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3INFN, Sezione di Trieste, via Valerio 2, 34127, Trieste, Italy
4School of Mathematics, University of Bristol, Fry Building, Bristol, BS8 1UG, United Kingdom

(Received 12 December 2021; revised 15 December 2022; accepted 13 February 2023; published 23 March 2023)

We first consider a deterministic gas of N solitons for the focusing nonlinear Schrödinger (FNLS)
equation in the limit N → ∞ with a point spectrum chosen to interpolate a given spectral soliton density
over a bounded domain of the complex spectral plane. We show that when the domain is a disk and the
soliton density is an analytic function, then the corresponding deterministic soliton gas surprisingly yields
the one-soliton solution with the point spectrum the center of the disk. We call this effect soliton shielding.
We show that this behavior is robust and survives also for a stochastic soliton gas: indeed, when the
N-soliton spectrum is chosen as random variables either uniformly distributed on the circle, or chosen
according to the statistics of the eigenvalues of the Ginibre random matrix the phenomenon of soliton
shielding persists in the limit N → ∞. When the domain is an ellipse, the soliton shielding reduces the
spectral data to the soliton density concentrating between the foci of the ellipse. The physical solution is
asymptotically steplike oscillatory, namely, the initial profile is a periodic elliptic function in the negative
x direction while it vanishes exponentially fast in the opposite direction.
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Introduction.—The wave propagation in a variety of
physical systems is well described by dispersive integrable
nonlinear wave equations. Integrability implies the exist-
ence of nonlinear modes that interact elastically and are
called solitons. The inverse scattering, also called nonlinear
Fourier transform, is the tool to analyze how a general
given wave packet can be viewed as a nonlinear super-
position of solitons. Recently several investigations, both
on the mathematical and the physical side, have been
carried out in which a very large number of solitons is
considered. Coherent nonlinear superposition of many
solitons occurs when one tries to optimally correlate the
parameters of many nonlinear modes in order to produce a
“macroscopic” wave profile that behaves more like a single
broad wave packet than a combination of many smaller
objects. This typically occurs in a small dispersion limit or
semiclassical limits [1–3]. Incoherent or random nonlinear
superpositions of solitons are more closely related to the
notion of a soliton gas in an infinite statistical ensemble of
interacting solitons that was first introduced by Zakharov
[4] for the Korteweg de Vries (KdV) equation. Further
generalizations were later derived for KdV (see, e.g., [5])
and for the focusing nonlinear Schrödinger (FNLS) equa-
tion in [6,7]. A connection between statistical properties of
a soliton gas and generalized hydrodynamic has been
recently established in [8–10]. Statistical properties of
solutions of a large set of random solitons have been

numerically investigated in [11–15,6]. Experimental
realizations of behavior of large sets of solitons are
obtained in [16] and [17]. In this Letter, following the
lines of [18,19], we consider a soliton gas that originates
from the limit N → ∞ of the N-soliton solution of the
FNLS equation

iψ t þ
1

2
ψxx þ jψ j2ψ ¼ 0: ð1Þ

We consider both cases in which the N-soliton spectra are
chosen in a deterministic, and random way.
Let us recall the one-soliton solution, given by

ψðx;tÞ¼2bsech½2bðxþ2at−x0Þ�e−2i½axþða2−b2Þtþϕ0
2
�; ð2Þ

where x0 is the initial peak position of the soliton, ϕ0 is the
initial phase, 2b is the modulus of the wave maximal
amplitude and −2a is the soliton velocity. The general
N-soliton solution can be obtained from the Zakharov-
Shabat [20] linear spectral problem, reformulated as a
Riemann-Hilbert problem (RHP) for a 2 × 2 matrix
YNðz; x; tÞwith the following data [21]: the discrete spectrum
S ≔ fz0;…; zN−1; z̄0;…; z̄N−1g, zj ∈ Cþ the upper half
space, and its norming constants fc0;…; cN−1g with
cj ∈ C. Here and below z̄ stands for the complex conjugate
of z.
The matrix YNðz; x; tÞ is analytic for z ∈ CnS and has

simple poles in S with the residue condition
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Resz¼zjY
NðzÞ ¼ lim

z→zj
YNðzÞ

�
0 0

cje2θðz;x;tÞ 0

�

Resz¼z̄jY
NðzÞ ¼ lim

z→z̄j
YNðzÞ

�
0 −c̄je−2θðz;x;tÞ

0 0

�

YNðzÞ ¼ I þO
�
1

z

�
; as z → ∞; ð3Þ

where θðz; x; tÞ ¼ iðz2tþ zxÞ and I is the identity matrix.
The equations (3) uniquely determine YNðz; x; tÞ as a
rational matrix function of z in the form

