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We use a theoretical model to explore how fluid dynamics, in particular, the pressure gradient and wall
shear stress in a channel, affect the deposition of particles flowing in a microfluidic network. Experiments
on transport of colloidal particles in pressure-driven systems of packed beads have shown that at lower
pressure drop, particles deposit locally at the inlet, while at higher pressure drop, they deposit uniformly
along the direction of flow. We develop a mathematical model and use agent-based simulations to capture
these essential qualitative features observed in experiments. We explore the deposition profile over a two-
dimensional phase diagram defined in terms of the pressure and shear stress threshold, and show that two
distinct phases exist. We explain this apparent phase transition by drawing an analogy to simple one-
dimensional mass-aggregation models in which the phase transition is calculated analytically.
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Introduction.—Deposition and aggregation of fine par-
ticles in microfluidic networks and porous media play an
important role in various natural and industrial processes
such as water purification, geotextile filtration, applications
in precision drug delivery and similar biomedical tasks,
transport of microplastics, environmental cleanups,
groundwater pollutant removal, oil recovery, and transport
of nanomaterials for groundwater aquifer remediation
[1–11]. For example, in filtration processes, understanding
of the deposition dynamics of colloidal particles plays a
significant role in improving filter efficiency via reducing
filter fouling [12–14]. Observations from [15] indicate that,
regardless of the charge of the colloidal particles flowing in
the bead network, applying lower pressures across the
system leads to localized deposition under various con-
ditions. This may suggest that irrespective of the exact local
clogging mechanism (e.g., bridging versus aggregation
[16]), the interplay of hydrodynamical variables in these
systems controls the resulting deposition profile. We focus
on the role of applied pressure difference ΔP as one of the
key variables motivated by the experimental design in [15]
and the wall shear stress τw, which has been shown in past
studies to play an important role in erosion [17–19]. Here,
the shear stress at the wall τw refers to the shear stress
experienced by colloidal particles deposited on the walls of
the packing. We follow the approach of [19] to capture the
role of the shear stress threshold τ, a material parameter that
describes the threshold shear stress at the wall above which
fluid flow erodes the deposited particles from the walls.
Table S1 in the Supplemental Material [20] contains
representative parameter values. Throughout the text, we

use a hat notation, e.g., ΔP̂, to denote the corresponding
variables, e.g., ΔP, that are normalized by a set value
relevant to the experimental system. Table S2 in the
Supplemental Material [20] contains additional details.
Our specific system of interest is motivated by recent

experiments from [15], in which a constant pressure
difference ΔP applied to a packing of disordered glass
beads of length L drives a fluid flow containing a
suspension of colloidal particles. These experiments show
that at larger pressure differences, the profile of particles
deposited on the solid matrix extends uniformly along the
length of the packing, while at lower pressures, the particles
deposit locally at the inlet where they are injected into the
system. Here, we develop a mathematical model to explain
how the pressure difference influences the deposition
profile.
Past studies of simple mass-aggregation models [14,21]

motivate us to explore the phase space of shear stress
threshold τ̂ and pressure difference ΔP̂. In particular,
Majumdar et al. [21] consider minimal systems and lattice
models in which discrete masses diffuse at a constant unit
rate, which normalizes the overall timescale. Multiple
masses may aggregate at lattice sites after diffusion, and
units of masses erode (chip away) from blocks at a constant
chipping rate w. Physically, chipping corresponds to single-
particle dissociation in processes such as polymerization
and competes with coalescence. In this simplest case, they
work with two independent variables, the chipping rate w
and mass density ρ, that remain constant and determine the
behavior of the system at steady state. They explore the
phase space consisting of the mass density ρ and chipping

PHYSICAL REVIEW LETTERS 130, 128204 (2023)

0031-9007=23=130(12)=128204(6) 128204-1 © 2023 American Physical Society

https://orcid.org/0000-0003-2400-1561
https://orcid.org/0000-0003-0383-5217
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.128204&domain=pdf&date_stamp=2023-03-24
https://doi.org/10.1103/PhysRevLett.130.128204
https://doi.org/10.1103/PhysRevLett.130.128204
https://doi.org/10.1103/PhysRevLett.130.128204
https://doi.org/10.1103/PhysRevLett.130.128204


rate w and show that these finite systems exhibit two
distinct phases at steady state, only one of which involves
an infinite aggregate. One important difference between the
simple mass-aggregation model and our study is the fixed
density or constant total mass with periodic boundary
conditions in contrast to our model where there is a flux
of particles into and out of the system.
We formulate the fluid flow through the packings by

applying the hydraulic analogy to the network of channels
extracted from the bead packing images. Using our network
model and deposition and erosion laws, we demonstrate a
similar transition in the normalized shear stress threshold τ̂
and pressure ΔP̂ phase space. Motivated by these simple
models of aggregation and fragmentation explored in
previous studies [21,22], we explore the model phase
space spanned by two dimensionless parameters, and
identify a transition between extended and localized dep-
osition regimes in terms of the key parameters of pressure
difference and shear stress threshold [23].
Methods.—We use a graph- or network-based approach

