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We analyze an unusual class of bosonic dynamical instabilities that arise from dissipative (or non-
Hermitian) pairing interactions. We show that, surprisingly, a completely stable dissipative pairing
interaction can be combined with simple hopping or beam-splitter interactions (also stable) to generate
instabilities. Further, we find that the dissipative steady state in such a situation remains completely pure up
until the instability threshold (in clear distinction from standard parametric instabilities). These pairing-
induced instabilities also exhibit an extremely pronounced sensitivity to wave function localization. This
provides a simple yet powerful method for selectively populating and entangling edge modes of photonic
(or more general bosonic) lattices having a topological band structure. The underlying dissipative pairing
interaction is experimentally resource friendly, requiring the addition of a single additional localized
interaction to an existing lattice, and is compatible with a number of existing platforms, including
superconducting circuits.
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Introduction.—Hamiltonian bosonic pairing interactions
(where excitations are coherently created or destroyed in
pairs) arise in many settings, and underpin a vast range of
phenomena. In the context of quantum optics and informa-
tion, they are known as parametric amplifier interactions,
and are a basic resource for generating squeezing and
entanglement [1,2]; they also form the basis of quantum
limited amplifiers [3,4]. In condensed matter settings,
bosonic pairing underlies the theory of antiferromagnetic
spin waves, interacting Bose condensates, and can also be
used to realize novel topological band structures [5,6].
Given the importance of bosonic pairing, it is interes-

ting to explore the basics of purely dissipative (or non-
Hermitian) bosonic pairing. Non-Hermitian dynamics have
garnered attention in a wide range of fields, from con-
densed matter [7–9] to optics [10–12] to classical dynami-
cal systems [13–15]. In this Letter, we provide a
comprehensive analysis of dissipative bosonic pairing in
a fully quantum setting, showing it possesses a number of
surprising and potentially useful features. We focus on
minimal, experimentally realizable models, where bosons
(e.g., photons) hop on a lattice, in the presence of a single
dissipative pairing interaction. Remarkably, we find that
while the dissipative pairing interaction on its own yields
fully stable dynamics, when combined with simple lattice
hopping (which is also stable), one can have dynamical
instability. Further, close to such an instability, the quantum
steady state is perfectly pure, with a selected subset of
modes having high densities and strong squeezing and/or
entanglement correlations. The complete state purity up
until the instability threshold is a clear distinction from

more standard instabilities associated withHermitian pairing
terms. Dissipative pairing is also distinct from the well-
studied situation where a system is driven with squeezed
noise; in particular, driving a quadratic, particle-conserving
system with squeezed noise can never generate instability,
whereas this readily occurs with dissipative pairing.
Dissipative pairing becomes even more interesting when

combined with topological band structures. We find that
our new pairing instabilities are highly susceptible to wave
function localization of the underlying lattice Hamiltonian.
Hence, if the lattice supports exponentially localized
topological edge modes, we are able to selectivity excite
and entangle them. Such topological systems remain a
cornerstone of condensed matter physics [16–18] and
photonics [19–21], and selectively exciting edge modes
has been the subject of a flurry of recent proposals [22–27].
These are motivated by applications including topological
lasing [24,27–30] and topological amplification and squeez-
ing [25,31–33]. However, these proposals often require
complicated momentum and/or energy selectivity [25–27],
as well as control over the entire lattice, [25–27,31]. Here,
we are able to get edge-mode selectivity almost for free,
using a single quasilocal dissipative interaction.
Minimal model.—We start with a three-mode system

(bosonic annihilation operators â; b̂; ĉ) that exhibits much
of the surprising physics of interest. The key ingredient will
be a dissipative pairing interaction between â and ĉ, that is
an interaction generating dynamics of the form ∂thâi ¼
−λhĉ†i and ∂thĉ†i ¼ λ�hâi. Because of the relative sign
here, this dynamics cannot be obtained from a Hermitian
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pairing interaction. Instead, it would seem to correspond to
a non-Hermitian effective Hamiltonian:

