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Many active particles, such as swimming micro-organisms or motor proteins, do work on their
environment by going though a periodic sequence of shapes. Interactions between particles can lead to
synchronization of their duty cycles. Here, we study the collective dynamics of a suspension of active
particles coupled through hydrodynamics. We find that at high enough density the system transitions to a
state of collective motion by a mechanism that is distinct from other instabilities in active matter systems.
Second, we demonstrate that the emergent nonequilibrium states feature stationary chimera patterns in
which synchronized and phase-isotropic regions coexist. Third, we show that in confinement, oscillatory
flows and robust unidirectional pumping states exist, and can be selected by choice of alignment boundary
conditions. These results point toward a new route to collective motion and pattern formation and could
guide the design of new active materials.
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Introduction.—Many microbes, motor-laden cytoskele-
tal assemblies, and many of their nonliving analogs do
work on their surroundings by undergoing a mechano-
chemical duty cycle [1,2]. For instance, swimming algae
move by cyclical deformations of their flagella and the
dipole strength associated with their beat changes sign over
the flagellar duty cycle [3]. On timescales longer than the
duty cycle, this often results in net cycle-averaged dipolar
stresses, which if strong enough, drive instabilities resulting
in local ordering and collective motion [4,5]. Here, we
concern ourselves with suspensions of immotile active
particles whose cycle-averaged force dipole is zero. For
these, the above-mentioned route towards self-organization
is precluded [6]. However, an alternate route towards
collective motion, based on phase synchronization, has been
predicted [7–10]. In this Letter, we confirm that suspensions
of active particles can indeed spontaneously form collec-
tively moving states by synchronizing their phases, and we
characterize the properties of such previously unknown
synchronized states. We find that the emergent states are
chimeras in which phase ordered and disordered regions
coexist. In confinement, synchronization-based self-
organization can generate steady unidirectional flows, where
active particles self-organize into an active pump or collec-
tive oscillations. The transition between these two behaviors
is controlled by boundary conditions. Our work reveals and
characterizes a previously unconfirmed mode of collective
motion for microbial, cytoskeletal, and engineered immotile
active particle suspensions.
Most active matter theories are formulated in terms of

cycle averaged stresses [4]. However, versions which quan-
tify the progression along an internal duty cycle of an active

particle by a phase φ ∈ ½0; 2πÞ, that modulates the active
stress, also exist [7–10]. Intriguingly, linear stability analysis
of these theories had suggested that active particles could
spontaneously synchronize their phases and form patterned
states. By analogy to anothermuch-studied example of phase
patterning—the formation of metachronal waves in ciliary
arrays [11–17], where ciliary coordination results in large
scale fluid flows, it was speculated [7–9] that the phase-
patterned states emerging in synchronizing active particles
could also drive fluid flows. Prior to this Letter, this had
remained speculation, since it was unclear whether results
from the ciliary system, in which anchored active elements
generate force monopoles on the fluid, would translate to
active suspensions, in which suspended active elements
generate force dipoles. We resolve this issue by numerically
studying the nonequilibrium dynamics of synchronizing
active fluids [7]. We find and characterize the flows and
patterns in phase-synchronizing active suspensions and show
that they emerge via a mechanism that is distinct from the
classic instabilities known fromphase-isotropic activematter
[2,4,18]. We show how to control the emergent states via
boundary conditions, and in the Supplemental Material [19]
we suggest a toymodel of an active oscillator that could guide
the design of new active matter systems.
We first delineate a theory for active phase synchronizing

suspensions, which extends [7] by including orientational
dynamics. Consider a 2D suspension of apolar active
particles immersed in a Stokesian fluid. The probability
density of particles with phase φ at position x is given by
ψðx;φ; tÞ and obeys the Smoluchowski equation

∂tψ þ vβ∂βψ þ ∂φð _φψÞ −D∂
2
βψ ¼ 0; ð1Þ
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where D is the translational diffusion, vðxÞ ¼ ðu; vÞ is the
fluid velocity, and Einstein summation is implied. Each
particle is characterized by an additional unit vector n that
describes particle orientation. Here, we only treat sharply
aligned 2D nematic states where the nematic tensor is
Qαβ ¼ nαnβ − δαβ=2 and particles at location x point along
the local director nðx; tÞ ¼ ½cos θðx; tÞ; sin θðx; tÞ�.
Following [7] we take the phase-velocity _φ as

