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Fundamental physical constants are determined from a collection of precision measurements of
elementary particles, atoms, and molecules. This is usually done under the assumption of the standard
model (SM) of particle physics. Allowing for light new physics (NP) beyond the SM modifies the
extraction of fundamental physical constants. Consequently, setting NP bounds using these data, and at the
same time assuming the Committee on Data of the International Science Council recommended values for
the fundamental physical constants, is not reliable. As we show in this Letter, both SM and NP parameters
can be simultaneously determined in a consistent way from a global fit. For light vectors with QED-like
couplings, such as the dark photon, we provide a prescription that recovers the degeneracy with the photon
in the massless limit and requires calculations only at leading order in the small new physics couplings. At
present, the data show tensions partially related to the proton charge radius determination. We show that
these can be alleviated by including contributions from a light scalar with flavor nonuniversal couplings.
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Introduction.—Precision measurements of atomic and
molecular properties play a dual role in fundamental
physics. On the one hand, assuming the standard model
(SM) of particle physics, these are used to determine two of
the SM parameters, the fine-structure constant α and the
electron mass me [through the Rydberg constant
R∞ ≡ α2mec=ð2hÞ], along with a number of other observ-
ables such as the charge radii and relative atomic masses of
the proton and deuteron. An example is the determination
of fundamental physical constants by the Committee on
Data of the International Science Council (CODATA) [1].
On the other hand, precision measurements can be used

to search for new physics (NP) beyond the SM. Such
searches have been conducted using measurements of

single particle observables [2–4], atomic systems [5–10],
and molecular systems [11–14], see [15] for a review. The
presence of NP would manifest itself as a discrepancy
between measurements and theoretical SM predictions. The
difficulty here is that in many cases the SM predictions
depend on the fundamental physics parameters, which in
turn were extracted from data by CODATA under the
assumption that the SM is correct, and no NP exists. In
general, the presence of NP would affect the extraction of
fundamental constants, possibly reducing the claimed
sensitivity of NP searches. This subtlety is more often
than not ignored in the literature.
In this Letter, we propose and carry out a self-consistent

determination of constraints on light NP models by
performing a global fit, simultaneously extracting the
SM and NP parameters. We go well beyond the previous
studies [5,6,16], which were performed only on subsets of
data. We pay special attention to the potentially problematic
limit of massless NP. The challenge is that the SM
predictions are calculated to a higher perturbative order
than the leading-order (LO) NP contributions, which can
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then lead to incorrect limiting behavior for very light NP.
Below, we provide a prescription, valid to LO in NP
parameters, that corrects for such mismatches in the
theoretical predictions and leads to the proper massless
NP limit.
The global fit shows several 3σ (3 standard deviations)

discrepancies between observables and predictions, assum-
ing the SM. These anomalies are well known: they corres-
pond to the measurements constituting the proton charge
radius puzzle [17–19], with the addition of new mea-
surements of hydrogen transitions [20,21]. Reference [20]
showed the tension of their 2S1=2 − 8D5=2 measurement
with other hydrogen data is relaxed in the presence of an
additional Yukawa-like interaction. Our global analysis,
which determines simultaneously both the SM and NP
parameters, shows for the first time that all these deviations
can be largely accounted for in a single NP model—a light
scalar that couples to gluons, electrons, and muons.
New physics benchmark models.—We focus on minimal

extensions of the SM, where either a light scalar boson ϕ or
a light vector boson ϕμ is added to the spectrum of SM
particles. The new light particle is assumed to have parity
conserving interactions with the SM electrons and muons,
as well as with light quarks, resulting in couplings to
neutrons and protons. (Extension to parity nonconserving
couplings and additional particles is straightforward.)
The interaction Lagrangian is therefore given by

Lint ¼
X

i¼e;μ;n;p

giψ̄ iðΓϕÞψ i; ð1Þ

where Γϕ≡ ϕ; γμϕμ for spin s ¼ 0, 1 bosons, respectively.
Taking the nonrelativistic limit for ψ i, and working at LO in
gi, the tree-level exchange of ϕ or ϕμ induces a Yukawa-
like nonrelativistic potential,

