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We construct initial data violating the anti–de Sitter Penrose inequality using scalars with various
potentials. Since a version of the Penrose inequality can be derived from AdS=CFT, we argue that it is a
new swampland condition, ruling out holographic UV completion for theories that violate it. We produce
exclusion plots on scalar couplings violating the inequality, and we find no violations for potentials from
string theory. In the special case where the dominant energy condition holds, we use general relativity
techniques to prove the anti–de Sitter (AdS) Penrose inequality in all dimensions, assuming spherical,
planar, or hyperbolic symmetry. However, our violations show that this result cannot be generically true
with only the null energy condition, and we give an analytic sufficient condition for violation of the Penrose
inequality, constraining couplings of scalar potentials. Like the Breitenlohner-Freedman bound, this gives a
necessary condition for the stability of asymptotically AdS (AAdS) spacetimes.
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Introduction.—Whether or not singularities are hidden
behind event horizons is a longstanding open question in
general relativity. In [1] Penrose showed that if (1) the
answer to this is affirmative and (2) collapsing matter
settles down to Kerr, then the existence of certain special
surfaces σ appearing in regions of strong gravity implies a
lower bound on the spacetime mass,

GNM ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
area½σ�
16π

r
: ð1Þ

A proof of this inequality, named after Penrose, would
amount to evidence in favor of singularities being hidden,
but the inequality has not been proven except in special
cases [2,3] (see [4] for a review).
Recently, Engelhardt and Horowitz [5] gave a holo-

graphic argument for an anti–de Sitter (AdS) version of the
Penrose inequality (PI), assuming the AdS=CFT corre-
spondence, but not cosmic censorship nor anything about
the end point of gravitational collapse. This suggests that
hypothetical bulk matter allowing violation of the PI in
AAdS spacetimes is incompatible with the AdS=CFT
dictionary, and that the PI can serve as a new condition
detecting low energy theories that cannot be UV completed
in holographic quantum gravity, meaning theories that can
never arise as the low energy limit of a holographic
quantum gravity theory that is valid at all energy scales.

In this Letter, we construct violations of the PI for
various scalar potentials and produce exclusion plots in
coupling space, delineating regions where we know that the
PI is violated. Since the PI turns out to constrain neutral
scalars, we find that it is distinct from the weak gravity
conjecture [6]. Next, we present numerical evidence that
supersymmetry is a sufficient condition for the PI. We also
present an analytical sufficient condition on scalar cou-
plings for a theory to violate the PI. Similar to the
Breitenlohner-Freedman bound [7,8], this provides a nec-
essary condition for the stability of AAdS spacetimes.
Next, while our Letter shows that general theories respect-
ing the null energy condition (NEC) violate the PI, we are
able to prove the PI in all dimensions greater than 2 for any
theory satisfying the dominant energy condition (DEC),
assuming spherical, planar, or hyperbolic symmetry.
We emphasize that while we in this Letter use the PI to

constrain theories in the classical limit, these constraints are
intimately tied to quantum gravity in the form of the
AdS=CFT correspondence, which is a nonperturbative
description of string theory in AAdS spacetimes [9–11].
This is because Penrose’s original argument for his inequal-
ity is invalid for general low energy theories in AAdS
spacetimes, since there exist theories violating cosmic
censorship in AAdS spacetimes [12–15]. The only known
way to argue for the truth of the PI in AAdS spacetimes is
using the full machinery of the AdS=CFT correspondence
and then taking its classical limit. Without reference to
AdS=CFT, we have no principle to exclude theories
violating the PI, while if we demand that our theory arises
as the classical, low energy limit of holographic quantum
gravity, the PI must hold.
The Penrose inequality in AdS=CFT.—Consider an

apparent horizon σ in an asymptotically AdSdþ1 (AAdS)
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spacetime with mass M, meaning that the expansion of the
outward null geodesic congruence fired from σ is vanish-
ing, while the inward expansion is nonpositive. Assuming
the holographic dictionary, Ref. [5] derived that

area½σ� ≤ ABHðMÞ; ð2Þ

where ABHðMÞ is the area of the most entropic stationary
black hole of massM in the theory. This is the AdS version
of the PI that can be derived in holography, and by knowing
the function ABHðMÞ, Eq. (2) can be rewritten to give a
lower bound on the mass, similar to Eq. (1) [see Eq. (4)].
The argument of [5] relied on (1) the Hubeny-