_φ ¼ Ω0 þ XðφÞQαβEαβ − dφ∂φ lnψ ; ð2Þ

where Eαβ ¼ ð∂αvβ þ ∂βvαÞ=2 is the rate-of-strain tensor
and the phase velocity of isolated particles in a quiescent
fluid is Ω0. Here, we have conceptualized the particles as
apolar dumbbells that generate stresses by surface defor-
mations. Fluid flows, which can be generated externally or
by other particles, will induce additional stresses that can
alter this dynamics. The coupling function XðφÞ encodes
this. Since the same applied strain rate Eαβ that helps a
particle’s extension in its extensile phase will hinder its
contraction during its contractile phase, XðφÞ is phase
dependent; see Supplemental Material [19,20]. The last
term in Eq. (2) accounts for phase diffusion and dφ is the
phase diffusivity.
The surrounding fluid obeys

η∂2βvα − ∂αqþ ∂βðσactαβ þ σelαβÞ ¼ 0; ð3Þ

where η is the shear viscosity, and the pressure q enforces
incompressibility ∂βvβ ¼ 0. Further, σactαβ is the active stress
that particles exert on the fluid. The elastic stress σelαβ is
generated by alignment interactions between particles. The
active stress is given by

σactαβ ðx; tÞ ¼ Qαβ

Z
2π

0

ψðx;φ; tÞsðφÞ _φ dφ; ð4Þ

where sðφÞ is a 2π-periodic function that describes the
details of the force production mechanism. The surface
stress is proportional to the phase-speed _φ, since the active
stresses are generated through cyclic surface deformation of
the particles. We choose sðφÞ ¼ S cosφ and thus particles
with a constant phase velocity generate no cycle-averaged
active stress.
Particle alignment produces an elastic stress σelαβðx; tÞ ¼

nαhβ on the fluid, where the molecular alignment field
h ¼ −δfel=δn, and fel is the alignment free-energy density
[21]. The evolution of the director field for rodlike bodies
[22] obeys

Dnα
Dt

¼ 1

γ
hα − ð∂αvβÞnβ; ð5Þ

where D=Dt ¼ ∂t þ vβ∂β is the material derivative, γ is the
rotational viscosity, and ∂αvβ is the velocity gradient tensor.

Using the single constant Frank elasticity approximation
we write fel ¼ Kð∂αnβÞ2=2þ hkðnβnβ − 1Þ=2, where hk is
the Lagrange multiplier that guarantees jnj ¼ 1 [21,23].
The interaction of elasticity with activity introduces the
Freedericksz length lf ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K=SΩ0

p
, where L is the

system size [24]. In the limit lf ≫ L, the director field
does not deform, and the molecular alignment field hα ¼
γnβ∂αvβ acts as the Lagrange multiplier that enforces
Dn=Dt ¼ 0.
To describe synchronization, we introduce the order-

parameter fields Znðx; tÞ ¼
R
2π
0 einφψðx;φ; tÞdφwhere n ∈

Z i.e. the Fourier coefficients of the distribution function in
φ [7]. By construction Z0 ≡ cðx; tÞ is the concentration
field and Z1ðx; tÞ is the complex Kuramoto order field.
Synchronized states correspond to jZ1j ≈ 1, while jZ1j ≈ 0
is associated with phase disorder. The active stress in
Eq. (4) can be written as σactαβ ¼ MðxÞQαβ (see
Supplemental Material [19]) where

MðxÞ¼ ðΩ0þ imdφÞsmZ−m

2π
þEμνQμνsmXnZ−ðnþmÞ

4π2
: ð6Þ

Here sm, Xm are the Fourier coefficients of sðφÞ and XðφÞ,
respectively. Using Eq. (1) we obtain

DZn

Dt
−D∂

2
βZnþn2dφZn ¼ in

�
Ω0ZnþEαβQαβ

XmZn−m

2π

�
:

