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Active matter is naturally out of equilibrium which results in the emergence of diverse dynamic steady
states, including the omnipresent chaotic state known as the active turbulence. However, much less is
known how active systems dynamically depart out of these configurations, such as get excited or damped to a
different dynamic steady state. In this Letter, we demonstrate the coarsening and refinement dynamics of
topological defect lines in three-dimensional active nematic turbulence. Specifically, using theory and
numerical modeling, we are able to predict the evolution of the active defect density away from the steady state
due to time-dependent activity or viscoelastic material properties, establishing a single length scale
phenomenological description of defect line coarsening and refinement in a three-dimensional active nematic.
The approach is first applied to growth dynamics of a single active defect loop, and then to a full three-
dimensional active defect network. More generally, this Letter provides insight into the general coarsening
phenomena between dynamical regimes in 3D activematter, with a possible analogy in other physical systems.
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Active matter systems are distinctly nonequilibrium in
nature, but regularly form diverse dynamic steady states
[1,2]. Much like passive systems that evolve over time to
reach equilibrium upon a stimulus, active systems can
evolve into new or different dynamic steady states and
coarsening is observed as the major transitional mechanism
[3–7]. Density correlation functions during coarsening
separate active suspensions into classes [8] with structure
functions commonly deviating from the Porod’s law that is
generally expected for systems relaxing toward equilibrium
[8]. In active binary fluids, the initial length scale dynamics
during coarsening is reported to follow the same time
dependence as for passive fluids [9,10], while at larger
scales activity takes over and eventually a dynamic steady
state is established [9]. Coarsening was observed also in
two-dimensional dry active nematics and is based on
annihilation of half-integer defect pairs [11].
Active nematics are a class of active materials, which

exhibit apolar orientational order along the director n, with
material examples including microtubule mixtures and
bacterial suspensions [2,12–15]. In three dimensions, bulk
active nematics form the dynamic steady state called active
turbulence, which at the structural level is a dynamic
rewiring network of defect lines and loops [16–18], driven
by the anisotropic active stress [19,20]. Recently, it was

shown that advective terms are suppressed in active fluids
[21,22] and in the steady state the energy injection is
exactly matched by the viscous dissipation at each scale
[22]. Defect line segments are driven by the self-propulsion
velocity depending on their local director profile, leading
the defect loops to grow, shrink, and buckle in time [23,24].
Beyond the active matter, the phase ordering kinetics

through coarsening exhibits universal behavior across a
range of physical systems, as underlain with the fundamen-
tal role of the topological defects within the order parameter
field [25]. Universal rules for phase kinetics are typically
obtained through energetic arguments [25], which opens a
question ofwhat novel insights activematter energetics as an
emergent field can provide. Notably, the universal of defects
in the shape of lines and loops—first described byKibble for
cosmic strings [26] and later predicted by Zurek for super-
fluid helium [27]—was experimentally observed in (pas-
sive, i.e., not active) nematic liquid crystals [28].
In this Letter, we show transitional dynamics from initial

configurations toward a dynamic steady state and also
between dynamic steady states of 3D active nematic
turbulence, as distinctly determined by the coarsening
and refinement of a network of topological defect lines
and loops. We construct an analytical model of the collapse
or growth of a single defect loop and then generalize it to the
coarsening and refinement of the full 3D defect network.
The approach provides analytic insight into the effective
phase ordering kinetics toward dynamic steady states, as
triggered by changes in the main material parameters, such
as activity or even nematic elasticity and viscosity.While the
notion of self-propelled defects is unique for active
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nematics, the demonstrated coarsening and refinement
indicates possible universal behavior applicable to different
physical systems, including cosmic string dynamics.
Active nematics are described by the experimentally