Ĥpairing ¼ −iðλâ†ĉ† þ H:c:Þ: ð1Þ

To obtain this Markovian dissipative dynamics in a fully
quantum setting, this dissipative interaction must neces-
sarily be accompanied by noise as well as local damping
and antidamping [8,34]. The resulting description has the
form of a Lindblad master equation [35,36]. Using a
minimal noise realization of the interaction, and letting ρ̂
denote the system density matrix, we obtain

_̂ρ¼ L̂ ρ̂ L̂† −
�
L̂†L̂
2

; ρ̂

�
≡D½L̂�ρ̂; L̂¼ ffiffiffi

κ
p

âþ η
ffiffiffi
κ

p
ĉ†:

ð2Þ

This purely dissipative evolution generates local damping
on â with strength κ, local antidamping on ĉ with strength
η2κ, and a dissipative interaction of the form of Eq. (1) with
λ ¼ ηκ=2. We take η < 1 (i.e., more local damping than
antidamping), which ensures dynamical stability (i.e., no
tendency for exponential growth) [37].
The dissipation in Eq. (2) is reminiscent of the dynamics

generated by driving modes â, ĉ with broadband two-mode
squeezed (TMS) noise [39]. There are, however, crucial
differences. Driving with TMS noise always generates two
dissipators; to make Eq. (2) equivalent to injected TMS
noise, we would thus have to add the additional dissipator
D½ ffiffiffi

κ
p

ĉþ η
ffiffiffi
κ

p
â†�. This complementary dissipator would

completely cancel the effective dissipative interaction
between a and c generated by D½L̂�, leaving only driving
with correlated noise. There would thus be no interaction
from the dissipation in the equations of motion between
hâðtÞi and hĉ†ðtÞi. In contrast, we will show that in Eq. (2),
the direct dissipative interaction between modes â and ĉ
plays a crucial role.
To see explicitly that dissipative pairing is distinct from

input TMS noise, we will add coherent hopping interactions
to our system, and consider the evolution of average values.
The hopping is described by Ĥ ¼ J1â†b̂þ J2b̂

†ĉþ H:c:,
with the evolution now given by ∂tρ̂¼−i½Ĥ; ρ̂�þD½L̂�ρ̂.
Because of linearity, the equations of motion for averages of
mode operators are insensitive to noise, and only influenced
by interactions (coherent and dissipative). For our system, a
symmetry argument [37] lets us reduce the dynamics of
these averages to the closed linear dynamics of the quad-
ratures v⃗¼ðxa;pb;xcÞ, where hâi¼ðxaþ ipaÞ=

ffiffiffi
2

p
, etc; the

orthogonal quadratures ðpa; xb; pcÞ have an analogous
closed evolution. We find ∂tv⃗ ¼ −iDv⃗, where the dynami-
cal matrix D ¼ DJ þDκ can be interpreted as an effective
3 × 3 Hamiltonian matrix, and

DJ ¼

0
B@

0 iJ1 0

−iJ1 0 −iJ2
0 iJ2 0

1
CA; Dκ ¼

κ

2

0
B@

−i 0 −iη
0 0 0

iη 0 iη2

1
CA:

ð3Þ

The off-diagonal �iηðκ=2Þ terms in Dκ are the dissipative
interaction, which surprisingly adds a Hermitian contribu-
tion at the level of the dynamical matrix. This mirrors the
fact that had we started with a nondissipative Hermitian
pairing interaction, we would generate a non-Hermitian
dynamical matrix [40]. Note that the hopping dynamics on
its own generates stable dynamics, as does the dissipative
dynamics on its own. More formally, both the matrices
DJ and Dκ have no eigenvalues with positive imaginary
part and hence are dynamically stable (in the Lyapunov
sense [41] that there is no tendency for exponential growth).
We now come to our first surprise: while each part of our

dynamics (hopping, dissipation) is stable individually,
combining them can lead to instability. We find that for
the full dynamics, whenever J1 ≠ J2, there will be a critical
value of η beyond which we have exponential growth.
Specifically, one can show [37] that the dynamical matrix
in Eq. (3) will be unstable if

