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It is generally assumed within the standard cosmological model that initial density perturbations are
Gaussian at all scales. However, primordial quantum diffusion unavoidably generates non-Gaussian,
exponential tails in the distribution of inflationary perturbations. These exponential tails have direct
consequences for the formation of collapsed structures in the Universe, as has been studied in the context of
primordial black holes. We show that these tails also affect the very-large-scale structures, making heavy
clusters like “El Gordo,” or large voids like the one associated with the cosmic microwave background cold
spot, more probable. We compute the halo mass function and cluster abundance as a function of redshift in
the presence of exponential tails. We find that quantum diffusion generically enlarges the number of heavy
clusters and depletes subhalos, an effect that cannot be captured by the famed fNL corrections. These late-
Universe signatures could, thus, be fingerprints of quantum dynamics during inflation that should be
incorporated in N-body simulations and checked against astrophysical data.
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Introduction.—The standard cosmological model
(ΛCDM) provides an excellent fit to high-precision astro-
physical and cosmological observations, in particular, the
cosmic microwave background (CMB), the large-scale
structure (LSS) of the Universe, and the relative abundance
of light elements. Its three main ingredients are (i) general
relativity and the cosmological principle, (ii) a Universe
made of baryonic matter, dark matter, radiation, and dark
energy, and (iii) quasi-scale-invariant, Gaussian initial
density fluctuations.
However, hints for a few cracks start to emerge at

different stages, in the form of moderate statistical
tensions in parameter inference, e.g., the local expansion
rate [1,2], or via the existence of “extreme” objects or
outliers, which are more frequently observed than what
ΛCDM predicts. Those may be associated with either an
extremely low value of the density field (such as the
Eridanus supervoid [3,4], which seems to have a direct
connection with the CMB cold spot [5]) or extremely large
values of the density field (such as massive galaxy clusters
like El Gordo [6]—see, however, Ref. [7] for a recent
smaller estimate of its mass—and the presence of galaxies
and quasistellar objects at extremely high redshifts, where
according to standard ΛCDM there should not be any
[8,9]). In addition to the early structure formation issues,
there are late time mismatches at small scales such as the

substructure problems [10] and the too-big-to-fail and the
core-cusp problems [11], which could be alleviated by
incorporating baryonic physics [12].
While most attempts to reconcile those potential issues

focus on relaxing either the first or the second assumption
mentioned above (i.e., modifying the laws of gravity or
invoking the existence of additional components in the
Universe), a natural strategy to accommodate the existence
of extreme objects within the ΛCDM paradigm would be to
question the third assumption, namely, the Gaussianity of
the primordial density fluctuations. The reason is twofold:
Experimentally, there are more extreme objects than what
Gaussian tails suggest, pointing toward the existence of
heavier tails; theoretically, the typical mechanisms produc-
ing primordial cosmological perturbations anyway lead to
non-Gaussian tails.
In the early Universe, indeed, vacuum quantum fluctua-

tions are amplified by gravitational instability and stretched
to large distances, giving rise to classical fluctuations in the
density field, that later collapse into cosmological struc-
tures [13]. At leading order in cosmological perturbation
theory, it gives rise to Gaussian perturbations, in good
agreement with CMB measurements [15]. However, the
CMB gives access to large scales only and leaves small
scales mostly unconstrained. Moreover, even at large
scales, they restrict the statistics of the most likely
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fluctuations only; i.e., they reconstruct only the neighbor-
hood of the maximum of the underlying distribution
functions and say little about their tails.
Nonetheless, beyond linear order, those tails are

expected to be non-Gaussian. The difficulty when charac-
terizing the statistics of those tails is that they require
nonperturbative techniques. Perturbative approaches, such
as calculations of the bi- or trispectrum, and fNL-like
parametrizations, are tailored to describe small deviations
from Gaussianity around the maximum, not accounting
for the tails.
Quantum diffusion and non-Gaussian tails.—Recently,

