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Discrete time crystals (DTCs) have recently attracted increasing attention, but most DTC models and
their properties are only revealed after disorder average. In this Letter, we propose a simple disorder-free
periodically driven model that exhibits nontrivial DTC order stabilized by Stark many-body localization
(MBL). We demonstrate the existence of the DTC phase by analytical analysis from perturbation theory
and convincing numerical evidence from observable dynamics. The new DTC model paves a new
promising way for further experiments and deepens our understanding of DTCs. Since the DTC order does
not require special quantum state preparation and the strong disorder average, it can be naturally realized on
the noisy intermediate-scale quantum hardware with much fewer resources and repetitions. Moreover, in
addition to the robust subharmonic response, there are other novel robust beating oscillations in the Stark-
MBL DTC phase that are absent in random or quasiperiodic MBL DTCs.
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Introduction.—Spontaneous symmetry breaking (SSB)
is one of the most important concepts in modern physics.
Various phases of matter and phase transitions can be
described by the SSB mechanism; for example, the for-
mation of crystals is the result of spontaneously breaking
continuous spatial translational symmetry. Inspired by this
notion, Wilczek proposed the intriguing concept of a “time
crystal” that spontaneously breaks continuous time trans-
lational symmetry [1–3], and various no-go theorems [4–6]
have established since then that the continuous time crystal
would not exist. However, Floquet systems, quantum
systems subject to periodic driving, can exhibit discrete
time translational symmetry breaking [7–10] and have
attracted considerable research interest [7,8,11–20]. The
given observable in the discrete time crystal (DTC) phase
can develop persistent oscillations whose period is an
integer multiple of the driving period. Recently, DTCs
have been experimentally realized in programmable quan-
tum devices with periodic driving [21–26].
Because of the existence of periodic driving, energy is no

longer conserved in a Floquet system. Thus, in the absence
of any other local conservation laws, a generic system will
absorb energy from the periodic driving, ultimately heating
to infinite temperature. The thermalization of many-body
Floquet systems implies that any local physical observable
becomes featureless at late times [27–29]. Therefore, strong
disorder is required [7–10,29–32] to realize many-body
localization (MBL) that exhibits emergent local integrals of
motion [33,34] and prevents absorption of heat from
periodic driving. However, to investigate the DTC behav-
ior, we have to average the observable dynamics over a
great number of different disorder instances, requiring more
quantum resources and severely restricting the efficient
experimental study of DTCs.

Besides DTCs stabilized by the MBL phase, so-called a
prethermal DTC phase exists without the need of MBL.
Under some conditions, the dynamics of the many-body
Floquet system can be thought of as being generated by an
effective time-independent “prethermal Hamiltonian” Heff .
The Floquet system can then display DTC dynamics upon
starting from certain low-temperature symmetry-breaking
initial states of Heff within an exponential heating time
window [35–39], realizing prethermal DTCs [11,40–45].
Recently, in the kicked PXP model [46,47], the discrete

time crystal order enabled by quantum many-body scars
[48–51] with the Néel state as the initial state has been
identified, which is strongly reminiscent of a prethermal
DTC. (See Ref. [52] for another similar mechanism
enabling sub-Hilbert space DTC behavior in which the
DTC lifetime can be enhanced with dynamical freezing
[53–55].) The fidelity Fn ¼ jhZ2jUn

FjZ2ij2 is used to
characterize the dynamics in this model, where jZ2i is
the initial Néel state and UF is the Floquet evolution
unitary. When n is even, Fn > 0 and when n is odd,
Fn ¼ 0; this corresponds to the subharmonic response with
a timescale Ts ¼ 2. After a long enough time, the fidelity
will decay to zero finally and stay featureless, and this
corresponds to the prethermal timescale Tp. Between the
two timescales, there are another two novel timescales that
have not been reported in DTC or prethermal DTC phases
before. One is the emergent beating timescale Tb: the
fidelity at even periods exhibits a beating oscillation that
comes from the overlap between the Néel initial state and
the lowest-lying excited states of Heff . The beating time-
scale Tb ∝ Δ−1, where Δ is the gap in the Floquet
spectrum. The other is the timescale Tg that is set by the
inverse energy splitting in the ground state manifold and
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Tg ∝ eN where N is the system size. After driving cycles in
the order of Tg, the fidelity at even periods F2n decreases,
while simultaneously the fidelity at odd periods F2nþ1

