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Motivated by the observation of even denominator fractional quantum Hall effect in the n ¼ 3 Landau
level of monolayer graphene [Kim et al., Nat. Phys. 15, 154 (2019)], we consider a Bardeen-Cooper-
Schrieffer variational state for composite fermions and find that the composite-fermion Fermi sea in this
Landau level is unstable to an f-wave pairing. Analogous calculation suggests the possibility of a p-wave
pairing of composite fermions at half filling in the n ¼ 2 graphene Landau level, whereas no pairing
instability is found at half filling in the n ¼ 0 and n ¼ 1 graphene Landau levels. The relevance of these
results to experiments is discussed.
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The ν ¼ 5=2 fractional quantum Hall effect (FQHE) at
half-filled second Landau level (LL) in semiconductor
quantum wells [1] has been modeled through a Moore-
Read (MR) Pfaffian wave function, which represents a
p-wave paired state of the spin-polarized composite fer-
mions (CFs) [2,3], where the CF is a topological particle
composed of an electron and an even number of quantized
vortices [4,5]. This raises the question of whether CF pairs
with other symmetry can also be realized.
Which FQHE state occurs depends on the Haldane

pseudopotentials Vm [6] (Vm is the energy of two electrons
in a state with relative angular momentum m), which, in
turn, are determined by both the interaction and the LL in
which the electrons reside. Graphene provides a platform
for realizing many old as well as new FQHE states.
Unexpectedly, an FQHE state has been observed at
half-filling in the n ¼ 3 LL of monolayer graphene [7].
Reference [7] considered many candidate FQHE states and
concluded that while none matches the Coulomb ground
state, the 221 parton state [8] defined below is the most
promising because it can be stabilized when the V1 and V3

pseudopotentials are varied slightly away from their pure
Coulomb values. A realization of this state would be
of interest because it represents an f-wave pairing of
CFs [9,10] and supports Ising type non-Abelian quasi-
particles [11,12]. It is also the exact ground state [12,13] for
the short range Trugman-Kivelson model interaction [14].
The 221 and the related 22111 states have been shown
theoretically to be promising candidates also for 1=2 FQHE
in multilayer graphene [13] and 1=4 FQHE [10] observed
in wide quantum wells [15–17].
We investigate in this work the possibility of CF

pairing in monolayer graphene directly from the Bardeen-
Cooper-Schrieffer (BCS) perspective. Such an approach has

previously been used in the contexts ofp-waveCF pairing at
ν ¼ 5=2 [18,19] and s- and p-wave CF pairing in bilayer
systems [20]. We consider more general pairings to address
even-denominator FQHE in graphene. We employ a BCS
wave function ofCFs in the torus (periodic) geometry,which
is convenient for momentum space pairing [19]. This wave
function has two variational parameters, analogous to the
gap function and the Debye cutoff of the standard BCS
theory. An advantage of this method is that it enables a study
of the competition between different kinds of pairing
instabilities. Specifically, we can choose the gap function

asΔðlÞ
k ∼ e−ilθ, where θ is the angular coordinate of thewave

vector k, and the relative angular momentum l must be an
odd integer for fully spin-polarized fermions. The choice
l ¼ 1 corresponds to p-wave pairing and l ¼ 3 to f wave
(in our convention of magnetic field B pointing in the −z
direction). Another advantage of this method is that it allows
minimization of energy by adjusting parameters and thus
may capture physicsmissed in studies that use a single, fixed
wave function. Finally, the various paired states are explic-
itly seen to arise through an instability of the CF Fermi sea
(CFFS), which is a special case of the CF-BCS wave
function. Reference [19] demonstrated that this approach
is capable of capturing the p-wave pairing instability at
ν ¼ 5=2 in semiconductor systems.
We find that the CFFS is unstable to f-wave pairing

at half filling in the n ¼ 3 graphene LL. Notably, this
instability is seen without any modification to the Coulomb
interaction. No pairing instability occurs in the n ¼ 0 or
n ¼ 1 graphene LL, but our work suggests the possibility
of p-wave pairing in the n ¼ 2 graphene LL.
Our starting point is the BCS wave function for CFs on a