η > min ðjJ1=J2j; jJ2=J1jÞ: ð4Þ

We stress that this phenomenon is distinct from recently
studied “dissipation-induced instabilities” [42], where the
purely dissipative dynamics is already unstable on its own.
Again, in our case the system is always stable in the
dissipation-only limit J1 ¼ J2 ¼ 0.
The instability threshold Eq. (4) can be understood from

a simple perturbative argument that is formally valid only
when κ ≪ J1; J2 [akin to a Fermi’s golden rule (FGR)
calculation]. If we define jψ ii (i ¼ 1, 2, 3) to be the
(nondegenerate) eigenvectors ofDJ, and treatDκ as a small
perturbation on top of this, then to first order jψ ii has a
relaxation rate

Γi ¼ −Imhψ ijDκjψ ii: ð5Þ

If an eigenmode has more amplitude on ĉ than â, there will
be a value of η < 1 at which Eq. (5) is negative. This
corresponds exactly to the condition in Eq. (4), and is easy
to understand intuitively (i.e., the eigenmode sees more
antidamping than damping). Surprisingly, this simple FGR
argument turns out to be exact to all orders in κ: Eq. (4) is
not perturbative [37]. We stress that this is a nonobvious
phenomenon. For example, consider a modified model
where we eliminate dissipative pairing by replacing
D½L̂� → D½ ffiffiffi

κ
p

â� þD½ ffiffiffi
κ

p
ηĉ†� in our master equation. We

are left with just incoherent gain and loss. In this case, the
instability threshold would depend sensitively on the value
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of κ, with the FGR prediction only valid for κ → 0,
see Fig. 1.
We thus see that even at the semiclassical level, the

dissipative pairing interaction yields surprises: instability
from the combination of two individually stable dynamical
processes, with a threshold that is independent of the
overall dissipation scale. Note that the above phenomena
could alternatively be described (in a squeezed frame) as
the interplay of asymmetric loss and Hermitian pairing
interacting (see [37] for details and application to two-
mode models).
Extension to quantum lattices.—We now explore dis-

sipative pairing in general multimode lattice systems,
focusing on the possibility of nontrivial dissipative steady
states. Consider an N-site bosonic lattice, with annihilation
operators âi for each site. The coherent dynamics corre-
sponds to a quadratic, number conserving Hamiltonian
Ĥ ¼ P

ij Hijâ
†
i âj. The only constraint we impose is thatH

possesses an involutory chiral sublattice symmetry U, such
that UHU† ¼ −H; our simple three-site model also had
this symmetry. Chiral symmetry ensures that for every
eigenmode of H with nonzero energy, there is a different
eigenmode with an opposite energy.
We now add a single dissipative pairing interaction to the

lattice, between two arbitrary sites 0̄, 1̄. Motivated by our
three-mode example, we take 0̄, 1̄ to be on the same
sublattice (as defined by the chiral symmetry). The full
dynamics on the lattice is given by [43]

∂tρ̂ ¼ −i½Ĥ; ρ̂� þD½L̂�ρ̂; L̂=
ffiffiffi
κ

p ¼ â0̄ þ ηâ†
1̄
: ð6Þ

Our goal is to understand instabilities and steady states of
this setup. Note that previous work studied chiral-symmetric

bosonic lattices driven by single-mode squeezing [45].
Such systems are completely distinct from our setup: they
do not have any dissipative pairing interaction, never
exhibit dynamical instability, and (unlike what we describe
below) always yield steady states with a spatially uniform
average density.
We start by diagonalizing Ĥ. Using chiral symmetry, we

can write Ĥ ¼ P
α≥0 ϵαðd̂†αd̂α − d̂†−αd̂−αÞ. Eigenmode anni-

hilation operators are given in terms of real space wave
functions by d̂�α ¼

P
i ψ�α½i�âi. Ĥ is invariant under

two-mode squeezing transformations that mix a pair of
�α modes [37]: for arbitrary rα;ϕα ∈ R, if we take

β̂�α ≡ coshðrαÞd̂�α þ eiϕα sinhðrαÞd̂†∓α; ð7Þ

then Ĥ ¼ P
α ϵαðβ̂†αβ̂α − β̂†−αβ̂−αÞ.