increases. However, different from prethermal DTC phases,
these phenomena strongly depend on special Néel initial
states where highly accurate quantum state preparation is
required.
An extremely important and exciting direction is to

identify a clean Floquet system, i.e., without strong dis-
order, that exhibits a nontrivial DTC phase with no
dependence on initial states. To stabilize this intrinsically
dynamical phase, MBL is extremely important as discussed
above. It has long been established that the quantum
systems may enter MBL phases in the presence of
sufficiently strong random disorder [33,34,56–64], quasi-
periodic potential [65–70], or linear Zeeman field [71–75]
in one-dimensional (1D) systems. The third one is called
Stark MBL [71–76]. By intuition, we may construct a clean
many-body Floquet system utilizing Stark MBL to stabilize
DTC order.
In this Letter, we propose a clean kicked Floquet model

inspired by Stark MBL. It has various nontrivial and
interesting properties, including a robust subharmonic
response as conventional DTC and other novel timescales
similar to those reported in the kicked PXP model and
Rydberg atom experiments [46,47]. The subharmonic
response is robust against imperfection and does not
depend on special initial states, which is a signal for a
nontrivial DTC phase. Since the existence of DTC order
does not depend on the strong disorder, it can be naturally
realized on the quantum hardware, relying on fewer
quantum computational resources and experimental trials.
Model.—The Floquet unitary for the model considered in

the Letter reads as

UF ¼ U2U1 ¼ e−iH2e−iðπ2−ϵÞH1 ; ð1Þ

where

H1 ¼
X

j

Xj; ð2Þ

H2 ¼ Jz
X

j

ðjþ 1ÞZjZjþ1 þW
X

j

jZj: ð3Þ

X and Z are Pauli matrices, and ϵ is the imperfection in the
driving. H1 is the kicked term, when ϵ ¼ 0, U1 ¼

Q
j Xj

and all the spins flip exactly. H2 has two terms: one is a
linear Zeeman field for Stark MBL; the other one is a linear
zz interaction. The linear term for interaction is important to
stabilize a DTC similar to the case discussed in [23] (see
also in the Supplemental Material [77]). The reason is that
the linear Zeeman field, as well as the Stark MBL, will be
suppressed by the imperfection ϵ. Therefore, we need some
nonuniform interaction to stabilize the MBL phase.

Different from the random MBL DTC case where a strong
disorder in zz interaction is added, we here instead also use
a linear zz interaction.
When ϵ ¼ 0, the quasieigenstates ofU0

F can be written as

j�i ¼ 1ffiffiffi
2

p
�
e−i

H2ðzÞ
2 jzi � e−i

H2ð−zÞ
2 j − zi

�
; ð4Þ

whose eigenvalues are

U0
Fj�i ¼ �e−i

H2ðzÞþH2ð−zÞ
2 j�i; ð5Þ

respectively, where jzi is the product state and j − zi ¼Q
j Xjjzi. jþi and j−i form a so-called π pair in which

quasieigenenergy difference equals π. For simplicity, we
use quasieigenenergy εF of jþi to represent this π pair. And
for any product state jzi, it can be represented by a
superposition of a π pair of quasieigenstates,

j � zi ¼ 1ffiffiffi
2

p ei
H2ð�zÞ

2 ðjþi � j−iÞ: ð6Þ

Therefore, there is a trivial subharmonic response in ϵ ¼ 0
limit,

U2
Fjzi ¼ UFj − zi ¼ jzi; ð7Þ

where we have ignored the global phase. Accordingly, the
local physical observables, such as hZðtÞi, develop persis-
tent oscillations whose periods are twice the driving period,
and the discrete time translational symmetry spontaneously
breaks. However, this DTC order depends on fine-tuning of
parameters ϵ ¼ 0. To establish a nontrivial DTC phase, the
subharmonic response must be robust against imperfection
ϵ. When ϵ ≠ 0, the quasieigenstates cannot be analytically
exactly tracked; we use perturbation theory and numerical
results below to show that the subharmonic response is
robust against imperfection ϵ.
Observable.—To describe the dynamics of the kicked

model and diagnose the DTC phase, we need to utilize
suitable observables. Because of the linear Zeeman field
and linear zz interaction, different spatial sites are not
equivalent anymore. Therefore, we do not choose the
nonequal time spin-spin correlation on site N=2 commonly
used in previous DTC works [12] and instead use more
representative site-averaged observables. Spurred by [47],
we define two types of fidelity: One is the fidelity for a
given initial state,