nonperturbative techniques have been developed to study
how quantum diffusion, the presence of which is inevitable
in scenarios where cosmological perturbations have a
quantum origin, modifies the expansion dynamics of the
Universe and, thus, affects the statistics of density fluctua-
tions. This can be done by combining three approaches to
describe the dynamics of super-Hubble degrees of freedom.
First is the separate-universe picture [16–19] (which is
valid beyond slow roll [20,21]), according to which spatial
gradients can be neglected on super-Hubble scales,
and each spatial point evolves independently along the
dynamics of an unperturbed universe. Second is stochastic
inflation [22,23], in which quantum fluctuations act as a
stochastic noise on the classical, background evolution of
each of these separate universes. Third is the δN formalism
[19,24–26], which states that, in each of these separate
universes, the local fluctuation in the amount of expansion
realized between an initial flat hypersurface and a final
hypersurface of uniform energy density is nothing but the
curvature perturbation. This gives rise to the stochastic-δN
formalism [27–32], which provides a nonperturbative
scheme to compute the statistics of curvature perturbations
on super-Hubble scales. These methods now extend to the
calculation of the density contrast and the compaction
function [33].
While these techniques recover quasi-Gaussian distribu-

tions close to their maximum, with fNL-type corrections,
they also reveal the existence of systematic exponential
tails [33–40], which strongly deviate from the Gaussian
profile (such heavy tails were also found in Refs. [41–44]
using different methods). More precisely, the distribution
function of the first-passage time N can be expanded as
PðN Þ ¼ P

n≥0 anðΦÞe−ΛnN , in which Λn are the eigen-
values of the adjoint Fokker-Planck operator associated
with the stochastic problem under consideration and anðΦÞ
are coefficients that depend on the initial configuration in
field space (here denoted asΦ). Far on the tail, the smallest
eigenvalue dominates, PðN Þ ∝ e−Λ0N , which implies that
large perturbations are much more likely than what a
Gaussian behavior, PG ∝ e−ΛN

2

, would suggest. In prac-
tice, these exponential tails are more important in models
where quantum diffusion dominates at some stages of the
inflationary dynamics (leading to smaller values of Λ0 and,

hence, heavier tails). Depending on the time at which this
happens, they affect structures at different scales. If the
fluctuations are large enough, they may even collapse into
black holes upon horizon reentry after inflation. This is
why non-Gaussian tails have been mostly studied in the
context of primordial-black-hole production (see, e.g.,
Refs. [33,34,37,39,45–50]).
Nonetheless, as we argue here, these heavy tails may also

play a key role in the formation of the LSS and point toward
potential solutions to some of the problems of ΛCDM.
Importantly, while the parameters an and Λn depend on the
details of the model under consideration, the existence
of these exponential tails is ubiquitous and arises in any
model where quantum diffusion is at play. In this sense,
they are already embedded in the ΛCDM scenario.
Therefore, our approach does not rely on extending
ΛCDM to solve the above-mentioned issues: Our goal is
rather to point out that ΛCDM may already contain the
ingredients needed to explain those “anomalous” observa-
tions, provided we carefully compute the primordial
statistics beyond the perturbative level.
Heavy tails in the form of log-normal distributions are

already known to develop on sub-Hubble scales after
inflation, due to gravitational collapse [51–53]. However,
the effect we are considering here is different: It leads to
primordial heavy tails, which are present even before
Hubble reentry.
Exponential tails in the primordial statistics of

perturbations.—The details of the stochastic distribution
associated with primordial perturbations depend on the
specifics of the inflationary model (the number of fields,
their potential, their kinetic coupling, etc.). In order to
describe the amplitude of fluctuations coarse-grained at a
certain scale, one has to convolve the first-passage time
distributions against backward distributions of the field
value [33,38]. Moreover, one must account for the non-
linear mapping between the curvature perturbation and the
density contrast [54], which further modifies distribution
functions and can also introduce heavy tails [55,56]. In this
Letter, we do not aim at deriving predictions for specific
models but rather wish to explore generic consequences
arising from the presence of heavy tails. This is why, in
practice, we consider two normalized templates for the
distribution function of the density contrast in comoving
threading δ:

P2ðδkÞ ¼ −
π

2μ2
ϑ02

�
παk
2

; e
− π2

μ2
Dk

�
;

P4ðδkÞ ¼
π

2μ2αk
ϑ04

�
παk
2

; e
− π2

μ2
Dk

�
: ð1Þ

In these expressions, δk denotes the Fourier mode of the
density contrast, related to the positive variable Dk through
the relation δk ¼ Dk − hDki, where the mean value is
taken with respect to the distribution function in question.
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These distributions depend on two parameters, αk and μ,
the latter being scale independent to reflect the fact that the
eigenvalues Λn do not depend on the field configuration
or, hence, on the scale [35]. Finally, ϑ02 and ϑ04 are the
derivatives of the elliptic theta functions of the second and
fourth kind, respectively [57]. In what follows, they are
refereed to as the “elliptic 2” and “elliptic 4” templates,
respectively. Such functions are often found in toy models
of quantum diffusion [34,35].
The two distributions are displayed in Fig. 1 as a function

of δ=σ, where hereafter σ denotes the standard deviation
of the distribution under consideration and where they are
compared with a Gaussian distribution, a local fNL distri-
bution, and a log-normal distribution. The free parameters
of those distributions are set such that they are maximal at
the same location and all share the same value of σ; see
Supplemental Material [58], where this procedure is further
detailed. Both elliptic profiles are endowed with a heavier
upper tail, and with a lighter lower tail, than the Gaussian fit.
The local fNL parametrization is defined as

δðxÞ ¼ δGðxÞ þ
3

5
fNL½δ2GðxÞ − σ2G�; ð2Þ

where δG has a Gaussian distribution function centered at
zero and with dispersion σG ≡ hδ2Gi1=2. From this expres-
sion, one can show that

PNLðδÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2GΔ
p

"
e
− 25ð ffiffiΔp

−1Þ2
72f2

NL
σ2
G þ e

−25ð ffiffiΔp þ1Þ2
72f2

NL
σ2
G

#
; ð3Þ

where ΔðδÞ ¼ 1þ 12=5fNLδþ 36=25f2NLσ
2
G. As shown in

Fig. 1, although fNL correctly describes the non-Gaussian

corrections around the maximum, it fails to capture the
highly non-Gaussian tails. Similarly, since PNL diverges
when δ approaches −3fNLσ2=5 − 5=ð12fNLÞ, it cannot
properly describe the small-δ statistics [59]. Interestingly,
the elliptic functions are more similar to a log-normal
distribution than the perturbative fNL approximation.
Implications for the large-scale structure.—The simplest

statistics to be extracted from the primordial density
fluctuations is the one-point function, i.e., the number of
collapsed objects. Following the Press-Schechter formal-
ism [60], this is given by the probability that δ is above a
given threshold δc: β ¼ Pðδ > δcÞ ¼ 2

R
∞
δc
PðδÞdδ. δc

depends on the time of reentry of the fluctuations and
has been extensively explored in the literature [61–64]. For
our purposes it will be enough to fix it to δc ¼ 1.68, as
predicted by linear theory of spherical collapse [65]. From
Fig. 1, it is clear that, as ν≡ δc=σ increases, the number of
collapsed objects is larger in heavy-tailed models than in
the Gaussian case.
More precisely, let us study how structures distribute

across different masses. This can be achieved with the halo
mass function (HMF), defined from the mass fraction β as

dn
d lnM

¼ ρm
M

dβ
d lnM

¼ ρm
M

d ln σ−1

d lnM
νβ0ðνÞ; ð4Þ

where M is the mass of the halo, ρm is the energy density
of matter, and a prime denotes derivation with respect
to ν. Previous works have proposed to test fNL with the
HMF; see, e.g., [66–70]. Here, we extend those results
by exploring initial density perturbations with non-
Gaussian tails.
Since present observations show a good agreement with