We would like to find a set of rα;ϕα such that

L̂ ¼ ffiffiffi
κ

p X
α

Nαðβ̂α þ β̂−αÞ: ð8Þ

If this is possible, the system dynamics are stable, and we
will have a unique steady state (vacuum of the β̂�α

operators). Achieving Eq. (8) requires for each α > 0 [37]

tanh rα ¼ η

���� ψα½1̄�
ψα½0̄��

����; ϕα ¼ arg

�
ψα½1̄�
ψα½0̄��

�
; ð9Þ

with jNαj2 ¼ jψα½0̄�j2ð1 − j tanh rαj2Þ.
We now make a crucial observation: Eq. (9) only has a

solution if η < ðjψα½0̄��=ψα½1̄�j≡ ηαÞ. If this condition is
violated for a particular α, then the dynamics is unstable: in
this case, we are forced to write L̂ in terms of a Bogoliubov
raising operator in the ðα;−αÞ sector, implying that the
dissipation looks like antidamping in this sector. At a
heuristic level, for η > ηα, the α modes see more gain than
loss. Overall stability requires η < min ηα ≡ ηc, a condi-
tion that is independent of the dissipation strength κ. We
thus have a generalization and rigorous justification of the
surprising FGR-like instability condition in Eqs. (4) and (5)
we found for the three-mode model.
Our arguments above imply that as long as η < ηc, we

are dynamically stable and have a pure steady state, where
each ðα;−αÞ pair is in a two-mode squeezed vacuum with a
squeezing parameter given by Eq. (9). This will in general
be a highly entangled state. Further, as η → ηc from below,
the squeezing parameter of the critical modes is diverging,
meaning that we will have a pure state where a small subset
of modes contribute to a diverging photon number. Note
this is very distinct from just incoherent gain and loss,
which never has a pure steady state. This behavior is also
completely distinct from standard parametric instabilities,
where the steady state becomes extremely impure as one
approaches instability [46,47]. The mode selectivity leads

FIG. 1. Stability diagram for a minimal three-mode bosonic
system (see inset) with loss on mode â (rate κ), gain on mode ĉ
(rate η2κ), and tunnel couplings J1, J2 [cf. Eq. (3)]. In the absence
of dissipative pairing, the system is dynamically unstable above
the dashed line. Adding dissipative pairing iηκðâ ĉþH:c:Þ shifts
the onset of instability to the solid line, see Eq. (4). Remarkably,
this boundary is independent of J̄=κη, where J̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J21 þ J22

p
. The

dissipative steady state remains pure (with a high density) as one
approaches instability, see main text. Red lines in each plot are the
same cut of parameter space, J̄=κη ¼ 1 and J1=J2 ¼ 0.75. Solid
lines show hopping, dashed line shows the dissipative pairing
interaction.
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to a highly nonuniform density that can be exploited for
applications, as we now discuss.
Dissipative pairing and topological edge states.—The

physics discussed above is particularly striking when
applied to chiral hopping Hamiltonians Ĥ that have
topological band structures. There are many such models,
as chiral symmetry is a key part of the standard classi-
fication of topological band structures [48]. As our dis-
sipative interaction always pairs opposite energy modes,
edge modes will only be paired with edge modes, bulk
modes only with bulk modes. Moreover, it is easy to ensure
that the correlated steady-state photon density is concen-
trated on the edges. Edge-mode wave functions are expo-
nentially damped in the bulk, so Eq. (9) tells us for an edge
state α