Rangamani-Takayanagi entropy formula [16–19], (2) the
existence of the so-called coarse grained conformal field
theory (CFT) state, whose von Neumann entropy equals
area½σ�=4GN [20,21], and (3) the fact that there exists a
gravitational path integral for the microcanonical ensemble
that has stationary black holes as saddles [22,23]. The
argument also makes the reasonable assumption that there
is no spontaneous breaking of time translation symmetry in
the CFT microcanonical ensemble, so that the micro-
canonical ensemble is dual to a stationary black hole [24].
Finally, σ had to satisfy two technical conditions: that it
becomes a proper trapped surface when perturbed slightly
inward, and that σ is outermost minimal, meaning that there
exists a spacelike or null hypersurface bounded by σ and
the conformal boundary on which no other surface is
smaller (see [20,21] for precise conditions). In the special
case where σ is an extremal surface, the first condition is
not needed.
Constraining scalar potentials.—Working with scalar

fields and spherical symmetry in the classical limit, we will
see that many scalar potentials that violate the DEC violate
Eq. (2) as well. DEC-violating scalars are important, since
they appear in known examples of AdS=CFT dualities after
dimensional reduction of compact dimensions [25–28]. A
generic DEC-violating scalar potential will not even have a
positive mass theorem (PMT) [29,30], and in these theories
the PI is automatically violated, but we will also find that
theories where we are unable to construct negative mass
solutions, despite extensive numerical search, will fre-
quently violate the PI.
The theories we consider have the action

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
1

2
Rþ dðd − 1Þ

2L2
−
1

2
j∇ϕj2 − VðϕÞ

�
; ð3Þ

where L is a length scale that sets the cosmological
constant, and where V is a potential satisfying
Vð0Þ ¼ V 0ð0Þ ¼ 0. To look for violations of the PI, we
will construct AAdS initial data on a partial Cauchy surface
Σ bounded by σ and the conformal boundary, such that
(1) σ is an apparent horizon satisfying all the technical
conditions relevant for Eq. (2), and (2) Σ can be embedded

in a larger initial dataset on a complete hypersurface. This is
sufficient to test if the PI holds for σ; the full spacetime is
not needed.
What scalar potentials VðϕÞ should we consider in order

to find violations of the PI? Reference [31] proved an AdS4
PI assuming spherical symmetry and the DEC. Assuming
the ordinary gravitational mass M [32] is finite, we prove
the following generalization (conjectured to be true in [33]):
Theorem 1.—Consider an asymptotically AdSdþ1≥3

spacetime with spherical (k ¼ 1), planar (k ¼ 0), or hyper-
bolic symmetry (k ¼ −1), satisfying the Einstein equations
Gab − ðdðd − 1Þ=ð2L2ÞÞgab ¼ 8πGNTab and the DEC:
Tabuava ≥ 0 for all timelike ua, va. If σ is a symmetric
outermost marginally trapped surface with respect to a
connected component of the conformal boundary with
mass M, then

16πGN

ðd − 1ÞΩk
M ≥ k

�
area½σ�
Ωk

�d−2
d−1 þ 1

L2

�
area½σ�
Ωk

� d
d−1
: ð4Þ

Here Ωk is the volume of the (d − 1)-dimensional unit
sphere, the plane, or the unit hyperbolic space (or a
compactification thereof, in the latter two cases). While
Ωk might be infinite, the ratios area½σ�=Ωk and M=Ωk are
well defined. Furthermore, taking k ¼ 1 and L → ∞we get
the PI for spherically symmetric asymptotically flat space
in general dimensions. The mass is conventionally defined
so M ¼ 0 for pure AdS space (see [34] for a discussion
definitions of mass in AAdS spacetimes). Let us now turn
to the proof.
Proof.—Consider an AAdSdþ1 spacetime with spherical,

planar, or hyperbolic symmetry, and consider a null gauge
with coordinates ðxþ; x−;ΩiÞ and metric

ds2 ¼ −2e−fðxþ;x−Þdxþdx− þ rðxþ; x−Þ2dΩ2
k; ð5Þ

where r is a function of ðxþ; x−Þ and where dΩ2
k locally is

the (unit) metric on the sphere, plane, or hyperbolic space.
Define ka� ¼ ð∂x�Þa ≡ ð∂�Þa, which has associated null
expansions θ� ¼ ðd − 1Þr−1∂�r. The quantity