[24,25] to model the porous network created by the beads
as shown in Fig. 1(a). The idea of modeling a porous
system as a network has been studied previously [26–28].
For instance, past studies have demonstrated the effective-
ness of a network-based approach by highlighting the role
of disorder on the flow distribution in porous media [29].
We use images of two-dimensional (2D) slices of the three-
dimensional (3D) packing. We then generate the model
network based on these images. Because of the expected
differences between the flow in two and three dimensions,

we do not expect to quantitatively recover all aspects of the
experiments. In such network models, each pore or channel
is typically represented by an edge in a network represent-
ing the entire porous system [see Fig. 1(a)]. Each edge may
be weighted in terms of its conductance and the nodes of
the network represent junctions between the edges.
Assuming we have an incompressible fluid, the inflow
and outflow of particles and fluid must be equal to respect
mass conservation. In our system of interest, boundary
junctions at the inlet and outlet are subject to two pressures
held constant for the duration of the experiment. To solve
for the resulting channel flow rates, as shown in Figs. 1(b)
and 1(c), we apply Kirchhoff’s circuit laws. For each
channel, we estimate the channel length l and diameter
d from the image of the network to calculate the channel
conductance g, which is defined as the proportionality
constant between the volumetric flow rate through a given
channel and the pressure difference across the channel
given by the Hagen-Poiseuille law [30]:

g ¼ πd4

128ηl
; ð1Þ

where η is the dynamic viscosity. The resolution of the
image in Fig. 1 tends to be lower along the boundaries and
our image processing does not accurately identify a
significant portion of the channels. We use the largest
connected component of the model network, which is in the
interior of the packing. For this reason we neglect the upper
and lower boundaries. More details regarding channel flow
rate calculations can be found in the Supplemental Material
[20]. The total flow rate is of order 10−10 m3=s once we
account for the depth of the three-dimensional system.
To capture the stochastic effects, we use agent-based

modeling to model the particles as they deposit and erode
within the network. This distinguishes our study from a
closely related previous model of erosion in networks in
which differential equations are used to predict how erosion
changes the width of the channels in the network [28].
Another difference is our assumption that the glass beads
that form the network remain fixed over the course of the
simulation. Consequently, while the deposited particles
may erode in our simulation, the channels themselves do
not erode. Because initially the channel does not contain
any deposited particles, and since erosion only occurs
through removal of particles, the channel width cannot
grow beyond its initial value.
Particles enter the system from the inlet at constant time

intervals. This is a discrete approximation to the experi-
ments, in which the particles are injected continuously at a
constant volume fraction. This is also different from the
conserved-mass aggregation models of [21] where the
density is constant. As particles deposit in the network
during the simulations, they cause a decrease in the width
of the channels, which may eventually lead to topological

FIG. 1. We use a network approach to model the bead packing
here shown in the absence of particles. (a) We skeletonize the
image of the packing, and then generate a network. The edges of
the network represent the channels through which fluid may flow
in the packing and the nodes represent the junctions where these
channels meet. (b) We obtain the flow rates in the channels by
applying Kirchhoff’s laws [30]. (c) Zoomed-out view showing
the network as a whole. The color in (b) and (c) shows the
magnitude of the channel flow rates in SI units (m3=s). (a) and (b)
have the same scale bar. The gray background shows the
experimental micrograph of the beads.
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changes when the number of deposited particles surpasses
the channel capacity, i.e., clogging. We assume that each
time a particle is deposited (eroded), it causes a uniform
reduction (increase) in the channel width. This assumption
is motivated by the separation of length scales in the
experiments, in which the glass bead diameter is approxi-
mately 40 μm so that the particle-to-bead size ratio is
approximately 0.03.
We follow the suggested model of [19] in defining the

deposition rate λd and erosion rate λe of particles using
shear stress thresholds: the deposition threshold τd and
erosion threshold τe, and shear stress at the channel wall τw.
Since we are interested in cases in which both deposition
and erosion occur, to reduce the number of independent
parameters, here, we assume that the wall shear stress
thresholds for deposition and erosion are equal, i.e.,
τd ¼ τe ¼ τ, so that the deposition rate and erosion rate
equations are

