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We consider general prepare-and-measure scenarios in which Alice can transmit qubit states to Bob, who
can perform general measurements in the form of positive operator-valued measures (POVMs). We show
that the statistics obtained in any such quantum protocol can be simulated by the purely classical means of
shared randomness and two bits of communication. Furthermore, we prove that two bits of communication
is the minimal cost of a perfect classical simulation. In addition, we apply our methods to Bell scenarios,
which extends the well-known Toner and Bacon protocol. In particular, two bits of communication are
enough to simulate all quantum correlations associated to arbitrary local POVMs applied to any entangled
two-qubit state.
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Introduction.—Quantum resources enable a sender and a
receiver to break the limitations of classical communica-
tion. When entanglement is available, classical [1–4] as
well as quantum communication [5,6] can be boosted
beyond purely classical models. A seminal example is
dense coding, in which two classical bits can be substituted
for a single qubit and shared entanglement [7]. However,
entanglement is not necessary for quantum advantages.
Communicating an unassisted d-dimensional quantum
system frequently outperforms the best conceivable proto-
cols based on a classical d-dimensional system [8–12];
even yielding advantages growing exponentially in d
[13,14]. Already in the simplest meaningful scenario,
namely, that in which the communication of a bit is
substituted for a qubit, sizable advantages are obtained
in important tasks like random access coding [15–17].
These qubit advantages propel a variety of quantum
information applications [18–22].
It is natural to explore the fundamental limits of quantum

over classical advantages. In order to do so, one has to
investigate the amount of classical communication required
to model the predictions of quantum theory. Previous works
consider not only the scenario of sending quantum systems
[23–27], but also simulating bipartite [23–34], as well as
multipartite entangled quantum systems [35–38]. While
such classical simulation of quantum theory is in general
challenging, a breakthrough was made by Toner and Bacon
[26]. Their protocol shows that any quantum prediction
based on standard, projective, measurements on a qubit can
be simulated by communicating only two classical bits.

However, this does not account for the full power of
quantum theory. More precisely, there exists qubit
measurements that cannot be reduced to stochastic combi-
nations of projective ones [39]. The most general mea-
surements are known as positive operator-valued measures
(POVMs). Physically, they correspond to the receiver
interacting the message qubit with a locally prepared
auxiliary qubit, and then performing a measurement on
the joint system [40]. Such POVMs are even indispensable
for important tasks like unambiguous state discrimination
[41,42] and hold a key role in many quantum information
protocols (see, e.g., [43–51]). Importantly, they also give
rise to correlations that cannot be modeled in any qubit
experiment based on projective measurements [52–56].
This naturally raises the question of identifying the

classical cost of simulating the most general predictions
of quantum theory, based on POVMs. In the minimal qubit
communication scenario, one may suspect that this cheap
price of only two bits is due to the restriction to the,
fundamentally binary, projective measurements. In con-
trast, when measurements are general POVMs, it is even
unclear whether the classical simulation cost is finite.
Notably, previous work has shown that there exists a
classical simulation that requires 5.7 bits of communication
on average [23,27]. However, that protocol has a certain
probability to fail in each round, leading to an unbounded
amount of communication in the worst case.
In this Letter, we explicitly construct a classical pro-

tocol that simulates all qubit-based correlations in the
prepare-and-measure scenario by using only two bits of
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communication. Thus, we find that the cost of a classical
simulation remains the same when considering the most
general class of measurements, although POVMs enable
more general quantum correlations than projective mea-
surements. Moreover, we show that two bits is the minimal
classical simulation cost, i.e., there exists no classical
simulation that uses less communication than our protocol.
This is shown through an explicit quantum protocol, based
on qubit communication, that eludes simulation with a
ternary classical message. Finally, we apply our methods to
Bell nonlocality scenarios [57]. We present novel protocols
that simulate the statistics of local measurements on
entangled qubit pairs.
The prepare-and-measure scenario.—A quantum

prepare-and-measure (PM) scenario [see Fig. 1(a)] consists
of two steps. First, Alice prepares an arbitrary quantum state
of dimension dQ and sends it to Bob. The state is described
by a positive semidefinite dQ × dQ complex matrix
ρ ∈ LðCdQÞ, ρ ≥ 0 with unit trace trðρÞ ¼ 1. Second, Bob
receives the state and performs an arbitrary quantum
measurement on it, obtaining an outcome b. General
quantum measurements are described by a POVM, which
is a set of operators fBbg that are positive semidefinite,
Bb ≥ 0 and sum to the identity,