μðxþ; x−Þ ¼ rd
�
k
r2

−
2θþθ−

kþ · k−ðd − 1Þ2 þ
1

L2

�
ð6Þ

can be seen to reduce to the spacetime mass at r ¼ ∞, up to
an overall factor: 16πGNM ¼ ðd − 1ÞΩkμjr¼∞. The null-
null components of the Einstein equations (in units with
8πGN ¼ 1) reduce to

rT��
d − 1

¼ −∂�f∂�r − ∂
2
�r;

rTþ−

d − 1
¼ ∂þ∂−rþ

d2 − 3dþ 2

ðd − 1Þr
�
e−f

2

�
kþ r2

L2

�
þ ∂þr∂−r

�
:

ð7Þ
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Proceeding similar to Ref. [35], we compute ∂�μ and use
Eqs. (7) to eliminate ∂�r; ∂2�r, and ∂þ∂−r, yielding

∂�μ ¼ 2efrd

ðd − 1Þ2 ðTþ−θ� − θ∓T��Þ þ
2rd

ðd − 1ÞL2
θ�: ð8Þ

The DEC implies that T�� ≥ 0 and Tþ− ≥ 0. Thus, �∂�μ
is positive in an untrapped region (θþ ≥ 0; θ− ≤ 0), and so
there μ is monotonically nondecreasing in an outward
spacelike direction. Evaluating μ on a marginally trapped
surface that can be deformed to infinity along a untrapped
spacelike path, which exists by the assumption that
σ is outermost marginally trapped, gives that krd−2þ
rdL−2 ≤ μjr¼∞. Converting μjr¼∞ to mass gives Eq. (4). ▪
Now, the above proof applies for an apparent horizon that

is outermost marginally trapped, which is not always the
same as outermost minimal. However, at a moment of time
symmetry the two always coincide, since in this case we
have that θ� ¼ �K [36], where K is the mean curvature of
σ in Σ, and minimality means that K ¼ 0. Thus, to look for
violations of the PI in our setup, Theorem 1 shows that we
need to consider theories violating the DEC, which for (3)
means potentials that are negative somewhere.
As mentioned, DEC violating potentials arise in known

AdSdþ1=CFTd dualities after dimensional reduction, but
we can also see their relevance more directly. In AdS=CFT,
bulk scalar fields are dual to local scalar operators OðxÞ in
the CFT that transform with scaling dimension Δ under
dilatations:OðxÞ → λΔOðλxÞ. It turns out that, wheneverO
is a relevant operator (i.e., Δ < d), we must have that
m2 ≡ ∂

2
ϕVðϕÞjϕ¼0 < 0, leading to DEC violation. This

follows from the standard expression for the scaling
dimension Δ of O [11]: Δ¼d=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd=2Þ2þm2L2

p
[37].

Δ < d indeed means negativem2, which is allowed as long
as the Breitenlohner-Freedman (BF) bound [7,8] is satis-
fied: m2 ≥ m2

BF ≡ −d2=ð4L2Þ.
Black hole uniqueness, positive mass, and compact

dimensions.—Before constructing initial data, a few subtle-
ties and known results should be addressed. First, the
reference black hole of mass M appearing in Eq. (2) is the
one that dominates the microcanonical ensemble at that
mass, which is the one with the largest area [23]. Thus, if
there exist black holes with larger area than the AdS-
Schwarzschild black hole at a given mass, we seemingly
have to construct these before claiming a violation. Black
hole uniqueness is not established in AAdS spacetimes, so
this seems like a difficult task. However, spherical sym-
metry allows significant simplification. In the static spheri-
cally symmetric case, Ref. [38] recently proved that the
NEC implies ABHðMÞ ≤ AAdS-SchwarzschildðMÞ, so AdS-
Schwarzschild is the only spherical black hole that can
dominate the microcanonical ensemble. Since the theories
we consider here respect the NEC, we thus know that AdS-
Schwarzschild is the correct black hole to compare to in

Eq. (2), assuming we can take the reference black hole to be
spherically symmetric. This is reasonable and amounts to
the assumption that the CFT microcanonical ensemble on a
sphere does not break rotational symmetry spontaneously
(in the bulk this is the fact that introducing spin at fixed
energy tends to reduce the area, as can be seen from
Kerr-AdS [39] and other known spinning black hole
solutions [40–42]).
Second, it has been proven that the PMT holds even in

certain theories violating the DEC. The prime example is in
classical supergravity (SUGRA) theories [7,8,43], but in
Einstein-scalar theory more general results are known. It
was proved in [44,45] that the PMT holds if the scalar
potential VðϕÞ can be written as