Fn ¼ jhψ ijUn
Fjψ iij2; ð8Þ

where jψ ii is the initial state. The other is the state-averaged
fidelity

F̄n ¼
1

2N

X

fzg
jhzjUn

Fjzij2; ð9Þ
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where the sum is over all possible 2N product states jzi. We
can also utilize a site-averaged spin autocorrelator as the
observable hZð0ÞZðnÞi ¼ ð1=NÞPjhZjð0ÞZjðnTÞi, and
the dynamical behaviors are qualitatively the same as the
fidelity (see the Supplemental Material for details [77]).
Analysis of different timescales.—We observe three

different timescales for our Floquet model, which are
similar to those reported in the kicked PXP model.
Because the third timescale Tg ∝ eN is exponential with
the system size, we show the dynamics of a small system
(three sites) first to demonstrate all three timescales in the
dynamics. The results are summarized in Fig. 1.
To understand these three timescales, we consider a

product state jzi and the corresponding state-dependent
fidelity first. When ϵ ≠ 0, although the product state jzi
cannot be represented by a superposition of one π pair of
quasieigenstates, we can still do decomposition in the
eigenspace of UF. Based on the perturbation theory, the
quasieigenstate of UF (ϵ ≠ 0) can be written as a super-
position of the quasieigenstates of U0

F (ϵ ¼ 0) with the
similar quasieigenenergies. For a given product state jzi,
the corresponding original π pair of quasieigenstates and
the most related quasieigenstates to the first-order pertur-
bation form a Hilbert subspace, and jzi roughly live in this
subspace.
We utilize perturbation theory to locate the subspace

where the product state jzi lives. We use j�i to represent
the original π pair related to jzi when ϵ ¼ 0 and the quasi-
eigenenergy is εF, i.e., U0

Fj�i ¼ �e−iεF j�i. By intuition,
the dimension of the subspace is determined by the number
of quasieigenstates of U0

F that have similar quasieigene-
nergies with j�i. In the Supplemental Material [77], we
show that if there is only one π pair of quasieigenstates j�0i
with ε0F ¼ εF or εF þ πðmod 2πÞ, j�i and j�0i form a
subspace with dimension of four, and jzi roughly lives in
this subspace. Equivalently, if we check the overlaps
between jzi and quasieigenstates of UF, there is an obvious
dominant-subleading π-pair pattern, see Fig. 2(a). Even if
there is no exactly matching quasieigenstates ofU0

F, as long

as there is one special π pair of quasieigenstates of U0
F that

has the closer quasieigenenergy with j�i than all other
eigenstates, the dominant-subleading π-pair pattern for the
decomposition of jzi still exists. On the contrary, if several
π pairs of U0

F have the same closest quasieigenenergy
difference with j�i as δεF ¼ jεF − ε0Fj ¼ δ, the dominant-
subleading π-pair pattern vanishes and we can only see
one π pair (the original one) with dominant overlap, see
Fig. 2(b).
When ϵ ¼ 0, the product state jzi can be represented by

an equal weight superposition of a π pair of quasieigen-
states of U0

F and this induces the subharmonic response as
discussed above. When ϵ is small, as long as the product
state jzi can still be represented by a superposition of
several π pairs of quasieigenstates of UF and the weights of
the two quasieigenstates in any π pair have the same
absolute value, as guaranteed by the perturbation theory,
the Ts ¼ 2 subharmonic response still exists.
The beating timescale Tb is caused by the quasieigene-

nergy difference between different quasieigenstates (see the
Supplemental Material for details [77]). Consider a three-
site subsystem of a product state jzi, jSj−1; Sj; Sjþ1i, jzi and
j − ziðj − Sj−1;−Sj;−Sjþ1iÞ can be combined into a π pair
with quasieigenenergy equal to f½H2ðzÞ þH2ð−zÞ�=2g
when ϵ ¼ 0. If we flip spin Sj of jzi and j − zi, there
are two new product states jz0iðjSj−1;−Sj; Sjþ1iÞ and
j − z0iðj − Sj−1; Sj;−Sjþ1iÞ, and they form a new π pair
j�0iwith quasieigenenergy ε0F. The quasieigenenergy differ-
ence between the two π pairs is