P
b Bb ¼ 1. In quantum

theory, the probability of outcome b when performing the
POVM fBbg on the state ρ is given by Born’s rule,

pQðbjρ; fBbgÞ ¼ trðρBbÞ: ð1Þ

We are interested in constructing classical models for the
PM scenario that simulate the predictions of quantum
theory, i.e., classical models that reproduce the probability
distribution (1). In a classical simulation [see Fig. 1(b)],
Alice and Bob may share a random variable λ subject to

some probability function πðλÞ. This allows them to
correlate their classical communication strategies. Alice
uses λ and her knowledge of the quantum state ρ to choose
a classical message c selected from a dC-valued alphabet
f1;…; dCg. Since the selection can be probabilistic, her
actions are described by the conditional probability dis-
tribution pAðcjρ; λÞ. When Bob receives the message, he
uses λ and his knowledge of the POVM fBbg to choose his
outcome b. Again, this choice can be probabilistic and is
therefore described by a conditional probability distribution
pBðbjfBbg; c; λÞ. All together, the correlations obtained
from the classical model become

pCðbjρ;fBbgÞ¼
Z

λ
dλπðλÞ

XdC

c¼1

pAðcjρ;λÞpBðbjfBbg;c;λÞ:

ð2Þ
The simulation is successful if, for any choice of dQ-

dimensional states and POVMs, the quantum predictions
pQ can be reproduced with a classical model using
messages that attain at most dC different values. That is,
if there exists a dC and suitable encodings pA and
decodings pB, such that

∀ ρ; fBbg∶ pCðbjρ; fBbgÞ ¼ pQðbjρ; fBbgÞ: ð3Þ
If this holds, we say that the classical model simulates
quantum theory. In particular, we say that the classical
simulation is minimal if no classical simulation is possible
using a smaller message alphabet size dC. Furthermore, we
remark that for some PM scenarios, shared randomness
may be charged as a nonfree resource, leading to different
results and problems [17,24,50,55,58–62]. In fact, for the
PM scenario we study here, it is known that an infinite
amount of shared randomness is required in order to
perform the task with finite classical communication [24].
Our focus is on the most fundamental scenario, namely,

that based on qubits (dQ ¼ 2). Notice that there exists a
trivial classical simulation in which Alice sends the Bloch
vector coordinates of her quantum state to Bob. After that,
he can classically compute the Born rule and samples his
outcome accordingly. However, sending the coordi-
nates requires an infinite amount of communication
(dC unbounded). Whether a classical simulation is possible
with a finite value of dC is much less trivial. Notably, the
simulation protocol of Toner and Bacon showed that if
we additionally restrict the quantum measurements to be
projective, i.e., B2

b ¼ Bb, a classical simulation with
dC ¼ 4 (two bits) is possible [26].
We also remark that here we consider a scenario where

Bob does not know Alice’s state and Alice does not know
Bob’s measurement beforehand. This scenario, where Alice
and Bob can independently choose between different
states and measurements, is even required to provide quan-
tum over classical advantages in several tasks [13–17]. An
interesting related scenario is the one where Bob’s

(a)

(b)

FIG. 1. (a) Quantum PM scenario: Alice sends a dQ-dimen-
sional state to Bob who performs a POVM to obtain his outcome.
(b) Classical PM scenario for simulating the quantum PM
scenario: The classical simulation is successful if, for every state
and POVM, the probability that Bob outputs b is the same as in
the quantum protocol.