Vij
NPðrÞ ¼ ð−1Þsþ1αϕqiqj

e−mϕr

r
; ð2Þ

between particles ψ i and ψ j, separated by a distance r. The
NP coupling constant αϕ ≡ jgegpj=ð4πÞ > 0, gives the
strength of the NP induced potential between electrons
and protons. The strength of NP interactions between
fermions ψ i and ψ j, relative to the electron-proton one,
is given by the product of effective NP couplings qiqj,
where qi ≡ gi=

ffiffiffiffiffiffiffiffiffiffiffiffijgegpj
p

. In particular, for the electron-
proton system, the product of effective NP couplings can
take the values qeqp ¼ �1. For qiqj > 0 the potential (2) is
attractive (repulsive) for spin 0 (1) mediator ϕ and vice
versa for qiqj < 0.
In the numerical analysis, we consider the following

benchmark NP models:
(a) Dark photon: The light NP mediator is a vector boson

with couplings to the SM fermions proportional to their
electric charges. AUV complete realization is an additional

Abelian gauge boson with field strength F0
μν that couples to

the SM through the renormalizable kinetic mixing inter-
action, −ðϵ=2ÞF0

μνFμν [22], where Fμν is the electromag-
netic field strength. To LO in ϵ this yields αϕ ¼ αϵ2 and
qe ¼ qμ ¼ −qp ¼ −1, qn ¼ 0.
(b) B − L gauge boson: The difference of baryon (B) and

lepton (L) numbers is nonanomalous and can be gauged
without introducing new fermions [23,24]. Light B − L
gauge boson with gauge coupling gB−L gives rise to the NP
potential in (2) with αϕ ¼ g2B−L=ð4πÞ. The charges qe ¼
qμ ¼ −qp ¼ −qn ¼ −1 coincide with the dark photon
ones, except for the neutron. Comparison of B − L and
dark photon bounds illustrates the importance of perform-
ing spectroscopy of different isotopes of the same species,
such as hydrogen and deuterium.
(c) Scalar Higgs portal: A light scalar mixing with the

Higgs boson [25,26] inherits the SM Yukawa structure,
giving αϕ ¼ sin2θmeκpmp=ð4πv2Þ ≲ 1.8 × 10−10 where
v ≃ 246 GeV is the SM Higgs vacuum expectation value,
and θ is the scalar mixing angle. The effective leptonic
(l ¼ e, μ) charges are ql ¼ ml=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimeκpmp
p , while the

effective nucleon charges (N ¼ p, n) are given by qN ¼
κNmN=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimeκpmp
p with κp ≃ 0.306ð14Þ and κn ≃ 0.308ð14Þ

[27–32] (see Supplemental Material [33]). Since couplings
to muons and nucleons are enhanced by qμ=qe ¼ mμ=me ≃
200 and gN=qe ¼ mN=me ≃ 2 × 103, respectively, this NP
benchmark highlights the relevance of muonic atom and
molecular spectroscopy.
(d) Hadrophilic scalar: A scalar with ql ¼ 0 and

qN ¼ κNmN=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimeκpmp

p , i.e., with vanishing couplings to
leptons, highlights the importance of molecular hydrogen
ion spectroscopy as a probe of internuclear interactions
[11,14]. For expedience, we take gN to be the same as for
the Higgs portal, but this could be relaxed in general.
(e) Up-lepto-darko-philic (ULD) scalar: In order to evade

strong bounds from Kþ → πþ þ Xinv searches, where Xinv
are invisible particles that escape the detector, see below,
we adopt a particular version of a light scalar benchmark.
The ULD scalar has enhanced couplings to leptons,
ql ¼ ml=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meκ

0
pmp

p
, and reduced couplings to nucleons

(due to couplings to only the up quark), qN ¼ κ0NmN=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meκ