δεF ¼ 2JzjjSj−1 þ ðjþ 1ÞSjþ1j ðmod 2πÞ: ð10Þ

When Sj−1 ¼ −Sjþ1, the quasieigenenergy difference after
flipping the spin Sj equals 2Jz; when Sj−1 ¼ Sjþ1, the
quasieigenenergy difference after flipping the spin Sj equals
2ð2jþ 1ÞJz. Suppose Jz ¼ ðπ=2NÞ and assume N to
be odd for simplicity; considering the spin configuration
around a fixed site ½ðN − 1Þ=2� (the middle site), the pro-
duct states can be divided into two parts: when
S½ðN−1Þ=2�−1 ¼ S½ðN−1Þ=2�þ1, as discussed above, there are

FIG. 1. Three timescales for the dynamics of the state-averaged
fidelity F̄n: when n is even, F̄n > 0 and when n is odd, F̄n ¼ 0,
which correspond to the subharmonic response Ts ¼ 2; in
addition to this subharmonic response, there is a beating time-
scale Tb ≈ 66 and a third timescale Tg ≈ 16 000 (N ¼ 3;
Jz ¼ ðπ=2NÞ; W ¼ 5.0; ϵ ¼ 0.05).

FIG. 2. Overlaps with quasieigenstates of UF: N ¼ 15;
Jz ¼ ðπ=2NÞ; W ¼ 5.0; ϵ ¼ 0.05. (a) The product state
j000000000000000i roughly lives in a subspace with dimension
of four and we can see the obvious dominant-subleading π-pair
pattern. (b) There is only one obvious π pair in the decomposition
of the product state j001100110011001i.
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two π pairs related by a Pauli-X matrix at site ½ðN − 1Þ=2�
and the quasieigenenergy difference is equal to π.
Furthermore, the quasieigenstates decomposition of the
product state includes a dominant π pair and a subleading
π pair, see Fig. 2(a).We call these product states “good initial
states.” The dynamics of these good states have a dominant
beating timescale Tb determined by the quasieigenenergy
difference between dominant and subleading π pairs,
and Tb fits well with the perturbative predictions (see the
Supplemental Material for details [77]), see Fig. 3. When
S½ðN−1Þ=2�−1 ¼ −S½ðN−1Þ=2�þ1, there is no π pair j�0i with
quasieigenenergy difference δεF ¼ 0 or π with j�i. As
shown in Fig. 2(b), there is no dominant-subleading π-pair
pattern. We call these product states “bad initial states.”
Although there is no obvious subleading π pair, there are still
many π pairs with small overlaps and different quasieige-
nenergy differences with j�i; thus we can see many Fourier
peaks in Fig. 4(b) (see the Supplemental Material for
details [77]).
Now we investigate the robustness of a beating time-

scale by considering nonperfect Jz, for example, Jz ¼
½ðπ − 0.05Þ=2N�. For a π pair of quasieigenstates of U0

F
combined by good initial states, although there is no other π
pairs of quasieigenstates of U0

F with δεF ¼ 0 or π, as long
as only one π pair of quasieigenstates has closer quasiei-
genenergy with j�i than all other quasieigenstates, the
dominant-subleading π-pair pattern still exists and there is a
dominant beating timescale, see Fig. 3(d).
We can use a more general state-averaged observable,

the state-averaged fidelity, to describe the dynamics of
the many-body Floquet system. The quasieigenenergy
corrections due to the first-order perturbation to all good

initial states are the same, in the case considered here,
Tb ≈ (π=ϵ sinf½ðN − 1Þ=2�Wg). Although there is another
beating timescale for bad initial states, the dominant
beating timescale for state-averaged quantities is deter-
mined by good initial states, see Fig. 4(d) (see the
Supplemental Material for analytical analysis [77]).
Additionally, there is no scaling relation between Tb and
the system size N. Note that the classification of good and
bad initial state is only for the beating timescale Tb; all
initial states show a robust subharmonic response Ts ¼ 2