torus. We consider a torus defined by a parallelogram with
sides L and Lτ, where the complex number τ ¼ τ1 þ iτ2
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specifies the modular parameter of the torus [21]. The
allowed values of wave vectors are k ¼ ½n1 þ ðϕ1=2πÞ�b1þ
½n2 þ ðϕ2=2πÞ�b2, with b1 ¼ ½ð2π=LÞ; −ð2πτ1=Lτ2Þ�,
b2 ¼ ½0; ð2π=Lτ2Þ�, where ϕj represent twisted phase in
quasiperiodic boundary conditions. We take ϕ1 ¼ ϕ2 ¼ π
in what follows, to ensure that k ¼ 0 is not an allowed
value, and for each k, −k is also allowed. We define
zj ¼ xj þ iyj, where rj ≡ ðxj; yjÞ are the coordinates of the
jth electron.
The BCS wave function for fully spin-polarized elec-

trons is written as jΨBCSi ¼
Q0

kðuk þ vkc
†
kc

†
−kÞj0i, where

j0i is the null state; c†k creates an electron at k; each k;−k is
counted only once in the product; and jvkj2 (jukj2) is the
probability of this state to be occupied (empty). The real
space form of the BCS wave function for a fixed number of
electrons is given by [22]

ΨBCSðr1;…rNÞ ¼ Pf½gðlÞðri − rjÞ�; ð1Þ

where Pf refers to Pfaffian, and the antisymmetric matrix
element gðlÞðri − rjÞ can be expanded as

gðlÞðri − rjÞ ¼
X

k

gðlÞk eik·ðri−rjÞ ð2Þ

with

gðlÞk ≡ vk=uk ¼ ½ϵk −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2k þ jΔðlÞ
k j2

q

�=ΔðlÞ�
k ¼ −gðlÞ−k: ð3Þ

Here ϵk ¼ ℏ2ðjkj2 − k2FÞ=2me (we determine the magnitude
of kF using the relation: πjkFj2 ¼ Njb1 × b2j), and the gap
function for the l pairing channel has the form

ΔðlÞ
k ¼ Δjkje−ilθ. (This form corresponds to the real space

pair wave function of the form eilθ=jzi − zjj for large

jzi − zjj.) The alternative choice ΔðlÞ
k ¼ Δjkjle−ilθ is equiv-

alent in the limit where only wave vectors near the Fermi
surface are relevant to pairing, in which case jkj may be
replaced by kF; our explicit calculations shown in the
Supplemental Material [23] demonstrate that the conclu-
sions are not affected by this detail.
The BCS wave function for CFs at ν ¼ 1=2 can

now be constructed in the standard manner by vortex
attachment [4,5]. In the disk geometry, one would write
ΨCF−BCS∼PLLLPf½gðlÞðri−rjÞ�

Q
j<kðzj−zkÞ2, where PLLL

refers to lowest-LL (LLL) projection. One would then
attempt to implement the Jain Kamilla (JK) projection into
the LLL [33,34] by writing the Jastrow factor asQ

j<kðzj − zkÞ2 ¼
Q

i Ji, where Ji ¼
Q

k≠iðzi − zkÞ; incor-
porating it into the Pfaffian as ΨCF−BCS ∼ PLLLPf½gðlÞðri −
rjÞJiJj� [35]; and then projecting each matrix element
separately into the LLL. In the torus geometry, we write

ΨCF−BCS
1
2

¼ PLLLPf

�X

k

gðlÞk eik·ðri−rjÞ
�

ΨL
1=2; ð4Þ

where ΨL
1=2 is the ν ¼ 1=2 Laughlin wave function [36] in

the torus geometry [37–39], while also replacing the mass
of electronme in Eq. (3) by the CF effective mass ofm�. An
implementation of the standard JK projection [33,34] in the
torus geometry yields unphysical wave functions that do
not satisfy the stipulated periodic boundary conditions
(PBC). However, a modified JK projection accomplishes
the task [19,40,41]. The resulting LLL wave function has
the form (see Ref. [19] and Supplemental Material [23] for
details)

ΨCF−BCS
1
2

¼ e
P

i

z2
i
−jzi j2

4l2

(

ϑ

"
ϕ1

4π þ
Nϕ−2
4

− ϕ2

2π þ N − 1

#�
2Z
L

�
�
�
�2τ

�)