supported [16,29] mesoscopic active nematodynamic for-
mulation [30,31]. The approach is based on the coupled
dynamics of the two main fields—the velocity field v and
the nematic order parameter tensor Q with the director n as
the main eigenvector. The flow field is determined by the
active propulsion due to the active stress that is proportional
toQ [19], and by the viscous coupling to the nematic order,
whereas the dynamics of Q is determined by the interplay
between the dissipative relaxation toward the equilibrium
and coupling to the material flow (Supplemental Material
[32]). We solve this model by using a hybrid lattice
Boltzmann algorithm with the results given in units of mesh
resolution Δx, tensorial elastic constant L, and rotational
viscosity Γ. Such a numerical approach was shown to
reproduce different structural and dynamical features of
multiple experimental two-dimensional [33,34] and three-
dimensional active nematic systems [16,18,23].
Coarsening of a defect network of three-dimensional

active turbulence is demonstrated in Fig. 1, following a
quench from a high defect density regime. The coarsening
dynamics shows gradually decreasing defect density, and
notably includes both shrinkage and expansion of the
length of topological defect loops (Fig. 1). We elucidate
such shrinking and expansion dynamics by first consi-
dering the kinetics of isolated active defect loops that
can be captured as the competition between the (elastic)
line tension and the active propulsion. For an in-plane
zero-topological charge loop of radius r as shown in
Fig. 2(a), the defect line tension can be estimated as

T ¼ ðπK=4Þ lnðr=rminÞ, where K is the single elastic
constant proportional to tensorial elastic constant L (see
Supplemental Material [32]), and rmin is the defect core size
[35,36]. Such a defect line also experiences an effective
drag force due to local rotations of the director field as it
moves through the material and can be estimated as
fdrag ¼ cdragv ¼ ðπ=4Þγ1v lnðr=rminÞ, where cdrag is the
drag coefficient, γ1 the rotational viscosity, and v its
velocity with respect to the flow of the nematic fluid
[35]. The active self-propulsion flow velocity v0 depends
on the director field of different defect loop segments
[23,37] and varies from v0 ≈ 0 for the −1=2 section to v0 ≈
jαjr=4η for the þ1=2 defect loop section. If assuming a
circular loop, all these contributions give a dynamical
equation for the active nematic defect loop radius

_r ¼ v0
2
−

T
cdragr

¼ jαjr
8η

−
K
γ1r

: ð1Þ

Solving Eq. (1) gives the time dependence of loop radius

rðtÞ ¼ rc

�
1þ

�
r20
r2c

− 1

�
et=τloop

�
1=2

; ð2Þ

where τloop ¼ 4η=jαj is the characteristic timescale of
isolated defect loops, r0 is the initial loop radius at
t ¼ 0, and rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið8ηKÞ=ðγ1jαjÞ
p

is the critical radius for
which the active propulsion exactly counterbalances the
loop line tension (i.e., _r ¼ 0). rc is explicitly dependent on
nematic elasticity, activity, and rotational viscosity, which
provides a direct analytic insight into possible control of
active defect loop kinetics; for r > rc the loops expand,
whereas for r < rc the loops shrink. Note that the existence
of a critical radius has analogies with the spontaneous flow
transitions in polar gels [20], but with a notable difference
that in polar gels the transition is symmetry breaking,
whereas for active loops the flow is always generated and
competes with the elasticity-induced shrinking.
The analytical model is compared to the full numerical

simulation, observing excellent agreement (Fig. 2). A loop
with a fixed initial radius is let to dynamically evolve at
different activities and depending on the activity, this leads
to shrinking (Supplemental Material [32], Movie 1) or
expanding (Movie 2) dynamics. A fit of Eq. (2) to the simu-
lation data gives 1=τloop¼0.186Γα and r2c=τloop ¼ 2.78ΓL,
which compares well to values of 1=τloop ¼ 0.182Γα and
r2c=τloop ¼ 2ΓL that are calculated directly from the vis-
coelastic parameters of the simulation. More generally, now
supported also by the numerical simulations, we show that
the nematic elasticity, active propulsion, and the viscous
drag are the main mechanisms of the three-dimensional
active defect kinetics.
The mechanisms of defect line tension, drag force, and

self-propulsion that were used to describe the single active
defects can be generalized to the overall coarsening
dynamics of a full three-dimensional active defect network.