breaking discrete time translational symmetry.
In terms of the timescale Tg, it is induced by the tiny

quasienergy splitting of a given π pair, i.e., the quasieige-
nenergy difference between jþi and j−i equals π þ δ. This
quasienergy mismatch δ due to the finite-size effect induces
the third timescale as Tg ∝ ð1=δÞ and δ ∝ e−N (see the
Supplemental Material for details [77]). As discussed in
[83], the existence of the third timescale Tg depends
on the order of the two limits: (a) limt→∞limN→∞ and
(b) limN→∞limt→∞, where (a) characterizes the “intrinsic”
quench dynamics of this phase. In (a), we will never reach
times of OðeNÞ and the third oscillation timescale Tg

(∝ eN) vanishes. We can only observe the subharmonic
response and beating oscillation out to t → ∞.
Jz with dependence on the system size N investigated in

this Letter is designed to facilitate the analytical under-
standing of the beating timescale and is not necessary for
the realization of a stable DTC phase. More numerical
results with size-independent Jz can be found below and in
the Supplemental Material [77].

(a) (b)

(c) (d)

FIG. 3. Dynamics of the product state j000000000000000i
which is a good initial state (N ¼ 15; W ¼ 5.0; ϵ ¼ 0.05). (a),
(b) Jz ¼ ðπ=2NÞ. (c),(d) Jz ¼ ½ðπ − 0.05Þ=2N�. In both cases,
there is a dominant beating timescale.

(a) (b)

(c) (d)

FIG. 4. (a),(b) Dynamics of the product state j001100110011001i
(N ¼ 15; Jz ¼ ðπ=2NÞ; W ¼ 5.0; ϵ ¼ 0.05). Such a bad initial
state gives another beating timescale. (c),(d) Dynamics of the state-
averaged fidelity F̄n (N ¼ 15; Jz ¼ ðπ=2NÞ;W ¼ 5.0; ϵ ¼ 0.05).
The dominant beating timescale Tb ¼ ð2π=ωbÞ is determined by
the good initial states.
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Phase transition.—In this section, we investigate the
DTC order and choose the general size-independent Jz.
To stabilize the DTC phase, MBL is extremely important as
discussed above. As shown in Fig. 5, the distribution of the
level spacing ratio [58] gradually crosses from the Poisson
limit to the Gaussian orthogonal ensemble (GOE) with
increasing imperfection ϵ, indicating a phase transition
from MBL phase to trivial thermal phase.
To diagnose the phase transition and discrete time

translational symmetry breaking, we utilize two indicators:
the magnitude of the subharmonic response and the mutual
information between the first and the last site. In principle,
the critical imperfection ϵc can be extracted from the data
collapses for mutual information [12]. Because of limita-
tion of the system size accessible, the critical value ϵc and
the critical exponents cannot be accurately determined for
some Hamiltonian parameters (see more details on the
finite-size data collapse in the Supplemental Material [77]).
Nonetheless, the convincing numerical results indeed imply
the existence of the DTC phase, see Fig. 6 for the schematic
phase diagram. Even in the presence of a generic spin-spin
interaction, the DTC phase still exists and is robust against
the imperfection ϵ (see the Supplemental Material for more
numerical results [77]).

Discussions and conclusion.—It was reported that Stark
many-body localization can be induced by a strong external
magnetic field even in the presence of a local phonon bath
[76]. On the contrary, DTC stabilized by random disorder
MBL is unstable against environmental coupling in open
systems [84]. Because of the different mechanisms between
random MBL and Stark MBL, an interesting future
direction is to investigate whether the DTC phase enabled
by Stark MBL is robust when coupling to the environment.
We have demonstrated that the discrete time crystal can

be realized in a clean kicked Floquet model stabilized by
Stark MBL. We also utilize the perturbation theory to
explain the novel beating timescale absent in conventional
DTC. Compared to the conventional DTC stabilized by the
strong disorder, the resources required in our model are
much fewer and it can be easily realized on the noisy
intermediate-scale quantum hardware [85,86] (see the
Supplemental Material for detailed experimental pro-
posals [77]).
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