λdðτÞ ¼
�
κdðτ − τwÞ; if τw < τ

0; otherwise;
ð2Þ

and

λeðτÞ ¼
�
κeðτw − τÞ; if τw > τ

0; otherwise:
ð3Þ

Here, κd and κe are deposition and erosion coefficients
that depend on solid properties, respectively [19]. We note
that τw depends on the imposed fluid flow conditions,
whereas τd and τe reflect the material properties of the
deposited particles independent of flow. In particular, a
larger τ requires a larger wall shear stress for particle
erosion. We run the simulation for multiple values of ΔP̂
and τ̂, keeping all other parameters, including the length of
the medium L̂, constant.
Results.—In both experiments and simulations, the

cumulative distribution function FðxÞ of deposited parti-
cle positions varies significantly between the localized
and extended deposition regimes. We approximate this
function as

FðxÞ ≈ NðX ≤ xÞ=N; ð4Þ

where NðX ≤ xÞ is the number of deposited particles at
position less than or equal to x, and N is the total number of
deposited particles. The position along the direction of the
flow x is normalized by the full length of the medium. As
shown in Fig. 2, when the deposition is localized, FðxÞ
attains a value near 1 for x < 0.5, showing that most of the
deposited particles are close to the inlet. In contrast, in the
extended deposition case, FðxÞ has a more linear form with
FðxÞ ≈ 0.5 when x ¼ 0.5. More information regarding the
normalization constants is included in Table S2 in the
Supplemental Material [20].

Our simulations reveal that for each wall shear stress
threshold τ̂, there exists a critical pressure ΔP̂c that
separates the localized and extended regimes (Fig. 3).
For a specific value of τ̂, choosing ΔP̂ larger (smaller)
than the critical value leads to extended (localized) dep-
osition. To find the critical pressure ΔP̂c for a given τ̂, we
vary ΔP̂ in the simulation while keeping all other para-
meters constant. As we decrease ΔP̂, the percentage of the
deposited particles in the first half of the system increases.
We mark ΔP̂c as the smallest ΔP̂ when the deposition is
localized. Figure 4 visualizes ΔP̂c for various values of τ̂
and how the two regimes of localized and extended
deposition are separated in the normalized shear stress
threshold and pressure phase space. This behavior is
similar to the phase transitions observed in simple mass-
aggregation models on lattice sites, with shear stress and
pressure appearing on the corresponding axes of the phase
diagram as the chipping rate and density in the chipping
and aggregation model [21,31]. The solid curve in Fig. 4 is
the best power law fit motivated by the power law relation
between the model parameters in [21]. In particular, we fit
to a function of the form axb þ c.
Majumdar et al. use the steady-state mass distribution

to study the behavior and dynamical phase transition of
their model, in which the distribution transitions from
an exponential to a power law with an aggregate [21].
Our numerical investigation of the mass distribution has
revealed signs of a similar behavior when transitioning
between the extended and localized phases. However, an
accurate classification of the transition seen in our model
requires a more rigorous study of the critical point.

FIG. 2. The cumulative probability distribution function FðxÞ
of positions of particles deposited along the flow direction for the
localized and the extended case obtained by simulation and
experiment show a similar qualitative behavior. Darker colors
indicate later times. The position along the direction of the flow x
is normalized by the total length of the medium. The labels
indicate the normalized pressure gradient.
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Identifying the transition point in complex nonequilibrium
systems such as ours where a free energy description of the
system does not exist is a difficult task, and as a first step,
one may simplify some of the complexities of the system to
map it to other solvable models.
In the experiments, one of the tunable parameters isΔP̂.