FIG. 1. Coarsening dynamics of active nematic turbulence. (a) A
snapshot of a defect line network (gray) during coarsening process.
Additionally, selected defect line segments are drawn in different
colors at earlier time intervals 50Δx2=ðΓLÞ apart. (b) The director
field rotates for an angle of π around the defect lines: from þ1=2
profiles (red), to twist (green) and −1=2 profiles (blue).
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Our model is based on a single time-dependent length scale
ξ, which represents both typical radius of curvature and
typical separation of defect lines [28,35]. Notice that during
active coarsening, both the average defect-defect separation
and the curvature decrease over time [Figs. 3(a) and 3(b)].
Specifically, ξ is calculated as ρ ¼ 1=ξ2 where ρ is the total
defect length over unit volume. The coarsening dynamics
of the defect networks is now described as the time
evolution of the single length scale ξ based on a balance
between the defect line tension T=ξ and viscous drag
Γð_ξþ bv0Þ, where the phenomenological parameter b
describes the effective self-propulsion velocity of defect
lines. Generalized from a single defect loop [Eq. (1)] to a
defect network, here the line tension straightens and spaces
out the defects in time, which gives the main dynamic
equation of active coarsening

_ξ ¼ a
K
γ1ξ

− b
jαjξ
4η

; ð3Þ

where in analogy to the passive coarsening [38,39], we
use dimensionless parameter a to describe the relative
strength of line tension compared to drag force in a defect

network. Equation (3) can be rewritten in terms of the
defect density

_ρ ¼ bjαj
2η

ρ −
2aK
γ1

ρ2; ð4Þ

and upon integration at constant activity, the coarsening
equation for the active defect density is obtained

ρðtÞ ¼ ρc

�
1þ

�
ρc
ρ0

− 1

�
e−t=τ

�
−1
; ð5Þ

where τ ¼ ð2ηÞ=ðbjαjÞ, ρc ¼ ðbjαjγ1Þ=ð4ηaKÞ, and ρ0 is
the initial density at t ¼ 0. Equation (5) shows how the
defect density evolves from an initial value of ρ0 toward a
dynamic steady state ρc with a well-defined timescale τ.
Numerical modeling of coarsening for a full active

nematodynamic approach is shown in Fig. 3 and
Supplemental Material [32], Movie 3. The simulations
are performed from an initial configuration of a random
director field at each data point and at t ≈ 10Δx2=ðΓLÞ a
dense defect network is formed, which coarsens over time
[Fig. 3(c) and Supplemental Material, Fig. S1]. For high

FIG. 2. Shrinking and expanding dynamics of isolated active nematic defect loop. (a) Depending on activity α, the defect loop either
shrinks or expands in time; the panels show the defect loop as isosurface of degree of order (red), director field (yellow rods), and
velocity field (green arrows). The defect loop has þ1=2 profile at the left side, and −1=2 profile on the right side, which generates an
overall self propulsion velocity and a local active stress on the loop toward the left. (b) Single loop radius as function of time for different
activities. Radius is determined as the loop left-to-right dimension in panel (a). The dashed line is a fit [Eq. (2)] to the numerical data
with fit parameters τloop and activity-independent parameter r2c=τloop, obtaining r2c=τloop ¼ 2.78ΓL. (c) Critical radius rc and initial
radius r0 ¼ 35.3Δx determine shrinkage (r0 < rc) and expansion (r0 > rc) regimes. A linear dependence of 1=τloop (or equally 1=r2c) on
activity is obtained with the slope of 1=τloop ¼ 0.186Γα.

PHYSICAL REVIEW LETTERS 130, 128101 (2023)