PfðMijÞ; ð5Þ

Mij ¼
X

k

gke−
l2
2
kðkþ2k̄Þei

2
ðzi−zjÞðkþk̄Þ

�

ϑ

� 1
2

1
2

��
zi þ ikl2 − ðzj − ikl2Þ

L

�
�
�
�τ

��
2

×

�Y

r
r≠i;j

ϑ

� 1
2

1
2

��
zi þ i2kl2 − zr

L

�
�
�
�τ

�Y

m
m≠i;j

ϑ

� 1
2

1
2

��
zj − i2kl2 − zm

L

�
�
�
�τ

�	

: ð6Þ

Here Z ¼ P
N
i¼1 zi is the center-of-mass (c.m.) coordinate,

k ¼ kx þ iky, l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
is the magnetic length,

N is the number of particles, and Nϕ ¼ 2N is the number
of flux quanta through the torus. The Jacobi theta
function with rational characteristics is defined as [42]

ϑ
ha
b

i
ðzjτÞ¼P∞

n¼−∞eiπðnþaÞ2τei2πðnþaÞðzþbÞ. The above

BCS wave function satisfies proper quasiperiodic boundary
conditions on the torus. In terms of a dimensionless

“gap parameter” Δ̃¼jΔðlÞ
kF
j=ðℏ2jkFj2=2m�Þ, we have gðlÞk ¼

½jk2j− jkFj2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjkj2 − jkFj2Þ2 þ Δ̃2jkFj2jkj2

q
�=Δ̃jkjkFeilθ.

We introduce an additional variational parameter, namely, a
momentum cutoff kcutoff , analogous to the Debye cutoff of
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the BCS theory, by setting gðlÞk ¼ 0 for jkj > kcutoff.
For kcutoff ¼ kF the CF-BCS wave function reduces
to the CFFS wave function [39,41,43]. The 221 state lies
in the sector with Haldane pseudomomenta ðKx; KyÞ ¼
ðN=2; N=2Þ, ð0; N=2Þ or ðN=2; 0Þ [44]; in what follows,
we will choose our CF-BCS state in the sector
ðKx; KyÞ ¼ ðN=2; N=2Þ.
In the absence of LL mixing, the electron-electron

interaction in the n ¼ 0 LL of monolayer graphene
is identical to that in the LLL of GaAs quantum well
with zero width. The physics in the n ¼ 0 LL of mono-
layer graphene is therefore identical to that in the LLL of
GaAs quantum well (of zero width), including the state at
half filling, which is well known to be a CFFS [45–47].
The interaction pseudopotentials in the n ≠ 0 LLs of
monolayer graphene are different from those in the
corresponding LLs of semiconductor quantum wells.
We numerically investigate the candidate states at half
filling in the jnj ¼ 1, jnj ¼ 2, and jnj ¼ 3 LLs of
graphene.
The interelectron interaction in any given LL is com-

pletely specified by its Haldane pseudopotentials [6]. The
problem of electrons in the nth LL can thus be mapped into
the problem of electrons in the n ¼ 0 LL with an effective
interaction that has the same Haldane pseudopotentials as
the Coulomb interaction in the nth LL. We consider two
approximate real-space effective interactions [48,49]:

VToke¼ r−1þP
6
i¼0cir

ie−r and VParkðrÞ¼ r−1þa1e−α1r
2þ

a2r2e−α2r
2

. For the former, we obtain the coefficients by
matching the first seven odd pseudopotentials of the
effective interaction in LLL in the disk geometry with the
pseudopotentials of the Coulomb interaction in the nth
graphene LL [7,50–52]; for the latter, wematch the first four
odd pseudopotentials (in the n ¼ 2 LL, we need to make an
additional approximation, discussed in the Supplemental
Material [23]). For the torus geometry, the interaction is
replaced by an appropriate periodic interaction [23]. One
expects that the nature of the state is dictated by the first few
odd pseudopotentials (even pseudopotentials are not ger-
mane for fully spin-polarized electrons). To test the validity
of the two effective interactions, we compare their energies
with the exact Coulomb energies for certain CF-BCS wave
functions for N ¼ 12 particles in the n ¼ 2 and n ¼ 3
graphene LLs. We find that both effective interactions are
satisfactory for the n ¼ 2 LL, whereas only the Park
interaction is satisfactory for the n ¼ 3 LL. Below we
assume spin-polarized electrons, disregard LL mixing,
and quote all energies in units of e2=ϵl.
We have calculated the energies of the CF-BCS wave