ð7Þ

Equations (7) couple all moments Zn; however, if dφ > 0

the higher-order moments decay rapidly. Here, we evolve
Z1;2;3 and approximate Z4 ≈ Z2

2=c. Retaining higher order
moments did not alter the results obtained through this
closure and limited simulations of the full kinetic model
where also consistent. Hence, here we explore the model by
evolving Eqs. (3) and (5)–(7). As outlined in [7], the model
exhibits hydrodynamic instabilities when the coupling
function XðφÞ is phase-shifted from sðφÞ. For simplicity
we use XðφÞ ¼ A cosðϕ − ϕ̄Þ, where ϕ̄ is the phase shift.
Including higher harmonics in XðφÞ, sðφÞ did not alter the
qualitative behavior (see Supplemental Material [19]).
Linear stability.—To delineate the role of synchroniza-

tion, we first seek understanding of the simpler case, where
_n ¼ 0, which is relevant if lf ≫ L. For dφ > 0 the phase-
disordered state, with Z0 ¼ c0, v ¼ 0, and Zn ¼ 0, is the
sole fixed point of this problem. For periodic boundary
conditions, consistent with [7], the phase-disordered state
has a long wavelength Hopf bifurcation (see Supplemental
Material [19]). The most unstable wave vector is set by the
direction of largest shear. Because of incompressibility,
this is at an angle of 45° above or below the vector n; see
Fig. 1(a). We next analyze the stability inside a channel
of height H with no slip applied at y ¼ �H=2. We set
dφ∂yZnjy¼�H=2 ¼ 0 that enforces impermeable boundaries.
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With the Ansatz fv; Z1g → εfvðyÞ; Z1ðyÞg expðikx þ σtÞ,
where ε ≪ 1, the growth rate σ can be computed numeri-
cally; see Fig. 1(d). Like in the periodic domain, the phase-
disordered state is linearly unstable. Here, the wave number
of the fastest growth kc is set by the channel height H
and the particles’ orientation. We next study the dynamics
of the system beyond the linear regime using spectral
simulations [25].
Nonlinear dynamics.—Figures 1(c)–1(f) show the spatial

structure of the phase-order parameter and the associated
fluid flows for fixed n ¼ êx inside a periodic box and a
channel, respectively. In periodic domains, the Kuramoto
order parameter jZ1jðxÞ and consequently the velocity vðxÞ
settle into a striped travelling wave (see movie S1 in the
Supplemental Material [19]). The patterns are at the scale of
the computational box, consistent with having emerged
from a long-wavelength instability [Figs. 1(c) and 1(d)].
Further, again consistent with the stability analysis, the

modulated stripes are orthogonal to the wave vector of
maximum growth (45°) and the wave speed is parallel to it.
In channels, with n ¼ êx, Eq. (2) at the boundaries

reduces to _φ ¼ Ω0 − dφ∂φ lnψ . This predicts that jZ1j ≈ 0

near the wall, which is indeed seen from the simulations on
Fig. 1(e). Consequently, the instability produces a traveling
wave along êx with a modulated pattern in jZ1j, which has
a width of λc ≈ 2π=kc consistent with linear stability.
Figure 1(e) further shows that the emergent state is a chimera
state [26] with the coexistence of the phase-disordered
(jZ1j ≈ 0) and phase-synchronized (jZ1j ≃ 1) regions. The
associated fluid flows show the formation of vortical
structures between them (see Fig. 1(f) and movie S2 in
the Supplemental Material [19]). Our results demonstrate
that even when the system size is below the Freedericksz
length, phase synchronization can provide a novel route
toward instabilities. The associated self-organized flows seen
in Fig. 1 are distinct from those seen in classical orientation
instabilities [2,4,18,24,27], which all depend on nonuniform
alignment throughout the domain.
We next characterize emergent states in the channel. For

this we probe the zero wave number limit associated with
transport. We find from Eq. (3) that hui ¼ 0 when n ¼ êx
or êy, where h·i denotes the spatial average of any field
variable. As we increase θ starting from θ ¼ 0, the system
instead settles into a pumping state. For these, jZ1j evolves
into a travelling wave along the channel length accom-
panied by an emergence of a steady flow along êx. The
associated fluid flow is characterized by tilted vortices and
fluid jets (see movie S3 in the Supplemental Material [19]).
The steady flux hui from the final state increases with

