. In
particular, each trajectory is subjected to a randomized
Ising field as

HSTðtÞ ¼ HðtÞ þ
X
i

ϵiðtÞCi; ð7Þ

where C is either Sz or Sx and ϵ is a random number chosen
from a Gaussian distribution so that ϵiðtÞ ¼ 0 and
ϵiðtÞϵjðt0Þ ¼ λΔtδi;jδt;t0 . Even though each trajectory is
entirely Hermitian, but the effect of the dephasing noise
shows up in the ensemble over random configurations.
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