function using the lattice Monte Carlo method [53], which
allows us to go to fairly large systems. We have considered
systems with 12 and 32 particles because the Fermi seas for
these systems are close to being circular (Fig. 1). Figure 2
shows the minimum energy in n ¼ 2 and n ¼ 3 graphene
LLs as a function of the gap parameter Δ̃ where each point
is obtained by minimizing the energy with respect to kcutoff .
Because the CFFS is a special case of the BCS-p and the
BCS-f states (obtained with kcutoff ¼ kF), the minimum
energy is guaranteed to be less than or equal to that of the
energy of the CFFS. Energy less than that of the CFFS
implies a pairing instability of the CFFS.
As shown in Fig. 2, the lowest energy state in n ¼ 3

graphene LL is obtained for the BCS-f state. Interestingly,

FIG. 1. Fermi seas for N ¼ 12 and 32 composite fermions.

FIG. 2. Energy per particle of the BCS-p and BCS-f wave states for the “Park” and “Tőke” forms for the interaction (Refs. [48,49]) for
the n ¼ 3 graphene LL (left panel) and n ¼ 2 graphene LL (middle panel) as a function of the gap parameter Δ̃ for systems of 12 and 32
particles. The energies are quoted in units of e2=ϵl, and measured relative to the energy of the CFFS. The energies for the Δ̃ → ∞ limit
are marked as isolated points at the right side of each plot. The legends are listed in the right panel, with the number of particles given in
parentheses.
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the energy is insensitive to the variation of the gap
parameter Δ̃ for larger values. In fact, the optimal state
is well approximated by the limit Δ̃ → ∞, where the
CF-BCS state simplifies with gk ¼ −e−ilθ. The BCS-p
state may have slightly lower energy than the CFFS, but has
higher energy than the f-wave CF-BCS state.
Figure 3 shows the overlaps of the various candidate

states with the exact ground state for the Coulomb
interaction in graphene. For this purpose, we obtain the
exact Fock-space representation of the CF-BCS state using
the method in Ref. [54]. The overlap of the exact Coulomb
ground state in graphene at the half-filled n ¼ 3 LL with
BCS-f state is approximately 0.25 in the parameter range
where the energy is minimum. This overlap is not decisive,
but still significant for an FQHE state in a high LL.

(For the LLL, the wave functions of CFs at fractions
ν ¼ s=ð2s� 1Þ, s integer, have overlaps of ∼0.99 with the
Coulomb ground states for systems accessible to numerical
diagonalization [5,55,56], but for the n ¼ 1 LL in GaAs the
overlaps are generally much smaller; for example, the 7=3
and 5=2 Coulomb ground states have overlaps in the ranges
0.5–0.7 and 0.7–0.9, respectively, with the Laughlin and
MR wave functions for numerically accessible particle
numbers [57–61]. We expect the overlaps to decrease
further in yet higher LLs.) The BCS-f state is substantially
better than other candidate states: the overlaps of the CFFS,
BCS-p, and the MR-p states with the exact Coulomb
ground state at half filling in the n ¼ 3 graphene LL are,
respectively, 0.015 44, ∼0.025, and 0.010 78 (we have used
the MR-p wave function given in Refs. [62–64]). The CF-
BCS state is also better than the 12-particle 221 state,
which has an overlap of 0.09 with the exact Coulomb
ground state in the n ¼ 3 graphene LL in the spherical
geometry [7]. Our work thus provides important theoretical
support to f-wave pairing in the half-filled n ¼ 3 graphene
LL. Given that our results for 12 and 32 particles are quite
consistent, we speculate that for this problem, the torus
geometry may better represent the thermodynamic behav-
ior than the spherical geometry used in Ref. [7]. Exact
diagonalization of the Coulomb interaction on torus with
τ ¼ i shows that the ground states forN ¼ 8, 12, 14, and 16
particles lie in the sector with Haldane pseudomomenta
ðKx; KyÞ ¼ ðN=2; N=2Þ, ð0; N=2Þ or ðN=2; 0Þ, which are
the momentum sectors for the paired state [44]. As shown
in the Supplemental Material, the BCS-f-wave state can be
made more robust by modifying the interaction [23].
Figure 2 also shows the results for N ¼ 12 and 32