YNðz;x;tÞ¼ Iþ
XN−1

j¼0

 
fjðx;tÞ 0

gjðx;tÞ 0

!

z−zj
þ
XN−1

j¼0

 
0 −gjðx;tÞ
0 fjðx;tÞ

!

z−zj
;

ð4Þ
where the coefficients fjðx; tÞ and gjðx; tÞ are determined
from a linear system by imposing the residue conditions in
(3). The solution of the FNLS equation is recovered from
YNðz; x; tÞ by the relation

ψNðx; tÞ ¼ 2i lim
z→∞

z½YNðz; x; tÞ�12 ð5Þ

which gives the N-soliton solution in the form ψNðx; tÞ ¼
−2i

P
N−1
j¼0 gjðx; tÞ. In the case of the one-soliton solution,

we have that the point spectrum z0 ¼ aþ ib determines the
speed and amplitude of the soliton (2) and the coefficient c0
determines the position x0 ¼ ½lnðjc0jÞ=2b� of the soliton
peak and the phase ϕ0 ¼ ðπ=2Þ þ argðc0Þ of the soliton.
The FNLS equation can have a soliton of order N when

the matrix function YNðzÞ has a pole of order N. Such a
solution can be viewed as an N-soliton solution where the
simple poles coalesce to a pole of order N. The limit as
N → ∞ of such a solution has been studied in [22,23] where
it has been shown that its near field structure is described by
the Painlevé III equation. An analogous asymptotical study
has been performed for breathers in [24].
In this Letter, we consider the case when the norming

constants fcjgN−1
j¼0 , scale as 1=N as the number N of simple

poles (i.e., the number of solitons) tends to infinity. On the
physical side, scaling the norming constants to be small
means that the individual solitons are centered at positions
that are logarithmically large in N, so that in the finite part
of the ðx; tÞ plane only the tails of the solitons add up. The
resulting gas of solitons is a condensate in the terminology
of [6].
Differently from [18,19] where the infinite set of solitons

is obtained by letting the soliton spectra accumulate on
lines of the spectral complex plane, here we consider the
case in which soliton spectra accumulate on one or more
simply connected bounded domains D of the complex
upper plane Cþ and their complex conjugate D. We let the
number of solitons go to infinity in such a way that their

point spectrum zj (z̄j) fills uniformly the domain D. The
corresponding norming constants cj are interpolated by a
smooth function βðz; z̄Þ, namely,

cj ¼
A
πN

βðzj; z̄jÞ; ð6Þ

where A is the area of the domain D and N is the total
number of solitons.
The remarkable emerging feature is that as N → ∞, for

certain types of domains and densities, we have a “soliton
shielding,” namely, the gas behaves as a finite number of
solitons. This happens for example if the distribution
function is βðz; z̄Þ ¼ nðz̄ − d̄0Þn−1rðzÞwith rðzÞ an analytic
function in D, and the domain is described by D ≔
fz ∈ C s:t:jðz − d0Þn − d1j < ρg, n ∈ N, with d0 ∈ Cþ,
jd1j and ρ > 0 sufficiently small so that D ∈ Cþ. Then
the deterministic soliton gas is equivalent to an n-soliton
solution. In the case n ¼ 1, the domainD is a disk centered
at λ0 ¼ d0 þ d1 and the infinite number of solitons super-
impose nonlinearly in their tails to produce a single soliton
solution with point spectrum λ0 and norming constant equal
to ρ2rðλ0Þ. We are going to see that this behavior persists
also when the N soliton spectrum is a random variable
distributed according to the Ginibre ensemble [25] or the
uniform distribution on the disk.
When the domain D is an ellipse we show that such

deterministic soliton gas is a steplike periodic elliptic wave
at x ¼ −∞ and rapidly decreasing at x ¼ þ∞ as in [18].
Deterministic soliton gas.—In order to obtain the limit of

the N-soliton solution as N → ∞, we impose that the
norming constants cj scale as 1=N. Then we use a trans-
formation that removes the singularities of YN . Indeed let
γþ be a closed anticlockwise oriented contour that encircles
all the poles in the upper half space and Dγþ the finite
domain with boundary γþ and similarly we define γ− ¼
−γ̄þ and Dγ− encircles all the poles in the lower half space.
One ends up with the RHP for the matrix function