0
pmp

p
, with κ0p ≃ 0.018ð5Þ and κ0n ≃ 0.016ð5Þ, and

αϕ ¼ k2meκ
0
pmp=ð4πv2Þ, with k a dimensionless parameter

controlling the overall strength of interactions, which is
varied in the fit. The ϕ is assumed to predominantly decay
to invisible states, possibly related to the dark matter, which
evades constraints from beam dump experiments. See
Supplemental Material for further details [33], including
results for an additional NP benchmark model—the scalar
photon.
Datasets.—The adjustment of parameters, i.e., the fitting

procedure, presented in this Letter has been carried out
using two different datasets, CODATA18 and DATA22.
The CODATA18 dataset consists of data that were used in
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the latest CODATA adjustment in Ref. [1], but restricted
only to the subset most relevant for constraining NP. This
subset contains observables related to the determination of
the Rydberg constant R∞, the proton and deuteron radii rp
and rd, respectively, the fine-structure constant α, and the
relative atomic masses of the electron, proton, and deu-
teron: ArðeÞ, ArðpÞ, and ArðdÞ, respectively. The inputs
including theory uncertainties are listed in the
Supplemental Material [33]. The other observables and
parameters included in the CODATA 2018 adjustment are
very weakly correlated with the selected data and can be
neglected for our purpose.
The DATA22 dataset combines the updated CODATA18

inputs with the additional data that improve the overall
sensitivity to NP (see Supplemental Material for details
[33]). In particular, we include the measurements of
transition frequencies in simple molecular or moleculelike
systems, the hydrogen deuteride molecular ion (HDþ)
[34–36], and the antiprotonic helium atom (p̄3He and
p̄4He) [37,38]. These have an enhanced sensitivity to the
NP models with mediators that have large couplings to
quarks (and thus nuclei). The three benchmark models of
this type are the Higgs portal, hadrophilic, and ULD
scalars, see above.
The CODATA18 dataset is used as a reference point to

verify the implementation of the inputs and the adjustment
procedure, while DATA22 is used to obtain our nominal
results. The full list of data in the two datasets, as well as
further discussion of the importance of including certain
observables when constraining NP, is given in the
Supplemental Material [33], which includes Refs. [39–92].
Least-squares adjustment with new physics.—The exper-

imental data are compared to the theoretical predictions
with NP following the linearized least-squares procedure
[93]. The theoretical prediction for an observable O takes
the form

O ¼ OSMðgSMÞ þONPðgSM; αϕ; mϕÞ þ δOth; ð3Þ

where OSM is the state-of-the-art SM prediction and dep-
ends on the SM parameters gSM ¼ fR∞; rp; rd; α; ArðeÞ;
ArðpÞ; ArðdÞg, while the NP contribution ONP depends in
addition on αϕ and mϕ. The theoretical uncertainties are
included as in Ref. [1], by adding a normally distributed
variable δOth with zero mean and standard deviation equal
to the estimated uncertainty of the theoretical expression.
The δOth’s are treated as yet another set of input data and
varied in the fit, along with gSM, αϕ, and mϕ, in order to
minimize the χ2 function constructed from the input data
and theory predictions (see Supplemental Material [33]).
The SM theoretical predictions for atomic transition

frequencies, the electron anomalous magnetic moment,
and bound-electron g factors are from Ref. [1] (see
references therein). The predictions for the HDþ and
p̄He transition frequencies are from Refs. [94,95] and

[96–98], respectively, and are updated with the latest
CODATA recommended values, see Supplemental
Material for details [33].
The NP contributions to atomic and molecular ion tran-

sition frequencies are obtained using (time-independent)
first-order perturbation theory [99,100]. We use exact
nonrelativistic wave functions for hydrogenlike atoms
and very precise nonrelativistic numerical ones from a
variational method of Ref. [101] for HDþ and p̄He.
Expectation values of the Yukawa potentials in Eq. (2)
are calculated for a grid of mϕ values, taking advantage of
the fact that their matrix elements in the chosen basis can be
obtained in an analytical form. The precision is limited to
Oðα2Þ because of the neglected relativistic corrections to
the wave function. The NP contribution to the free electron
ðg − 2Þe arises at one loop [102,103], while for bound
electrons we include an additional tree-level contribution
from electron-nucleus interaction [104]. Finally, we assume
NP to have negligible effects in atom recoil measurements
as well as relative atomic mass measurements from cyclo-
tron frequency measurements in Penning traps.
We pay particular attention to the possible degeneracy

between the determination of SM and NP parameters. In the
mϕ → 0 limit, the dark photon is completely degenerate
with the QED photon, since couplings of the two are
aligned, qi ¼ Qi, and thus only the combination αþ αϕ
can be determined from data. This degeneracy should be
retained in the theoretical predictions (3), which, in
principle, requires calculating NP effects to the same very
high order as the SM. We propose an alternative procedure,
which uses the state-of-the-art SM calculations but requires
NP contribution only at LO in αϕ and reproduces the
correct qi→Qi, mϕa0 ≪ 1 limit, where a0 ≡ α=ð4πR∞Þ ¼
ðαmeÞ−1 is the Bohr radius.
For “light vectors” we rewrite the NP potential in Eq. (2)

as the sum of the Coulomb-like potential with QED
coupling Qi plus the remainder,