128101-3



defect density at short times after quench, we observe that
the coarsening dynamics is independent on activity, which
can be explained by the elastic tension being much larger
than the active self-propulsion in Eq. (4). At later times, the
defect density approaches the steady-state density ρc, which
we find is linearly proportional to activity [Fig. 3(d)], in full
agreement with the analytical model. The rate of approach
toward ρc is governed by the timescale τ, which is inversely
proportional to activity [Fig. 3(e)]. Parameters a and b from
the analytical model can now be determined by a linear fit
in Figs. 3(d) and 3(e), obtaining a ¼ 2.8 and b ¼ 0.10.
Parameter a is of roughly similar magnitude as in passive
(i.e., zero activity) nematics [38], whereas a low value of b
indicates that the defects on average are repelled from each
other with a much lower velocity than v0, which is
characteristic for isolated defect loops in Fig. 2. In
Supplemental Material [32], we show that the coarsening
dynamics is not significantly altered even for simulations
with multiple nematic elastic constants (Fig. S5).
Active refinement is—oppositely to coarsening—

characterized by the proliferation of defects (for example,
induced by an increase of activity) and it occurs in the
regime where active propulsion prevails over the line
tension. Figure 4 and Supplemental Material [32], Movie
4 show the defect density upon active refinement from a full

numerical simulation and in agreement with the theoretical
model [Eq. (4)]. Figure 4 also shows that the rate of the
activity change affects the refinement dynamics, as it has to
be compared to the characteristic time τðtÞ. Fast changes in
activity (red line in Fig. 4) can be described by constant
activity dynamics [Eq. (5)], whereas for other regimes (blue
and green lines in Fig. 4) the full time-dependent activity
αðtÞ has to be considered in Eq. (4). More generally, the
results show that the introduced approach also well covers
the time-dependent changes in the active nematic material
parameters, such as activity, elasticity, and viscosity,
indicating an exciting analytic insight into the kinetics of
active states out of the dynamic equilibrium. Refinement
could also be considered during a transition from an aligned
initial condition to a defect network. We show such an
example in Fig. S4.
Experimentally, the demonstrated active coarsening (or

refinement) could be induced by (meso)phase transitions
into a nematic phase, triggered by a pressure or temperature
quench [28,40], or possibly even by changing the activity
as the nematic material parameters are known to be activity
dependent [41,42]. The transition could be studied also in
view of the Kibble-Zurek mechanism, which is known to
describe structure formation in liquid crystals [43,44], and
could interestingly be additionally coupled to curved
interfaces [45] and topology of the confining space [46].

FIG. 3. Coarsening dynamics of 3D active nematic turbulence. (a) Defect network at short time in the coarsening dynamics. A selected
connected defect segment is colored in red. (b) Defect network at later time in the coarsening dynamics. Defect line segments are further
apart and show smaller curvature compared to (a). (c) Inverse defect density over time for different activities. Dashed lines are fits of
Eq. (5) to the simulation data. Black dashed line represents the activity-independent initial density dynamics. The fluctuations of the
defect density at later times is the effect of the finite simulation volume but with a well determined average. (d) Steady-state defect
density as dependent on activity; linear fit (dashed line) has the slope of 0.0065=L. (e) Linear dependence of the inverse characteristic
time on activity; the linear fit has coefficient of 0.036Γ. Points in (d) and (e) are obtained from fits in (c).
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The demonstrated coarsening and refinement of active
defects also shows interesting implications beyond soft and
active matter. Distinctly, at zero activity, the coarsening
dynamics of nematic defect strings is known to share strong
mathematical similarities with cosmic strings and con-
densed matter systems [26,27], whereas here we show that
activity can contribute new coarsening terms. Namely, in an
active nematic system, the time derivative of the character-
istic length scale ξ [Eq. (3)] equals an elastic term propor-
tional to 1=ξ and an active term proportional to ξ. This
coarsening dynamics shows an interesting analogy with the
velocity-dependent one-scale cosmic string model [47,48],
where (i) the friction term due to particle scattering
proportional to 1=ξ is known to give the Kibble coarsening
scaling ξ ∼ t0.5, and (ii) the term proportional to Hξ, where
H is the Hubble parameter, accounts for the expansion of
the Universe. Both terms in the cosmic string model are
positive and promote the coarsening dynamics, whereas for
active nematics the ξ term is negative (_ξ ∼ −ξ) and as we
demonstrate can slow down the coarsening and leads to a
dynamic steady state with a finite defect density. Such a
term would correspond to coarsening of a string network in
a shrinking universe. More generally, this analogy provides
novel unprecedented parallels between active matter and
cosmology.
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