PHYSICAL REVIEW LETTERS 130, 120801 (2023)

120801-2



measurement is known by Alice, or, equivalently, Bob has
only a single choice of measurement. In that case, Frenkel
and Weiner [63] proved that, in the presence of shared
randomness, a d-dimensional quantum system can always
be perfectly simulated by a d-dimensional classical system.
This powerful result inspired proposals such as the “no-
hypersignaling” principle [64], which is respected by
quantum theory. In what follows, we find a minimal
classical simulation for general qubit protocols.
Classical simulation protocol.—Qubit states ρ can be

represented as ρ ¼ ð1þ x⃗ · σ⃗Þ=2, where x⃗ ∈ R3 is a three-
dimensional real vector such that jx⃗j ≤ 1, and σ⃗ ¼
ðσX; σY; σZÞ are the standard Pauli matrices. We may,
without loss of generality, restrict ourselves to quantum
protocols based on pure states. This corresponds to unit
vectors jx⃗j ¼ 1. Since mixed states are convex combina-
tions of pure states, every classical simulation protocol
applicable to pure states can immediately be extended to
apply also to mixed states. The classical randomness in the
convex combination can simply be absorbed in the shared
randomness of the simulation protocol. Similarly, because
every qubit POVM can be written as a coarse graining
of rank-1 projectors [65], we may restrict ourselves to
POVMs proportional to rank-1 projectors. Thus, we write
Bob’s measurements as Bb ¼ 2pbjy⃗bihy⃗bj, where pb ≥ 0,P

b pb ¼ 1 and jy⃗bihy⃗bj ¼ ð1þ y⃗b · σ⃗Þ=2 for some nor-
malized vector y⃗b ∈ R3. In Bloch notation we have

trðρBbÞ ¼ pbð1þ x⃗ · y⃗bÞ: ð4Þ
We now present a classical simulation protocol in which

Alice and Bob can perfectly simulate all qubit correlations
at the cost of two bits of communication. To this end, it is
handy to first define the Heaviside function, defined by
HðzÞ ¼ 1when z ≥ 0 andHðzÞ ¼ 0 when z < 0, as well as
the related function ΘðzÞ ≔ z ·HðzÞ. Consider now the
following protocol.
(1) Alice and Bob share two normalized vectors

λ⃗1; λ⃗2 ∈ R3, which are uniformly and independently dis-
tributed on the unit radius sphere S2.
(2) Instead of sending a pure qubit ρ ¼ ð1þ x⃗ · σ⃗Þ=2,

Alice prepares two bits via the formula c1 ¼ Hðx⃗ · λ⃗1Þ and
c2 ¼ Hðx⃗ · λ⃗2Þ and sends them to Bob.
(3) Bob flips each vector λ⃗i when the corresponding bit

ci is zero. More formally, he sets λ⃗0i ≔ ð−1Þ1þci λ⃗i.
(4) Instead of performing a POVM with elements

Bb ¼ 2pbjy⃗bihy⃗bj, Bob picks one vector y⃗b from the set
fy⃗bg according to the probabilities fpbg. Then he sets λ⃗ ≔
λ⃗01 if jλ⃗01 · y⃗bj ≥ jλ⃗02 · y⃗bj and λ⃗ ≔ λ⃗02 otherwise. Finally, Bob
outputs b with probability

pBðbjfBbg; λ⃗Þ ¼
pbΘðy⃗b · λ⃗Þ

P
jpjΘðy⃗j · λ⃗Þ

: ð5Þ

The proof that the protocol perfectly reproduces the qubit
correlations (4) is given in the Supplemental Material

(Sec. I) [66]. A sketch of the first three steps of the
protocol is given in Fig. 2. After the third step, the two
vectors λ⃗01 and λ⃗02 are uniformly and independently distrib-
uted in the positive hemisphere defined by x⃗, i.e., their
probability densities are ρðλ⃗0iÞ ¼ Hðx⃗ · λ⃗0iÞ=ð2πÞ. As we
show, this distribution is enough for Bob to classically
reproduce the statistics of every POVM applied to the qubit
state associated to x⃗. Furthermore, in the Supplemental
Material (Sec. I) [66] we also present a modified version of
that protocol. There, Bob sends first one bit to Alice and
then Alice sends one bit back to Bob.
Two bits are necessary for a classical simulation.—We

have shown that two classical bits are sufficient to simulate
qubit correlations. We now prove that they are also
necessary, i.e., that the above classical simulation protocol
is minimal.
To this end, we show that there exists correlations in the