tanh rα ¼ η

����ψα½1̄�
ψα½0̄�

���� ∝ ηeðd0̄−d1̄Þ=ζL ; ð10Þ

where d1̄;0̄ is the distance from 1̄ and 0̄ to the edge,
respectively, with ζL the localization length scale of the
edge modes. If d0̄ − d1̄ > 0 (i.e., the gain site closer to the
edge than the loss site), we obtain a superexponential
enhancement in the squeezing parameter of the edge
modes. This yields large populations and squeezing on
the edge (while still having a pure state), see Figs. 2 and 3.
For large enough systems, the bulk modes will be

nearly translationally invariant, implying they will have
tanh rα ¼ η. Thus, by spreading the two sites out over a
few localization lengths ζL, a weak pump rate η ≪ 1 can set
tanh rα ∼ 1 for only the edge modes. Here, the total number
of excitations in the bulkwould bevery small, hn̂αi ¼ Oðη2Þ,
whereas the number of excitations in the edge mode, as one
approaches instability, will be superexponentially enhanced
and scales like hn̂αi ¼ Oð½1 − ηeðd0̄−d1̄Þ=ζL �−1Þ.
The upshot is that by using a single dissipative pairing

interaction, we can selectively populate, squeeze, and
entangle edge modes of a topological bosonic band
structure. Such states could be useful for applications in

topological photonics [20], and are reminiscent of topo-
logical lasing states [24,27] (which typically require com-
plex schemes to only pump the edge states). We analyze
this physics more carefully below for two prototypical
topological hopping models (see Fig. 3).
SSH chain.—A paradigmatic topological model is the

Su-Schrieffer-Heeger (SSH) chain [49,50], see Fig. 2. This
is a linear, 1D lattice with staggered hopping strengths,
given by the Hamiltonian

Ĥ ¼ −J
XN−1

i¼1

ð1þ ð−1ÞiδÞâ†i âiþ1 þ H:c: ð11Þ

Such a model has been realized with bosons in a variety of
experiments (e.g., [28–30,51]). The topological regime of
Ĥ admits one (two) protected edge modes if there are an
odd (even) number of lattice sites, with a localization length
ζL ¼ ð1þ δÞ=ð1 − δÞ. As α → −1, ζL → 0, and the edge
modes become infinitely localized.
We consider for simplicity an odd number of lattice sites

(see [37] for even N). This yields a single zero-energy edge
mode, localized on a single sublattice. Hence, if we place
the pairing dissipator on the correct sublattice, we can
selectively excite just the edge mode into a single-mode
squeezed vacuum with a superexponentially enhanced
squeezing parameter. The dissipative steady state for such
a situation is plotted in Fig. 2. We thus have a resource-
friendly approach for creating topologically protected,
bright nonclassical squeezed light, using a SSH chain with
a single, quasilocal, linear dissipator. One could imagine
using the stabilized photons by weakly coupling the edge
lattice site to an output waveguide, see [37] for more
details. Note that topological features of the SSH chain are
protected against disorder in the hopping coefficients up to

FIG. 2. Steady state correlation functions for a 99-site SSH
chain with δ ¼ −0.65. There is a single jump operator of the
form of Eq. (6) with 0̄ ¼ 4 and 1̄ ¼ 0, and η ¼ 0.999ηc ∼ 0.045.
The squeezing correlation functions show a pure, single-
mode squeezed state exponentially localized to the edge. Inset:
Schematic of the dissipatively stabilized SSH chain. A single
jump operator generates a dissipative pairing interaction,
selectively exciting the edge mode.

(a) (b)

FIG. 3. (a) A 24 × 24 site Hofstadter lattice, which has uniform
hopping and a quarter flux per plaquette Φ ¼ 1

4
Φ0. There is a

single dissipator of the form of Eq. (6), with 1̄ ¼ ð11; 23Þ and
0̄ ¼ ð12; 20Þ, and with η ¼ 0.999ηc ∼ 0.0007. The color corre-
sponds to local steady state photon number, which is exponen-
tially localized to the edges of the lattice. (b) The same system,
now showing steady state squeezing correlations between the
randomly chosen edge site (18,23) and the rest of the lattice.
Every edge site has exponentially enhanced squeezing with every
other edge site on the same sublattice.
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the bulk gap 4jδjJ. We find that the qualitative nature of the
dissipative steady state is also protected against hopping
disorder over a similar scale (see [37]).
Hofstadter lattice.—2D topological systems admit

extended boundaries, allowing one to more easily study
entanglement properties. Motivated by this, we consider a
finite, quarter-flux Hofstadter lattice [52]. This corresponds
to a square lattice with a quarter magnetic flux quanta per
plaquette (see Fig. 3) giving the Hamiltonian