FIG. 1. (a) The real part of the growth rate σ as a function of wave numbers fkk; k⊥g in a periodic box, where kk and k⊥ are wave
vectors parallel and normal to the fixed particle orientation n, respectively. The unstable region is within the red curve. (b) Growth rate in
a channel, computed from the linear stability as a function of the wave number kx for different particle alignments. The dominant wave
number kc for θ ¼ 0 is indicated. A snapshot of the Kuramoto order parameter jZ1ðxÞj (top) and instantaneous streamlines (bottom)
from the emergent travelling wave state is shown for a periodic box (c),(d) and in a channel for θ ¼ 0 (e),(f), and θ ¼ π=4 (g),(h).
Parameters: η ¼ 2, γ ¼ 1, c0 ¼ ω0 ¼ 8, XðφÞ ¼ cosφþ 2 sinφ. Channel height, H ¼ 5π. Illustration of the active particles indicates
their orientation.

FIG. 2. (a) Phase diagram of the two emergent states: sponta-
neous pumping and oscillations. (b) Mean amplitude of the active
stress hMi as a function of θ for varying channel height H. The
asterisk on (a) indicates the state shown in Fig. 3.
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the channel height H and the particle orientation θ; see
Fig. 2(a). By symmetry, either pumping direction is equally
likely, and initial conditions set the final direction.
To better understand the mechanism of the pumping, we

next studyMðxÞ from the final state, which is the amplitude
of the active stress σactαβ ¼ MQαβ. We find that hMðxÞi is
identical for both left and right pumping states with the same
θ and has a nonzero mean throughout the pumping regime;
see Fig. 2(b). This means that the system has settled into a
state of mean extensile (or contractile) active stress [see
Fig. 2(b)] through phase synchronization even though the
constituent active particles do not have any mean dipole.
The direction of pumping is dictated by the difference of the
values ofMðxÞ at the boundaries. Simply put, the axial force
per unit depth exerted by the active stresses on the walls is

R
dx½ðMQxyÞjy¼H=2 − ðMQxyÞjy¼−H=2�. This is nonzero if

the phase ordering is different for the particles on opposite
walls and θ ≠ 0, π=2. In this case, the particles on average act
more pusher-like in one wall and puller-like near the other.
This mechanism is further illustrated by the phase kymo-
graphs shown in Fig. 3(b), wherewe plot the phase χðx; tÞ ¼
arg½Z1ðx; tÞ� at a given x as a function of time. Figure 3(b)
indicates the existence of metachronal phase waves associ-
atedwith pumping. Thus, our simulations demonstrate (i) the
spontaneous emergence of coherent fluid transport by phase
synchronization, and (ii) the spontaneous emergence of polar
pumping states from a globally aligned suspension.
Note that this pumping state loses stability as θ

approaches π=4, giving rise to oscillatory states instead.
Numerical evidence in Fig. 2(b) suggests that the loss of
stability of the pumping states is associated with the
suspension transitioning from being extensile to contractile
with hMi ≈ 0. Figures 1(g) and 1(h) show an oscillatory
state for θ ¼ π=4 (see movie S3 in the Supplemental
Material [19]). The snapshots highlight that the phase
modulations span the entire channel width, consistent with
the linear stability; see Fig. 1(b). The Kuramoto order
parameter and the associated velocity field organize into
travelling waves moving from wall to wall and resulting in
the formation of fluid jets along the channel length whose
direction oscillates periodically over time. Importantly, since
these waves do not break translational symmetry in the êx
direction when averaged over a period, they generate no
mean flow. As can be seen from Fig. 2(a), such system-wide
oscillatory states exist around a range of orientation around
θ ¼ π=4. At high enough θ, the pumping state reemerges.

FIG. 3. (a) Variation of MðxÞ in the channel demonstrates that
through synchronization the suspension behaves as an extensile
(or contractile) fluid. Also shown is the direction of pumping
results from the spatial distribution of the stress. (b) Variation of
the phase along the channel width as a function of time illustrates
the existence of metachronal phase waves. Parameters: H ¼ 5π,
L ¼ 3H, θ ¼ π=8, γ ¼ 1, η ¼ 2, ω0 ¼ 8, dφ ¼ 1, D ¼ 1,
XðφÞ ¼ cosφþ 2 sinφ.