the Gaussian hypothesis at galactic scales, we tune the
free parameters of all considered distributions such that
they peak at the same value and share the same standard
deviation (see Supplemental Material [58] for further
details). As a consequence, the only difference in Eq. (4)
comes from the term β0ðνÞ. In a Gaussian distribution, one
has β0GðνÞ ¼ −2e−ν2=2

ffiffiffi
π

p
, and similar expressions can be

obtained for the other distributions.
Let us now study the redshift evolution of the number

of halos. We can describe the HMF (4) as a function of
redshift by writing ρmðaÞ ¼ ΩmðaÞρc withΩmðaÞ ¼ Ωm=a3

and σðaÞ ¼ σð1ÞDðaÞ, with the growth function DðaÞ ¼
δðaÞ=δð1Þ given by [71] DðaÞ ∝ a × 2F1½ðw − 1Þ=2w;
−1=3w; ð6w − 5Þ=6w; 1 − 1=ΩmðaÞ�, where w is the equa-
tion of state of dark energy (set to) w ¼ −1 and a is the
scale factor. By comparing the HMF at different redshifts
with the abundance of massive clusters, we can estimate
whether, e.g., El Gordo is a typical cluster or not, at a given
redshift.
Our main results are presented in Fig. 2, where we

display the HMF for the four distributions under consid-
eration at three redshifts, z ¼ 0, 1, 7. The bottom panels

FIG. 1. Gaussian, elliptic, local-fNL, and log-normal distribu-
tions, as a function of δ=σ, where σ is the standard deviation of the
corresponding distribution. The free parameters of those distribu-
tions are set such that they all share the same value of σ around the
maximum and are given by α ¼ 0.5, μ ¼ π, and σ ¼ ffiffiffi

2
p

α2, with
the same α and μ for both elliptic functions. See Supplemental
Material [58] for how to match the shape around the maximum.
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display the ratio of the HMF with respect to the Gaussian
case, with the normalization fixed to the Gaussian at
M ¼ 1011h−1 M⊙. At z ¼ 0 we observe two main effects
from the exponential tails: an increase in the number of
clusters (M > 1013 M⊙) and a decrease in the number of
substructures (M < 109 M⊙). Interestingly, the fNL
reconstruction can partially mimic the increase in clusters
but not the decrease in substructures. This makes the
predictions of quantum diffusion falsifiable. Equally impor-
tant, the predictions of the elliptic HMF can potentially
alleviate the shortcomings of ΛCDM. Moreover, we also
observe that the redshift evolution of the HMF is a key
discriminator of the nature of the primordial perturbations.
An elliptic HMF predicts that more massive objects formed
earlier, in agreement with the recent detection of massive,
high-redshift objects (see, e.g., [72] for a recent census of
the age of young quasars).
In addition to the number of halos per unit mass, it is

interesting to compute the number of clusters as a function
of redshift. This can be probed directly, for example, with
CMB data using the Sunyaev-Zeldovich (SZ) effect [73–75].
Our results are presented in Fig. 3, focusing on clusters
with M > 1015 M⊙ (see Supplemental Material [58] for
the detailed calculation). One can clearly see that, already
beyond z ∼ 1, the number of clusters is much enhanced
when initial perturbations have heavy tails. This, again,
shows the potential of this method to constrain the very
early-Universe physics.
Observationally, in most cases we do not have direct

access to the HMF but rather to the amount of luminous

matter. One, thus, needs to take into account the astro-
physical systematics connecting these two. Recently,
constraints on fNL have been derived using UV galaxy
luminosity functions that marginalize over those system-
atics [76]. A natural extension of this work would, thus,
be to constrain the heavy tails from quantum diffusion with
these data. Moreover, the HMF at subgalactic scales could
be probed by analyzing the strong lensing rates and
magnifications [77].