VðϕÞ ¼ dðd − 1Þ
2L2

þ ðd − 1ÞW0ðϕÞ2 − dWðϕÞ2 ð9Þ

for some real function WðϕÞ defined for all ϕ ∈ R and
satisfying W0ð0Þ ¼ 0 (provided we only turn on the scalar
mode with fastest falloff [46–48], which is what we do
here). If we considered a supersymmetric theory, W would
be the so-called superpotential, but supersymmetry is not
required, and W can be any function satisfying the above
properties. Nevertheless, we keep referring to W as a
superpotential. It is not known whether the existence of
W is a necessary condition for the existence of a PMT; the
proofs of [44,45] only show that it is sufficient.
Third, suppose that an AAdSdþ1 solution is a dimen-

sional reduction of a higher-dimensional solution with
some number of compact dimensions. If the higher-
dimensional solution is a warped product rather than a
product metric between AAdSdþ1 and the compact space,
then it is not a priori obvious that a violation of the
lower-dimensional PI implies a violation of the higher-
dimensional one. For theories stemming from higher
dimensions, it could, in principle, be that the PI only is
valid with all dimensions included, but our numerical
findings argue against this, since potentials from known
AdS=CFT dualities seem to respect the lower-dimensional
PI, as we will see [49].
Constructing initial data.—All the quantities appearing

in the Penrose inequality can be located on a single time
slice, so we can test the Penrose inequality with initial
datasets rather than full spacetimes. Let us now describe
how we construct initial data. A spacelike initial dataset for
the Einstein-Klein-Gordon system on a manifold Σ at a
moment of time symmetry consists of a Riemannian metric
γab and a scalar profile ϕ on Σ that together satisfy the
Einstein constraint equations. The extrinsic curvature Kab
and time derivative of ϕ on Σ are both vanishing. In this
case, the full constraint equations reduce to
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Rþ dðd − 1Þ
L2

¼ j∇ϕj2 þ 2VðϕÞ; ð10Þ

where R is the Ricci scalar of γab.
Next, we want the initial data to have finite mass and

evolve to an AAdS spacetime, which constrains ϕ to fall off
sufficiently fast. Furthermore, we demand σ to be outermost
minimal, so that we can test Eq. (2). Note that Kab ¼ 0
implies that σ is extremal, so we need not impose the
condition that σ can be perturbed inward to a trapped surface.
To make the procedure explicit, we pick our coordinate

system on Σ to be

ds2 ¼ dr2

1þ r2

L2 − ωðrÞ
rd−2

þ r2dΩ2; r ∈ ½r0;∞Þ; ð11Þ

where ωðrÞ is a real function and dΩ2 is the metric of a
round unit (d − 1) sphere. The marginally trapped surface σ
is the sphere at r ¼ r0 > 0, and since we are considering a
spacelike manifold, we need ωðrÞ ≤ rd−2 þ rdL−2. As
discussed in [51], the above coordinates break down only
at locally stationary spheres, where the former inequality
becomes an equality. Since we want σ to be outermost
minimal, one coordinate system of the form (11) must be
enough to cover Σ. In these coordinates, for a general
choice of scalar profile ϕðrÞ, the solution to the constraint
reads (see, for example, [25,51])

ωðrÞ¼ e−hðrÞ
�
ωðr0Þþ

Z
r

r0

dρ
ehðρÞρd−1χðρÞ

d−1

�
;

hðrÞ¼
Z

r

r0

dρ
ρϕ0ðρÞ2
d−1

; χðrÞ¼
�
1þ r2

L2

�
ϕ0ðrÞ2þ2VðϕÞ:

ð12Þ

To construct particular initial datasets, we must provide
the profile ϕðrÞ on ½r0;∞Þ, together with value for r0. The
constant ωðr0Þ is fixed by the condition of σ being
marginally trapped, giving that ωðr0Þ ¼ rd−20 þ rd0L

−2.
Finally, we can complete our initial dataset by gluing a
second copy of the initial dataset to itself along σ [52]
(possible since σ is extremal; see [20,21] for details).
Let us now choose concrete scalar profiles. Since we are

looking for counterexamples to the PI rather than a proof,
we are free to consider special initial data. We consider two
types of profiles, either