Vij
NPðrÞ ¼ αϕ

QiQj

r
þ Ṽij

NPðrÞ; ð4Þ

where Ṽij
NPðrÞ≡ αϕðqiqje−mϕr −QiQjÞ=r. The theory pre-

dictions are evaluated at LO in ṼNPðrÞ, while the NP
Coulomb term and the related relativistic corrections are
evaluated to the same order as the SM, which amounts to
replacing α → αþ αϕ in the SM predictions. For any
observable O, the theoretical prediction is then

O ¼ OSMðαþ αϕÞ þ ÕNPðαþ αϕ; αϕ; mϕÞ; ð5Þ

where OSM is the SM contribution now expressed as a
function of αþ αϕ and ÕNP is the NP contribution from
ṼNP. In the mϕ → 0, qi → Qi limit, the potential ṼNP

vanishes, and all theory predictions are the SM ones, but
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shifted by α → αþ αϕ. For massive dark photon with
mϕa0 ≪ 1, the leading effect of ṼNP is parametrically
ÕNP ∝ m2

ϕ. Note that for massless B − L the potential ṼNP

vanishes in hydrogen but not in deuterium where
ÕNP ∝ qn, thus breaking the degeneracy between the
SM and NP contributions when mϕ → 0.
For “light scalars” there is no degeneracy with QED in

the massless mediator limit; it is lifted by relativistic
corrections. We can use directly the state-of-the-art SM
predictions and simply add to them the NP contribution due
to the potential (2) at LO, without any special treatments,
see also Supplemental Material [33].
Results.—First, we perform the control fit, i.e., the least-

squares adjustment assuming SM, based on the
CODATA18 dataset with inflated experimental uncertain-
ties when there are tensions in the data [1], see also
Supplemental Material [33]. The resulting χ2 per degree
of freedom (d.o.f.) is χ2SM=νd:o:f: ≃ 0.95 (νd:o:f: ¼ 78 − 44 ¼
34), indicating an overall good description by the SM and
the use of correct expansion factors. The output gSM values
and relative uncertainties (see Supplemental Material [33])
are in excellent agreement (≲0.2σ) with the latest
CODATA recommended values [1], validating our
procedure.
Next, we perform adjustments based on the DATA22

dataset, assuming either the SM or one of the above NP
benchmark models. We do not inflate experimental errors,
since mild tensions in the data could be a hint of NP. The
SM-only hypothesis still describes the data relatively well,
with χ2SM=νd:o:f: ≃ 1.4 (νd:o:f: ¼ 102 − 62 ¼ 40), despite
known tensions in the proton charge radius puzzle data
and the recent hydrogen 2S1=2 − 8D5=2 transition [20].
Figure 1 shows the 95% confidence level (C.L.) upper

bounds on αϕ as function of mϕ for the NP benchmark

models. The strongest exclusion is always reached around
mϕ ∼ a−10 ∼ 4 keV and stays roughly constant for lighter
mϕ (except for dark photon due to degeneracy with QED in
the mϕ → 0 limit, see above). Deuterium observables
translate to a ∼2× stronger bound on B − L at
mϕ ∼ a−10 , compared to dark photon. The significantly
stronger bounds on the Higgs portal and hadrophilic scalar
formϕ ≲ 10 keV are due to the∼κpmp=me ≃ 500 enhance-
ment in internucleon interactions (compared to electron-
nucleon potential), affecting the HDþ observables. For
heavier NP, mϕa0 ≳ 1ðmμ=meÞ in hydrogen (muonic
hydrogen), the interaction is pointlike, with suppressed
electron (muon) wave function overlap, and the bounds
decouple as ∝ 1=m2