FIG. 2. Halo mass function (i.e., differential number of halos per comoving volume) obtained from different distributions for the
primordial density perturbations: Gaussian, elliptic 2 and 4, and local fNL (where fNL is fixed at the last scattering surface). Each column
corresponds to the HMF at a different redshift. The bottom panels show the ratio between the HMF and the Gaussian result. Quantum
diffusion affects both low- and high-mass ends of the HMF and become more significant at higher redshifts, making their signatures
distinguishable from perturbative non-Gaussianities (fNL). The normalization is fixed to match the Gaussian at M ¼ 1011h−1 M⊙ and
z ¼ 0, where h is the dimensionless Hubble constant, h ¼ H0=ð100 km=s=MpcÞ.

FIG. 3. Number of clusters with mass larger than 1015 M⊙ in
redshift bins of Δz ¼ 0.1 as a function of redshift for the
Gaussian, elliptic 2 and 4, and fNL distributions. The normali-
zation is fixed to the Gaussian case at z ¼ 0. We highlight with a
vertical dashed line the redshift of El Gordo (z ¼ 0.87).
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Future prospects.—ΛCDM relies on the assumption of
Gaussian initial conditions. Although CMB observations
tightly constrain the amount of non-Gaussianities at large
scales, little is known about the primordial fluctuations at
smaller scales. Several processes in the early Universe
could lead to non-Gaussian distributions. Notably, an
inevitable exponential tail arises due to quantum diffusion
during inflation. In this Letter, we have studied the imprints
these heavy tails leave in the number of halos and their
mass function. We have found that they enhance the
number of heavy clusters and deplete the number of
subhalos and that this difference with respect to the
standard Gaussian initial conditions becomes more impor-
tant at high redshift, depending on the strength of quantum
diffusion. This could be compared with current SZ catalogs
(e.g., Fig. 18 in Ref. [75]) that did not find clusters of
M > 1016 M⊙ and has a redshift distribution peaking at
z < 1. However, there are outstanding clusters like El
Gordo with M ∼ 3 × 1015 M⊙ at z ¼ 0.87 [6] and deep
voids like the Eridanus supervoid [5], and many more
should soon be discovered with the James Webb Space
Telescope (JWST) [78], Euclid [79], and the Vera Rubin
Observatory [80].
Let us note that the effect of quantum diffusion is similar

to having a log-normal initial density distribution. Such
log-normal profiles are indeed typically obtained from
Gaussian initial conditions due to nonlinear gravitational
collapse [51]. In fact, to speed up the computation, many
N-body codes start their evolution with an already log-
normal distribution [81,82]. Here, we find that nonlinear
growth occurs at much earlier times, as soon as non-
Gaussian tails are present. This leaves specific features in
the redshift dependence of the statistics: For high-redshift
galaxies we expect highly non-Gaussian statistics, much
beyond what would be expected from nonlinear gravita-
tional collapse in such a short time.
Using the HMF to probe primordial Universe physics

requires further developments on various fronts. From the
observational side, we need to understand the systematics
behind high-mass supergalactic structures at low and high
redshifts, which Euclid [79] and JWST [78] observations
may help to alleviate, as well as issues with baryonic
physics and halo occupation distributions. The HMF is
sensitive to the one-point statistics of the density field only,
but it would also be interesting to consider observables
probing non-Gaussianities in higher correlators. From the
theoretical side, we need to implement realistic physical
models in our pipeline and go beyond the simple phenom-
enological prescription adopted here (although this is not
expected to alter our qualitative conclusions, it matters for
quantitative details). Finally, on the numerical side, it would
be necessary to run N-body simulations with non-Gaussian
initial conditions of the type described above.
Altogether, we have demonstrated the impact of quan-

tum diffusion on the LSS and how the HMF and cluster

abundances can probe early-Universe physics. More impor-
tantly, we have shown that, within the standard cosmo-
logical model itself, quantum diffusion is inevitable during
inflation, and some of the current tensions can be alleviated
thanks to the non-Gaussian nature of the tails of primordial
perturbations.
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