ỸNðz; x; tÞ analytic in Cnfγþ ∪ γ−g, subject to the
conditions

ỸNþðz; x; tÞ ¼ ỸN−ðz; x; tÞJ̃Nðz; x; tÞ; z ∈ γþ ∪ γ−

ỸNðz; x; tÞ ¼ I þO
�
1

z

�
; as z → ∞; ð7Þ

where the subscripted Y� denote the, respectively, along
the oriented contour and

J̃Nðz; x; tÞ ¼

8>>>>>><
>>>>>>:

 
1 0

−
P

N−1
j¼0

cje
2θðzj;x;tÞ

z−zj
1

!
; z ∈ Cþ

 
1
P

N−1
j¼0

c̄je
−2θðz̄j ;x;tÞ

z−z̄j

0 1

!
; z ∈ C−:

ð8Þ
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We call the matrix J̃Nðz; x; tÞ the jump matrix. The solution
ỸNðz; x; tÞ is obtained from YNðz; x; tÞ by the relation
ỸNðz; x; tÞ ¼ Yðz; x; tÞ for z in CnfDγþ ∪ Dγ−g and
ỸNðz; x; tÞ ¼ Yðz; x; tÞJ̃Nðz; x; tÞ for z ∈ Dγþ ∪ Dγ−. In this
case the coefficients fj and gj in (4) are recovered by
imposing ỸNðz; x; tÞ to be analytic at zj and z̄j for
j ¼ 0;…; N − 1.
Let D be a domain so that the closure of D is strictly

contained in the domainDγþ bounded by γþ and the closure

of D is completely contained in the domain Dγ− bounded
by γ−. We let the number of solitons go to infinity in such a
way that their point spectrum zj (z̄j) fills uniformly the
domain D contained in γþ and we choose the norming
constants cj as in (6) so that

XN−1

j¼0

cj
ðz − zjÞ

¼
XN−1

j¼0

A
πN

βðzj; z̄jÞ
z − zj

⟶
N→∞

Z Z
D

βðw; w̄Þ
z − w

d2w
π

;

where the infinitesimal area measure is d2w ¼
ðdw̄ ∧ dwÞ=ð2iÞ. Consequently the RH problem (7)
becomes

Ỹ∞þ ðz;x; tÞ ¼ Ỹ∞
− ðz;x; tÞJ̃∞ðz;x; tÞ; J̃∞ðz;x; tÞ

¼

0
BB@

1
RR

D̄
e−2θðwÞβ�ðw;w̄Þd2w

πðz−wÞ χγ−RR
D

e2θðw;x;tÞβðw;w̄Þd2w
πðw−zÞ χγþ 1

1
CCA

Ỹ∞ðz;x; tÞ ¼ IþO
�
1

z

�
; as z→∞; ð9Þ

with β�ðw; w̄Þ ¼ βðw̄; wÞ and χγ� ¼ χγ�ðzÞ are the charac-
teristic functions of the contours γ� respectively. The
limiting FNLS solution is given by

ψ∞ðx; tÞ ¼ 2i lim
z→∞

z½Ỹ∞ðz; x; tÞ�12: ð10Þ

For a general bounded domain D and smooth function
βðz; z̄Þ, the class of solutions of the FNLS equation
obtained from (9) and (10) is unexplored. In the case
βðz; z̄Þ ¼ nðz̄ − d̄0Þn−1rðzÞ, with rðzÞ analytic inD, we can
apply the Green theorem for z ∉ D and obtain

ZZ
D

e2θðwÞβðw;w̄Þd2w
πðz−wÞ ¼

Z
∂D

rðwÞðw̄− d̄0Þne2θðwÞ
z−w

dw
2πi

; ð11Þ

and similarly for the integral over D.
For sufficiently smooth simply connected domainsD the

boundary ∂D can be described by the so-called Schwarz
function SðzÞ [26] of the domain D through the equation

z̄ ¼ SðzÞ:

The Schwarz function admits analytic extension to a
maximal domain D0 ⊂ D. For example, for quadrature
domains, D0 is just D minus a finite collection of points
[26]. The simplest such quadrature domain is the disk,
which is one of our examples below. For other classes of
domains we have that DnD0 may consist of a mother body,
i.e., a collection of smooth arcs [27]. An example of this is
the ellipse, which will be our second example.
Shielding of soliton gas for quadrature domains.—We

start by considering the class of domains

D ≔ fz ∈ C s:t:jðz − d0Þm − d1j < ρg; m ∈ N; ð12Þ
with d0 ∈ Cþ and jd1j; ρ > 0 sufficiently small so that
D ∈ Cþ. When m ¼ 1 such a domain coincides with the
disk Dρðλ0Þ of radius ρ > 0 centered at λ0 ¼ d0 þ d1.
When m > 1 the domain D has an m-fold symmetry about
d0 and is simply connected if jd1j ≤ ρ, and otherwise it
has m connected components [28]. The boundary of D is
described by

z̄¼ SðzÞ; SðzÞ ¼ d0þ
�
d1þ

ρ2

ðz−d0Þm−d1

�1
m

: ð13Þ

The n-soliton solution.—This solution is obtained from
(11) by choosing m ¼ n in (13). We then substitute w̄ ¼
SðwÞ in the contour integral (11) and use the residue
theorem at the n poles given by the solution fλ0;…; λn−1g
of the equation ðz − d0Þn ¼ d1. Then

Z
∂D

ðw̄ − d̄0ÞnrðwÞe2θðw;x;tÞ
z − w

dw
2πi

¼
Z
∂D
ðSðwÞ − d̄0ÞnrðwÞ

e2θðw;x;tÞ

z − w
dw
2πi

¼ ρ2
Xn−1
j¼0

rðλjÞQ
k≠jðλj − λkÞ

e2θðλj;x;tÞ

z − λj
; z ∉ D;

which gives, up to a sign the entry 21 of the jump matrix
(8). Namely, the solution ψ∞ðx; tÞ in (10) coincides with
the n-soliton solution ψnðx; tÞ in (5) with spectrum
fλ0;…; λn−1g and their complex conjugate and correspond-
ing norming constants cj ¼ ρ2rðλjÞ=

Q
k≠jðλj − λkÞ for

j ¼ 0;…; n − 1.
One-soliton solution.—In particular, in the case n ¼

m ¼ 1 and D ¼ Dρðλ0Þ the disk centered at λ0 ¼ d0 þ d1
of radius ρ, we obtain exactly the RH problem (7) for
N ¼ 1 and c0 ¼ ρ2rðλ0Þ. Namely, we recover the one-
soliton solution (2) of the FNLS (1) equation with
λ0 ¼ d0 þ d1 ¼ aþ ib, with peak position x0 and phase
shift ϕ0 given respectively by

x0 ≔
logðjρ2rðλ0ÞjÞ − logð2bÞ

2b
; ϕ0 ≔ arg½rðλ0Þ� −

π

2
:

ð14Þ
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We observe that the radius ρ of the disk and the value of the
function rðzÞ at λ0 contribute to the phase shift of the
soliton but not to its amplitude or velocity, which are
uniquely determined by the center of the disk λ0.
Soliton solution of order n.—By considering m ¼ 1,

namely, the disk Dρðλ0Þ and βðzÞ ¼ nðz̄ − λ̄0Þn−1rðzÞ for
n > 1, one obtains the soliton solution of order n. This
degenerate solution and the limit n → ∞ has been exten-
sively analyzed in [23].
Remark.—In Fig. 1 we plot the resulting “effective”

soliton using an approximation of the uniform measure on
the unit disk by means of N Fekete points, namely, the set
ofN points described by the vector w ¼ ðw0;…; wN−1Þ that
minimizes the energy