ϕðrÞ ¼
X3
k¼0

signðηkÞ
�jηkj

r

�
Δþ2k

; ð13Þ

or

ϕðrÞ ¼
�
μ logðr=R0Þ r0 ≤ r ≤ R0

0 R0 ≤ r
; ð14Þ

for general constants fηkg and fμ; R0g parametrizing the
initial data. After picking numerical values of r0 and either
fηkg or fμ; R0g, we can compute the integrals (12) numeri-
cally, and we can obtain the mass as 16πGNM ¼
ðd − 1Þvol½Sd−1�ωð∞Þ. The only remaining thing to check
is that ωðrÞ never exceeds rd−2 þ rdL−2 for r > r0. As long
as this is true, σ satisfies the technical conditions required
for the holographic derivation of Eq. (2).
Why do we choose the profiles (13) and (14)? By trying

to minimize the mass while holding area½σ� ∝ rd−20 fixed,
we are maximizing the chance of violating the PI, since
smallerMmeans smaller ABHðMÞ. To achieve a small mass,
we want large regions of nonzero scalar field in order to
accumulate negative energy through the potential, while
minimizing the positive gradient contribution from χðrÞ.
Thus, we want a scalar that falls off slowly and without
unnecessary nonmonotonic behavior. Furthermore, due to
the factor exp½−ðd − 1Þ−1 R∞

r dρρϕ0ðρÞ2� in the integrand
of Eq. (12) when computing ωð∞Þ ∝ M, it is the behavior
of ϕ at large r that matters (or the largest values of r where
ϕ has support). Contributions to the mass from smaller r are
exponentially suppressed. Now, a logarithmic profile has a
slow monotonic falloff, but it requires compact support in
order to have the requisite asymptotics. The profile (13) has
the slowest possible falloff compatible with noncompact
support and standard Dirichlet boundary conditions.
We now generate a particular dataset by first drawing r0

with a uniform distribution from the range ð10−2L; 20LÞ,
allowing both small and large black holes. For the
profile (13), we draw the coefficients ηk from the range
ð−3r0; 3r0Þ, again with a uniform distribution. For the
profile (14), we draw μ ∈ ð0; 10Þ and R0 − r0 ∈ ð0; 100LÞ.
The parameter ranges are chosen partly through trial and
error—if we increase the parameter ranges for ηk or μ, we
mostly produce invalid datasets where ωðrÞ ≥ rd−2 þ rdL2

at some finite r > r0. This is not surprising, since if ϕ gets a
large amplitude, ω0ðrÞ becomes large as well, causing ωðrÞ
to overshoot rd−2 þ rdL−2 near r0 [53]. Either way, the
extent that our sampling of the space of profiles ϕðrÞ is
suboptimal corresponds to how much our exclusion plots
below can be improved in the future.
Coupling exclusion plots.—Let us first study d ¼ 3 and

the potential

VðϕÞ ¼ −
9

16
ϕ2 þ 9ϕ3 þ 11ϕ4; ð15Þ

which has m2 ¼ 1
2
m2

BF. This theory does not have a
superpotential, since solving (9) gives that a real WðϕÞ
can only exist on a finite interval. However, we find no
negative mass solutions after generating 105 initial datasets.
Nevertheless, this theory violates the PI. For example,
the profile
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ϕðrÞ ¼ −
�
3.8
r

�
Δ
�
1þ

�
3.2
r

�
2

−
�
2.4
r

�
4
�
; ð16Þ

with r0 ¼ 2.5L yields

A½σ�=AAdS-SchwarzschildðMÞ ≈ 1.2; GNM ≈ 7L: ð17Þ

As shown by Penrose’s original argument [1], the dataset
(16) cannot settle down to a stationary black hole, so it will
either collapse to a naked singularity, or we will have a
Coleman–De Luccia type decay [54,55], where the con-
formal boundary terminates in finite time and where the
event horizon grows to infinite area.
Let us now repeat the analysis for multiple poten-

tials. In Fig. 1, we show histograms of computed ratios
area½σ�=AAdS-SchwarzschildðMÞ in a large ensemble of initial
datasets with potentials coming either from (1) dimensional
reduction of SUGRA theories appearing in string theory
and AdS=CFT, such as D ¼ 11 [27,28], type IIB [26], or
massive type IIA [56] SUGRA or (2) corresponding to free
tachyonic scalars with m2 > m2