FIG. 4. Snapshots of various field variables for two different boundary conditions of particles. (a),(d) The Kuramoto order parameter
from the final state. (b),(e) Associated snapshot of the velocity field and the streamlines highlight the formation of vortical structures and
fluid jets. (c),(f) θðxÞ showcases the variation in the orientation and the associated director field. Prameters: (top row) H ¼ 4π, L ¼ 8π,
θjy¼�H=2 ¼ π=5 and (bottom row) H ¼ 6π, L ¼ 12π, ∂yθjy¼�H=2 ¼ 0.
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We next asked how the system self-organizes if the
director n evolves according to Eq. (5) ( _n ≠ 0). In Fig. 4 we
show simulation results in a channel for two boundary
conditions: (i) anchoring with θjy¼�H=2 ¼ θ0 and (ii) no
anchoring with ∂yθjy¼�H=2 ¼ 0. When the particles are
anchored at the boundary, we find that for small θ0 the
system settles down to a state of coherent mean transport.
Similar to the case of _n ¼ 0, we find that the suspension
transitions to oscillatory flows upon increasing θ0. In
absence of anchoring, we observe that for all the explored
channel heights, the active fluid always settles into a
travelling wave state or a periodic orbit (see movie S5 in
the Supplemental Material [19]). This emergent state is
characterized by coherent fluid pumping and propagating
metachronal phase waves. Figure 4(f) shows the director
field that develops in the channel. Both the orientations and
the phases of the particles, on average, remain mirror
symmetric around y ¼ 0. The average particle orientations
on either side of the channel centerline are accompanied by
left- and right-going metachronal phase waves that aid fluid
pumping resulting in coherent transport. Importantly, these
results demonstrate that boundary conditions control the
emergent states.
We finally probe whether the emergent fluid flows in the

_n ≠ 0 system result from the dynamics of particle orienta-
tion or synchronization. For this, we study the dynamics
of a _n ≠ 0 nematic fluid driven by an active stress
σactαβ ¼ ζ0 sinð2πfctÞnαnβ. Here, fc is the frequency of
the forcing and is obtained from the power spectral density
of the steady-state active shear stress σactxy of the active fluid
and ζ0 is chosen to be the maximum of the measured σactxy ;
see Supplemental Material [19]. This active forcing mimics
the stresses generated by oscillating dipoles that are free to
align but unable to synchronize. We find that this stress
does not drive any alignment instability and the fluid
velocity decays after a short transient demonstrating that
synchronization drives the flows shown in Fig. 4.
To conclude, we have characterized a new route towards

self-organized flows in active suspensions. Rather than
stemming from the cycle averaged stress dipoles, which
active particles exert on a timescale much larger than their
duty cycles, this second route stems from synchronization
between particles, and exists even if the cycle averaged
stress generated by isolated constituent particles is zero. The
emergent travelling waves are chimeras [28] with regions of
high and low synchrony. In confinement, collective states
that drive coherent large scale transport of fluid and collective
states that drive collective oscillations exist. The type of
emergent state can be chosen by controlling boundary
conditions. In the Supplemental Material [19], we give a
description of how such a system might be constructed.
Coupled mechano-chemical oscillators are involved in

important processes like somitogenesis [29] and have also
been invoked to explain bacterial pattern formation [30].
However, in these examples, the coupling between

oscillators happen through chemical degrees of freedom
[31]. The mechanism we uncovered here is based on
hydrodynamic interactions and provides a novel route to
phase patterning in mechanochemical oscillators that is
clearly distinct from [10,29,30]. It is also distinct from
other mechanisms that have been invoked to explain
biological patterns such as the classical Turing instability
[32–34] and its generalizations to phase-insensitive active
matter [33,34]. Overall, synchronization provides a new
route towards emergent dynamics in active materials. This
finding will inform our understanding of collectively
moving microbes and motorized cytoskeletal structures,
and potentially facilitate the engineering of active materials
[31] that can act as micropumps.

S. F has been funded by the Vienna Science and
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