Ĥ ¼
X
m;n

â†m;nâmþ1;n þ eiπm=2â†m;nam;nþ1 þ H:c:; ð12Þ

which has been realized experimentally in Refs. [53–55].
ThisHamiltonian supports exponentially localizedmodes

which propagate chirally around the edge [53,54,56,57].
The fact that they are extended around the full edge is critical
for generating long-range entanglement.
With the same prescription of adding a dissipative

interaction of the form of Eq. (6) with 1̄ on the edge
and 0̄ in the bulk, the steady state solution has exponentially
localized edge photon density, with nearly all-to-all edge
correlations, Fig. 3. For a fixed η, these sites will obey a
volume-law scaling in entanglement entropy, [37], where
maximally separated edge sites are now highly entangled,
Fig. 3. Having all edge sites lie on the same topological
boundary is crucial for this to occur [37].
In the limit that η → ηc, the steady state will be

dominated by the topological edge modes approaching
instability. Treating the edge as a ring, we can label these by
their momenta k; the steady state has all momenta k and
kþ π in a TMS vacuum. Close enough to instability, a
single momentum will dominate, generating uniform edge
photon densities, see Fig. 3(a), and a “checkerboard” of
correlations, see Fig. 3(b). The checkerboard is a result of
the chiral symmetry, which admits only correlations within
a sublattice. The values of the correlations and densities
can be understood directly from Eq. (10), where hn̂i;ji ∼
sinhðrkÞ2 and hâi;jâi0;j0 i ∼ sinhðrkÞ coshðrkÞ are superexpo-
nentially enhanced compared to the bulk modes. This gives
an arbitrary amount of entanglement between any two edge
sites on the same sublattice as η → ηc. This also means that
for a relatively weak dimensionless pumping (η < 10−3 in
Fig. 3), the steady state can still have a large number of
photons [Oð102Þ in Fig. 3], that is completely independent
of the strength of the dissipation κ compared to the
Hamiltonian.
Implementation.—The basic master equation is naturally

suited for any circuit- or cavity-QED experimental platform
that can generate tunable couplings, along with an engi-
neered lossy mode. Quantum systems that have been able
to successfully create topological photonic or phononic
lattices span superconducting circuits [51,55], micropillar
polariton cavities [28], photonic cavities [58], photonic
crystals [56], ring resonators [29,30,53,54,59], and

optomechanics [60,61]. In order to generate the requisite
jump operator in Eq. (6), one can couple the dissipation
sites to an auxiliary bosonic mode b̂ with the interaction

ĤI ¼ gb̂†ðâ0̄ þ ηâ†
1̄
Þ þ H:c: ð13Þ

In the limit that the auxiliary mode b̂ is very lossy with a
loss rate κ ≫ g, this gives the desired jump operator, with
an effective strength Γ ¼ 4g2=κ, [62]. This allows one to
easily engineer the desired reservoir with few additional
resources.
Conclusions.—We have demonstrated that dissipative

pairing interactions lead to a previously unexplored class of
instabilities in bosonic systems, where stable Hamiltonians
and stable dissipation combine to give unstable dynamics.
We have shown that these instabilities are incredibly
sensitive to topological boundaries, providing a new
mechanism to selectively excite topological edge modes
without needing any momentum or frequency selectivity.
Moreover, the steady state of the dynamics remains pure all
the way up to the instability point, allowing one to populate
the edge with an arbitrary number of zero-temperature
excitations. Our ideas are compatible with a variety of
different experimental platforms, and require few resources
to implement.
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