ϕ (and more quickly for hadrophilic
scalar). The bounds are stronger for Higgs portal and ULD
scalar due to ∼mμ=me ≃ 200 enhanced effects in muonic
hydrogen.
For mϕa0 ≳mμ=me the Higgs portal and ULD scalar are

statistically preferred over the SM at the∼4σ and∼5σ level,
respectively. Figure 2 shows the preferred region for the
ULD scalar, around the best-fit point mϕ ¼ 300 keV and
αϕ ¼ 6.7 × 10−11. This NP hint is supported mostly from
the recent measurements of the hydrogen 2S1=2 − 8D5=2

and 1S1=2 − 3S1=2 transitions [20,21], as well as muonic
deuterium, cf. Supplemental Material [33]. While these
tensions between data and the SM prediction are not new,
our analysis shows that all tensions can be significantly
ameliorated when including NP interactions due to a single

FIG. 1. The 95% C.L. bounds on the NP coupling constant αϕ
as a function of the new boson’s mass mϕ for the benchmark NP
models as indicated. Other model-dependent constraints may
apply (see text).

FIG. 2. The constraints on ULD scalar in the αϕ,mϕ plane, with
purple-shaded 1, 2, 3, 4σ C.L. regions favored by the DATA22
dataset (black dot is the best-fit point). Exclusions are by
SN1987a [105,106] (below the pink line, absent if ϕ invisible
decay dominates), NA62 Kþ → πþXinv search [107] (green, the
dashed line is a naive next-to-next-to-leading-order estimate),
stellar cooling [108] (gray), NA64 eZ → eZX search [109] (red,
dashed line is a naive extrapolation), and E137 [110,111]
(between yellow dashed lines, absent if ϕ invisible decay
dominates).
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light scalar. The favored NP mass is close to the (inverse)
Bohr radius of muonic atoms, a−10 ×mμ=me ∼MeV, due to
the large muon-electron coupling ratio in these models,
contrasting with scalars having weaker or vanishing cou-
pling to muons (see [20] and the Supplemental
Material [33]).
However, other constraints require the scalar to have

rather a nontrivial pattern of couplings, see the
Supplemental Material [33]. For the ULD scalar, the
E137 [110,111] bounds are evaded since ϕ decays pre-
dominantly to an invisible dark sector. Since ϕ couples to
up quarks and not directly to heavy quarks and gluons, the
bound from the NA62 search for Kþ → πþϕ [107] is
weakened [106,112]. The NA64 eZ → eZX search [109],
naively extrapolated to low masses, excludes the best-fit
point for the considered benchmark (see also [113]).
However, this statement relies on the ratio of couplings
to leptons and quark and is relaxed for somewhat larger
couplings to quarks. Finally, the minimal ULD model
induces a too large contribution to ðg − 2Þμ, however, this
can be suppressed in less minimal versions with a custodial
symmetry [114].
The presence of NP also impacts the determination of the

fundamental constants in the SM. Figure 3 shows the 68%
C.L. determination of rp and R∞, subtracting the CODATA
2018 recommended values and normalizing to respective
errors. The SM-parameter uncertainties increase in the
presence of NP and the central values shift outside the

nominal SM ellipse, shown explicitly in Fig. 3 for the
Higgs portal and ULD scalar model. Because of
the degeneracy with the photon, the uncertainty on α in
the dark photon model increases as 1=m2

ϕ for masses below
10 eV (see Supplemental Material [33]) and eventually
becomes comparable to α itself for mϕ ∼ 0.1 meV, while
αþ αϕ remains well constrained.
Conclusions.—Extracting bounds on light NP from a

global fit to spectroscopic and other precision data requires
both SM and NP parameters to be determined simulta-
neously. The possibility of NP contributions changes the
extracted allowed ranges of SM parameters, a change that
can be quite substantial, see Fig. 3. Furthermore, we
provided a prescription to consistently include NP correc-
tions from light vectors. It requires calculations of NP
contribution only at leading order and recovers the
expected degeneracy between dark photon and QED in
the massless mediator limit.
At present, spectroscopic data show tensions that could

either be due to unknown or underappreciated systematics
or to light NP. We showed that the ∼4σ anomaly in data can
be explained by a flavor nonuniversal light scalar model.
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