EðwÞ ¼ −2
X

0≤j<k≤N−1
log jwj − wkj þ

N
2

XN−1

j¼0

jwjj2; ð15Þ

(suitably translated and rescaled) over all possible con-
figurations. Then the uniformmeasure on the diskDρðλ0Þ is
obtained by the rescaling zj ¼ ρðwj − λ0Þ. The train of
solitons on the left (albeit slowly) will move towards −∞
as OðlogNÞ.
Elliptic domain.—We now consider the case in which D

coincides with an elliptic domain E and with βðz; z̄Þ ¼ rðzÞ
analytic. For the sake of simplicity, we assume that the
focal points iα1 and iα2 of the ellipse lie on the imaginary
axis and α2 > α1 > 0. The equation of the ellipse isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy − α1Þ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy − α2Þ2

p
¼ 2ρ > 0, where ρ

is chosen sufficiently small so that E lies in the upper half
space. We choose βðzÞ ¼ rðzÞ to be analytic in E. In this
case in equations (11) n ¼ 1 and one has to consider the
Schwarz function of the ellipse, namely, z̄ ¼ SðzÞ∶

SðzÞ ¼
�
1 −

2ρ2

c2

�
ðz − iy0Þ þ 2

ρ

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − c2

q
RðzÞ − iy0;

ð16Þ

where RðzÞ ≔ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − iα1Þðz − iα2Þ
p

, y0 ¼ ½ðα1 þ α2Þ=2�
and c ¼ ½ðα2 − α1Þ=2�. The function SðzÞ is analytic in
C away from the segment I ≔ ½iα1; iα2�, with boundary
values S�ðzÞ. For z ∉ E ∪ E, the integral along the boun-
dary ∂E (∂E) of the ellipse in (11) can be deformed to a line
integral on the segment I ¼ ½iα1; iα2� (I ≔ ½−iα2;−iα1�),
namely,Z

∂E

rðwÞw̄e2θðw;x;tÞ
z − w

dw
2πi

¼
Z
I

rðwÞδSðwÞe2θðw;x;tÞ
z − w

dw
2πi

;

where δSðzÞ ¼ SþðzÞ − S−ðzÞ. Next we define

ΓðzÞ ≔
� Ỹ∞ðzÞ; z ∈ CnfDγþ ∪ Dγ−g
Ỹ∞ðzÞJðzÞ; z ∈ Dγþ ∪ Dγ−

ð17Þ

where JðzÞ ¼
0
B@

1
R
Ī

r�ðwÞδS�ðwÞe−2θðw;x;tÞ
w−z

dw
2πi χDγ−

R
I

rðwÞδSðwÞe2θðw;x;tÞ
z−w

dw
2πi χDγþ

1

1
CA

χDγ�
¼ χDγ�

ðzÞ are the charactheristic functions of the sets
Dγ� respectively. In this way ΓðzÞ does not have a jump on
γþ ∪ γ−. Since JðzÞ has a jump in I ∪ I it follows that ΓðzÞ
is analytic in CnfI ∪ Ig with jump conditions

ΓþðzÞ ¼ Γ−ðzÞeθðz;x;tÞσ3GðzÞe−θðz;x;tÞσ3

GðzÞ ¼
�

1 χĪδS
�ðzÞr�ðzÞ

−χIδSðzÞrðzÞ 1

�
; ð18Þ

and ΓðzÞ ¼ I þOð1=zÞ, as z → ∞. We can find the same
RHP (18) also when we study the problem (7) with an
infinite number of spectral points uniformly distributed
along the segments I ∪ I .
For t ¼ 0, the initial datum ψ0ðxÞ associated to the

solution of the RHP (18) turns out to be steplike oscillatory.
Indeed from the steepest descent method following the
lines [18] as x → −∞ we derive [29] the elliptic function

ψ0ðxÞ ¼ iðα2 þ α1Þdn½ðα2 þ α1Þðx − x0Þ;m� þOðx−1Þ;
ð19Þ

where dnðz;mÞ is the Jacobi elliptic function of modulus
m ¼ ½4α2α1=ðα2 þ α1Þ2� and x0 is a constant which
depends on δSðzÞ, βðzÞ and the geometry of the problem.
For x → þ∞ the initial datum goes to zero exponentially
fast. When α1 → α2 the ellipse degenerates to the circle and
one recovers the one-soliton solution.
Random soliton gas with Ginibre and uniform

statistics.—Let us now introduce randomness into the
system by choosing the points zj ¼ ρðwj − λ0ÞχCþ with