We further assume that τ̂ is an independent parameter that
depends on fluid, particle, and pore network properties.
Given a system with a fixed τ̂, we expect localized
deposition at lower ΔP̂, and extended deposition at higher
ΔP̂ for the same network as seen in experiments [15] and
simulations. Figure 3 supports this reasoning. For par-
ticles with a given shear stress threshold τ̂, as we increase

ΔP̂, a smaller percentage of deposition occurs near the
inlet of the medium, consistent with the experimental
findings. In the figure, the red borders indicate localized
deposition, as defined by comparison to a representative
experiment, and the green borders indicate extended
deposition. More details on categorizing localized and
extended deposition are found in the Supplemental
Material [20]. In the Supplemental Material, we also
demonstrate that this transition occurs over a range of
sizes. The hat notation used here denotes normalization by
a set value. The programming scripts used in generating
the simulations discussed in this section are accessible on
GitHub [32].
Discussion.—Capturing the dynamics of deposition in

porous media and microfluidic systems has wide implica-
tions in filtration studies. Understanding what leads to
localized deposition helps in improving filter efficiency
[26]. Experiments such as [15] provide more insight into
the influence of global system hydrodynamics on uniform-
ity of deposition profiles. Our theoretical model success-
fully captures the behavior observed in the experiments in
[15]. Our network-based approach and model of shear-
based deposition and erosion reveal a transition from the
localized to extended regime in the phase space of shear
stress threshold and pressure in colloidal transport within
packings of beads. Given a system of beads, there exists a
critical pressure above which the deposition profile
becomes increasingly more uniform (see Fig. 4). This
transition from the localized to extended regime is similar
to what has been observed in previous studies of simple
mass-aggregation models of [21]. The observation in
similarities between these models of aggregation and our
current model leads us to believe such analogies may be
present in other systems, as well, where the key variables
may be different. Future applications to other systems
including filtration may examine and identify what varia-
bles control the phase transition in the system.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3 

Δ
P

 

0.2632 0.5263 0.7895 1.0526 1.3158 1.5789

FIG. 3. The final frames of the simulation over a range of values of shear stress threshold τ̂ and applied pressure ΔP̂ show a clear
separation between the localized and extended deposition regimes similar to experimental observations in [15]. The dashed line serves to
guide the eye.

FIG. 4. In the parameter space of normalized pressure ΔP̂ and
shear stress threshold τ̂, a boundary separates the two regimes of
localized and extended deposition, reminiscent of the phases in
[21]. The solid circles show the critical values of pressure Pc at
which the transition to the localized phase occurs in simulations.
The solid line corresponds to the best fit ΔP̂ ¼ 1.04τ̂0.71 − 0.04.
The hat notation used here denotes normalization by the
maximum value.
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Our model may be thought of as a two-dimensional
inhomogeneous asymmetric expansion of the simple mass-
aggregation model in [21]. Uncovering the limitations to
this analogy requires a careful analysis. One important
distinction between the two models concerns the boundary
conditions. In the simple mass-aggregation model, the total
mass is constant, whereas in our model, there is a regular
influx of particles into the system and particles may exit at
the outlet boundary. Some other relevant models that allow
an influx of particles include the aggregation-chipping
model with open boundary conditions [33] and totally
asymmetric simple exclusion (or inclusion) processes on
networks [34,35]. In our case, the direction of flow makes
the model asymmetric, and although the simple mass-
aggregation model also shows a phase transition in two
dimensions, it belongs to a different universality class
[31,36]. Moreover, Rajesh et al. have shown that subtle
changes such as making the deposition rate mass dependent
lead to different models with no phase transitions [37]. In
our case, we assume identical particles with the same laws
for deposition and erosion that do not explicitly depend on
mass of individual particles; however, the flow, deposition,
and erosion rates may change with time and differ for each
channel. These differences lead to spatial bias and signs of
channelization [19,28,38] where particles frequent a few
paths rather than all paths in the system. Studies suggest in
real-world applications of the model, the rate of erosion and
shear threshold for erosion may depend on particle-particle
interactions and spatial distribution of particles [38], similar
to a mass-dependent law. Past studies considering the role
of particle interactions in deposition report that strong
particle interactions lead to a decrease in the transient flow
rate [8]. We hypothesize that this decrease would lead to a
lower effective local shear stress at the channel walls and
hence a more localized deposition profile. Since particles
act as agents in the model and simulations, adding
interactions would be a possible expansion of the model
in the future.
We note that although the model is successful in

capturing the essential behavior of the system, some details
regarding the clogging mechanism are lost due to coarse
graining. This is most apparent in Fig. 2 in which the
deposition appears to become more localized over time in
experiments in contrast to simulations. It would be inter-
esting to explore what leads to this difference in experiment
and simulation observations by expanding the model to
three dimensions. Additionally, one may expand (2) and (3)
to consider an overlap region such that τe < τd where for
some values of wall shear stress, both deposition and
erosion occur, or a gap region τd < τe where for some
values of wall shear stress, neither deposition nor erosion
occur similar to the generalizations in [19]. References
[39–46] appear in the Supplemental Material.
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