qubit PM scenario that cannot be modelled in any classical
protocol (2) that uses ternary messages (dC ¼ 3). For this
purpose, we consider PM scenarios with a fixed number of
inputs for Alice and Bob. Alice selects her input from a set
x ∈ f1;…; IAg and prepares the qubit ρx. Bob selects his
input from a set y ∈ f1;…; IBg and performs the two-
outcome projective measurement fBbjyg with outcomes
labelled by b ∈ f1; 2g. The qubit correlations are then
given by pQðbjx; yÞ ¼ trðρxBbjyÞ. Notice that although Bob
could perform POVMs, we are restricting ourselves to
projective measurements. These turn out to be sufficient for
the proof.
It is key to recognise that the task of deciding whether

a given pðbjx; yÞ admits a classical simulation with a
dC-dimensional message alphabet can be solved by means
of linear programming. From the duality theory of linear
programming [67], we can obtain a classical dimension
witness that certifies that the probabilities pQðbjx; yÞ
cannot be simulated by sending classical ternary messages.
A classical dimension witness [14,18] is a linear inequality
which is respected by all classical models in the PM
scenario for a given dC. This can, in general, be written as

X

b;x;y

γðbjx; yÞpCðbjx; yÞ ≤ Cd; ð6Þ

FIG. 2. A two-dimensional illustration of the first three steps in
the classical simulation protocol based on two bits.
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for some coefficients γðbjx; yÞ ∈ R. Here, Cd is the
classical bound. A violation of this inequality certifies that
no classical model using dC symbols can simulate
pQðbjx; yÞ. In the Supplemental Material (Sec. III) [66],
we detail these linear programming methods. Inspired by
the efficient method to find local bounds of Bell inequal-
ities presented in Ref. [68], we provide a new and efficient
algorithm to obtain the classical dC-dimensional bound
≤ Cd for any given set of coefficients fγðb; x; yÞg. Also,
drawing inspiration from Ref. [69], we developed computa-
tional methods to convert the numerical solutions obtained
from standard solvers to rigorous computer-assisted proofs
which do not suffer from numerical precision issues due to
floating point arithmetic.
In this way, we have obtained several examples of qubit

states and measurements that generate quantum correla-
tions pQðbjx; yÞ that do not admit a classical model for
dC ¼ 3. An elegant example is obtained from considering
IA ¼ 6 states that form an octahedron on the Bloch sphere.
They correspond to the eigenstates of the three Pauli
operators ðσX; σY; σZÞ. We let Bob perform IB ¼ 24 differ-
ent projective measurements. The Bloch vectors of these
measurements are oriented such that they point to the
vertices of a snub cube [70], which is an Archimedean
solid, inscribed in the Bloch sphere. This may be viewed as
a PM variant of platonic Bell inequality violations [71].
Specifically, the 24 measurement directions are obtained as
follows. Let τ be the one real root of the polynomial
x3 − x2 − x − 1, known as the Tribonacci constant. Take all
even (odd) permutations of, ð�1;�1=τ;�τÞ and for each
permutation, take only the four sign combinations that have
an even (odd) number of “þ”. This gives all vertices of the
snub cube. Finally, do a global rotation by 60 degrees in the
XY plane, i.e., apply the unitary U ¼ j0ih0j þ eðiπ=3Þj1ih1j
to all projectors. The linear programming methods reveal
that the resulting pQ has no classical model for dC ¼ 3.
In the Supplemental Material (Sec. III) [66], we discuss a

heuristic approach to find states and measurements leading
to probabilities which do not admit a classical simulation
for dC ¼ 3. Fixing the above six preparations, the sparsest
proof we have found uses eleven measurements that
correspond to the solution of the Thomson problem [72].
All our computational code is openly available at the online
repository [73].
Although no ternary message protocol is sufficient, it

may still be that a classical simulation is possible by
sending less than two bits on average. For example, Alice
may restrict herself to send in some fraction of rounds
only a trit, a bit or no communication at all. For the case
of sometimes sending a bit or less, we show in the
Supplemental Material (Sec. II) [66] that no classical
simulation is possible. The reason is closely connected
to the zero local weight of the singlet state, also known as
the EPR2 decomposition [74,75]. Our argument shows
that, if one could simulate qubit correlations by sometimes
sending only a bit or less, one could construct a protocol