BF. In the case of SUGRA,
since we use scalar theories arising from consistent trun-
cations, our initial datasets provide valid initial datasets in
the various SUGRA theories, both in the dimensional
reduction and with compact dimensions included (using
the embeddings in [26–28,56]). The specific potentials are
shown in the legend of Fig. 1. We see that the PI holds for
all our initial datasets. This does not amount to a proof that
the PI holds, but it provides evidence, since for other
potentials we will easily be able to produce violations while
sampling from the same space of scalar profiles. This is an
important consistency check on our proposal, since if the PI
was violated for theories known to have a CFT dual, it
presumably cannot serve as a constraint on low energy

theories that can arise as the low energy limit of quantum
gravity (a so-called swampland condition [6,57,58]) [59].
Consider now d ¼ 3 and a potential with m2 ¼ 1

2
m2

BF
and with varying cubic and quartic couplings g3, g4 (see
caption of Fig. 2). Take g3 ≥ 0 without loss of generality.
For a given value of g3, we can gradually lower g4 until we
find a dataset violating the PI or the PMT. In Fig. 2, we plot
the highest value for g4 for which we are able to find at least
one violating dataset. Furthermore, we plot the region in
ðg3; g4Þ space in which a superpotential exists. The region
of coupling space below the orange (blue) markers is ruled
out by the PI (PMT). For g3 > 0, the PI is a stronger
condition than the PMT—at least in the space of initial data
we are sampling. For reasons we do not understand, at
g3¼0 where Z2 symmetry is restored, the PI and PMT are
violated at the same time. However, Z2 symmetry does not
appear to always guarantee coincidence, as shown in Fig. 3.
Nevertheless, for d ¼ 3 and a potential V¼ 1

2
m2ϕ2þg4ϕ4,

we find that the PI and PMT exclusion lines do coincide as
we vary ðm2; g4Þ, and furthermore, that exclusion line is
well described by the analytical condition given below.
Note that there are no immediately obvious changes in

the potential as we cross the line into territory where we
violate the PI. No new extrema develop.
Analytic bounds on couplings.—So far we have given

numerical bounds on couplings, through violation of the PI.
We can also give analytical bounds, although they are
somewhat weaker and rely on violation of the PMT
(implying PI violation). Consider the scalar profile (14)
and a potential V ¼ P∞

n¼2 gnϕ
n. It is, in fact, possible to

solve the integrals (12) analytically in terms of gamma

FIG. 1. Plot of computed area ratios for various scalar poten-
tials, with an ensemble of 104 initial datasets for each potential.
VBF ≡ 1

2
m2

BFϕ
2. For the interacting theories, the d ¼ 6 and d ¼ 3

potentials come from S4 [27] and S7 [28] reduction of D ¼ 11

SUGRA. The d ¼ 5 potential comes from S4 reduction of
massive type IIA SUGRA [56], and the d ¼ 4 potential comes
from S5 reduction of type IIB SUGRA [26].

FIG. 2. Exclusion plot on couplings for the potential VðϕÞ ¼
ð1=4Þm2

BFϕ
2 þ g3ϕ3 þ g4ϕ4 in dþ 1 ¼ 4. Couplings below the

circular markers are ruled out by the PI, while couplings below
the squares are ruled out by positive mass. Blue and orange lines
are quadratic fits, and couplings above the black dashed line give
potentials that have superpotentials. Above the blue and orange
markers, we have found no violations after the construction of
105 initial datasets using our sampling procedure. The dotted gray
line, here coinciding with the blue, shows the exclusion boundary
from the analytical condition (18).
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functions, and while the solution is somewhat involved, the
leading part of ωð∞Þ in the limit R0 → ∞ is simple,
yielding, up to OðR−2

0 Þ corrections,

λωð∞Þ
Rd
0

¼ μ2

L2
þ 2

X∞
n¼2

n!gn

� ð1 − dÞμ
dðd − 1Þ þ μ2

�
n
; ð18Þ

where λ≡ dðd − 1Þ þ μ2 and with the dependence on r0
contained in the OðR−2

0 Þ terms. A sufficient condition for
violation of the PMT and PI is for the rhs of (18) to be
negative for some μ ∈ R. Thus, any theory where pure AdS
space is nonperturbatively stable must have a positive rhs of
(18) for all μ. We included the exclusion line obtained from
Eq. (18) in Figs. 2 and 3.
Discussion.—There is by now a robust trend of propos-

ing constraints on gravity theories in order for black holes
to be well behaved semiclassically [6,61] and for these
constraints to later be proven in holography [62–64]. While
the PI can be derived in holography, we have shown that it
is generally false in general relativity and argued that it
serves as a new swampland [6,57,58] condition. As an
example, we showed that it can be used to constrain scalar
potentials for theories in AAdS spacetimes. If holography
makes sense in asymptotically flat space, it is possible that
the same logic can be applied there.
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