FIG. 1. On the left, the plot of the gas that approximates the area
measure using N Fekete points for N ¼ 500, 2000, 5000, all
centered in a disk of ray 1=10 and center λ0 ¼ i [with
βðzÞ ¼ π=ρ2], and the emerging limiting (one-soliton) solution
ψ∞ðx; tÞ centered at x ¼ 0.226. On the right, a fit [with a curve of
the form qþ p logðNÞ] of the distance between the peak of the
limiting soliton solution ψ∞ðx; tÞ and the first peak of the
remaining part of the solution that is going to infinity as N → ∞.
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ðw0;…; wN−1Þ ∈ CN distributed according to the proba-
bility density (Ginibre ensemble)

μN ¼ 1

ZN
e−Eðw0;…;wN−1Þd2w0…d2wN−1; ð20Þ

where ZN is the normalizing constant and Eðw0;…; wN−1Þ
is the energy defined in (15). In the limit N → ∞ the
random points fw0;…; wN−1g fill uniformly the unit disk
centered at zero (see, e.g., [25]). For any smooth function
h∶C → C, let us consider the random variable
XN
h ≔

P
N
j¼1 hðwjÞ. It is known [30] that

1

N
E½Xh�⟶

N→∞

Z
jwj≤1

hðwÞd2w; ð21Þ

where E is the expectation with respect to the probability
measure μN . Actually more is true [27,30]: the limit of the
random variable Xh − E½Xh� converges to a normal random
variable N ð0; σÞ centered at zero and with finite variance
σ2 depending on h.
From the above arguments it is expected that the jump of

the RH problem (9), in probability, satisfies

P

�����
XN−1

j¼0

A
N

βðzj; z̄jÞ
z − zj

−
ZZ
D

βðw; w̄Þ
z − w

d2w

���� > ϵ

�
¼ O

�
1

N

�
;

for z ∉ D. Using small norm arguments on the RH problem
[31], one may argue that the random N-soliton solution
ψNðx; t; z0;…; zN−1Þ converges asN → ∞ in probability to
the one-soliton solution ψ∞ðx; tÞ. Similar arguments can be
used also when the soliton spectrum is sampled according

to the uniform distribution on the unit disk. The complete
mathematical proof would require a more elaborate argu-
ment, which is postponed to a subsequent publica-
tion. From numerical simulations, the fluctuations of
ψNðx; t; z0;…; zN−1Þ around the limiting value ψ∞ðx; tÞ
are Gaussian with an error that decreases at the rate
OðN−1Þ, when the random points fz0;…; zN−1g are
sampled from the Ginibre ensemble, while the rate is
OðN−1=2Þ for the uniform distribution on the disk,
see Fig. 2.
Conclusions.—We have considered a gas of N-soliton

solution of the FNLS equation in the limit N → ∞. The
soliton spectrum fzjgN−1

j¼0 is chosen at first as the discre-
tization of the uniform measure of a compact domain D of
the complex upper half space and the norming constants
fcjgN−1

j¼0 are interpolated by a smooth function βðz; z̄Þ,
namely, cj ¼ ðA=πNÞβðzj; z̄jÞwhereA is the area measure
of the domain D. We then showed that when the domain D
is a disk and the soliton density βðz; z̄Þ is an analytic
function, then the corresponding N-soliton solution con-
densates in the limit N → ∞ and for ðx; tÞ in a compact set,
to the one-soliton solution with point spectrum coinciding
with the center of the disk. We call this surprising effect
soliton shielding because the interaction of infinite solitons
reduces out to a one-soliton solution. Our result is robust
and persists also when the soliton spectrum is a random
variable sampled according to the Ginibre ensemble or the
uniform distribution on the disk.
The determination of theN-soliton solution in the double

scaling limit N → ∞ and x → ∞ in such a way that
x ≃ logN remains a challenging open problem.
For other choices of domains D or density βðz; z̄Þ we

obtained an n-soliton solution or a one-soliton solution of
order n. When the domain D is an ellipse, we showed that
the spectral measure concentrates on lines connecting the
foci of the ellipse and the soliton gas initial datum is
asymptotically steplike oscillatory.
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