that simulates the singlet state without communication in
these rounds. This would induce a local part for the singlet
state, which contradicts the EPR2 decomposition.
Simulating nonlocality.—It is straightforward to adapt

our classical protocol to simulate the statistics obtained
from arbitrary local POVMs on any entangled qudit-qubit
state. Indeed, all PM protocols can be adapted to Bell
scenarios [23]. For that, Alice chooses her measurement, an
arbitrary POVM on a dQ-dimensional quantum system.
Then, she produces an output according to the marginal
distribution of her POVM elements and, depending on her
outcome, calculates the post-measurement state of Bob’s
qubit. Finally, she simply uses the classical protocol for the
PM scenario to send that qubit state to Bob. Thus, our
protocol immediately extends the best previously known
one, due to Toner and Bacon [26], to Bell scenarios
involving POVMs. At the same time, we use the same
amount of classical communication, in fact, two bits.
However, Toner and Bacon also show that only a single

bit is necessary to simulate local projective measurements
on a qubit pair in the singlet state jΨ−i¼ðj01i− j10iÞ= ffiffiffi

2
p

.
We can also extend that result by constructing a novel one
bit protocol. Here, Alice is restricted to projective mea-
surements with outcomes a ¼ �1, but Bob can perform
arbitrary POVMs.
(1) Alice and Bob share two normalized vectors

λ⃗01; λ⃗2 ∈ R3, which are uniformly distributed on the unit
radius sphere S2.
(2) Instead of performing a projective measurement with

projectors j � x⃗ih�x⃗j ¼ ð1� x⃗ · σ⃗Þ=2, Alice outputs a ¼
−sgnðx⃗ · λ⃗01Þ and sends the bit c ¼ sgnðx⃗ · λ⃗01Þ · sgnðx⃗ · λ⃗2Þ
to Bob. Here, sgnðzÞ ¼ 1 when z ≥ 0 and sgnðzÞ ¼ −1
when z < 0.
(3) Bob flips the vector λ⃗2 if and only if c ¼ −1. More

formally, he sets λ⃗02 ≔ cλ⃗2.
(4) Same as “Step 4” in the original prepare-and-measure

protocol.
Since λ⃗01 is uniformly distributed on S2, we obtain the

correct marginal probabilities pðaÞ ¼ 1=2 for Alice.
Furthermore, when Alice outputs a ¼ þ1, λ⃗01 and λ⃗02 are
distributed on S2 according to ρðλ⃗0iÞ ¼ Hð−x⃗ · λ⃗0iÞ=ð2πÞ.
This corresponds precisely to a classical description of
Bob’s post-measurement state −x⃗ (compare with the text
below Fig. 2). When Alice outputs a ¼ −1, the two vectors
are distributed according to ρðλ⃗0iÞ ¼ Hðþx⃗ · λ⃗0iÞ=ð2πÞ,
which corresponds to the correct post-measurement state
þx⃗. Therefore, Bob can apply the same response function
(“Step 4”) as in the original PM protocol, which immedi-
ately yields the correct quantum probabilities. Additionally,
since singlet correlations have no local part [74,75], one bit
of communication is necessary in each round, ensuring the
optimality of this protocol. Clearly, this protocol can be
easily adapted to any maximally entangled qubit pair by
rotating either Alice’s or Bob’s measurement basis.
Discussion.—We have proven that two bits of commu-

nication are necessary and sufficient in order to classically
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simulate the most general predictions of quantum theory in
a qubit prepare-and-measure scenario. Our results also have
immediate implications for simulations of nonlocality in
scenarios featuring POVMs. In this way, we generalized the
well-known protocols of Toner and Bacon [26] from
projective measurements to the most general qubit mea-
surements (POVMs). Interestingly, this comes with no
increase in the classical cost. See Table I for an overview.
A natural direction is to consider classical simulations

for higher-dimensional quantum PM scenarios (dQ > 2), or
scenarios involving entanglement. Notably, the latter can
sometimes be isomorphic to the former [76]. Although this
has received some attention [33,34,38,77], few general
results are known. Most notably, it is still an open problem
whether a qutrit (dQ ¼ 3) PM scenario can be classically
simulated with a finite message alphabet (dC < ∞).
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