particles at half filling in the n ¼ 2 graphene LL. The
lowest energy is obtained for the p-wave paired state. The
overlap of the 12 particle CF-BCS state with the exact
Coulomb state is ∼0.6 (Fig. 3). Intuitively, a p-wave
pairing would not be entirely surprising here, as the n ¼ 2
graphene LL wave function is a combination of the n ¼ 2
and n ¼ 1 GaAs LL wave functions, the latter of which is
believed to support p-wave pairing [50,58,59,61,65,66].
Our study does not decisively prove CF pairing in n ¼ 2

and n ¼ 3 graphene LLs, as we have not ruled out all
possible states such as the stripe phase. Nevertheless, we
conclude that a paired state is at least competitive, and that
if FQHE is observed at half filling in the n ¼ 3 (n ¼ 2)
graphene LL, it is likely an f-wave (a p-wave) paired state.
It is noted that 1=2 FQHE has not yet been observed in the
n ¼ 2 graphene LL [67,68]; we have not considered the
possibility of whether the paired state can be destabilized
by LL mixing.
We find no pairing instability at half filling in the n ¼ 1

graphene LL, i.e., our calculations show that the lowest
energy is obtained when kcutoff ¼ kF for arbitrary Δ̃.
This is in agreement with earlier variational and exact

FIG. 3. Upper panel: Overlaps of the candidate states with
the exact Coulomb ground state in the n ¼ 3 graphene Landau
level for 12 particles. The optimal overlap between the f-wave
CF-BCS state and the exact ground state is approximately 0.25.
The overlap of the p-wave paired state with the exact state is less
than 0.025 for all values of Δ̃. The overlap of the MR (p-wave)
state with the exact Coulomb ground state in the n ¼ 3 graphene
LL is 0.01078. Lower panel: Overlaps of the candidate states
with the exact Coulomb ground state in the n ¼ 2 Landau level
of graphene for 12 particles. The optimal overlap between the
f-wave CF-BCS state and the exact ground state is approximately
0.174. The optimal overlap of the p-wave paired state with the
exact state is 0.5928. The overlap of the MR (p-wave) state with
the exact Coulomb ground state in the n ¼ 2 LL of graphene is
0.19234.
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diagonalization studies [56,69–72]. The observation of
many fractions along the sequences ν ¼ s=ð2s� 1Þ [73]
is consistent with a CFFS at ν ¼ 1=2.
The BCS-f state is topologically distinct from the BCS-

p wave state. The thermal Hall conductance at temperature
T, which is given by κ ¼ cðπ2k2B=3hÞT where c is the chiral
central charge [74], can, in principle, distinguish between
them [9,10,75]. The chiral central charge for different
paired CF states is given by the relation c ¼ ð1þ l=2Þ;
in particular, for the p and f states considered here it is
given by c ¼ 3=2 and 5=2. The Hall viscosity ηA [76] is
given by [77] ηA ¼ ℏρS=4, where ρ is the 2D density and
S ¼ N=ν − Nϕ is the “shift” [78] in the spherical geometry.
For the p and f states at ν ¼ 1=2 we have S ¼ 3 and 5,
respectively.
What is the mechanism of pairing? It is known empiri-

cally that a CFFS is obtained when the short distance
repulsion between electrons is dominant, as is the case in
the n ¼ 0 LL.When the short distance repulsion is reduced,
which is what happens in higher LLs, the effective
interaction between CFs may become attractive, causing
pairing. We do not have a simple way to predict which
pairing is preferred without performing a detailed calcu-
lation. A Chern-Simons based analysis of gauge fluctua-
tions, as in Ref. [79], could provide further insight into this
question.
In summary, we have determined the optimal pairing at

half filling in graphene LLs in a CF-BCS approach. We find
an absence of pairing instability in the n ¼ 0 and n ¼ 1
LLs but CF pairing appears possible in n ¼ 2 and n ¼ 3
LLs. Our primary conclusion is that if FQHE is observed in
the n ¼ 2 (n ¼ 3) graphene LL, it likely represents p (f)
wave pairing of CFs. Further experimental investigations of
these states will be necessary for a definitive confirmation
of their physical origin.
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