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2Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, 75205 Paris, France
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We study a fermionic chain with nearest-neighbor hopping and density-density interactions, where the
nearest-neighbor interaction term is driven periodically. We show that such a driven chain exhibits
prethermal strong Hilbert space fragmentation (HSF) in the high drive amplitude regime at specific drive
frequencies ω�

m. This constitutes the first realization of HSF for out-of-equilibrium systems. We obtain
analytic expressions of ω�

m using a Floquet perturbation theory and provide exact numerical computation of
entanglement entropy, equal-time correlation functions, and the density autocorrelation of fermions for
finite chains. All of these quantities indicate clear signatures of strong HSF. We study the fate of the HSF as
one tunes away from ω�

m and discuss the extent of the prethermal regime as a function of the drive
amplitude.
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Eigenstate thermalization hypothesis (ETH) conjectures
that midspectrum eigenstates of an isolated quantum
system are locally thermal [1–4]. A similar thermal charac-
teristic leading to an infinite temperature steady state is seen
for periodically driven systems [5,6]. In both cases, ETH has
been immensely successful in predicting the longtime
dynamical behavior of local operators of isolated quantum
systems. However, for periodically driven systems exper-
imentally relevant timescales may be significantly shorter
than their thermalization times [7–9]. It is well known that
the resultant prethermal phases may exhibit interesting
phenomena that have no equilibrium analog [9–18].
The violation of ETH due to lack of ergodicity can occur

in integrable quantum systems [3,4] or in systems with
strong disorder in their many body localized phases
[8,19,20]. A weaker violation of ETH can also occur for
Hamiltonians hosting quantum scars [21–25]. The presence
of such scars in eigenstates of a Floquet Hamiltonian has
also been studied [17,18,26–28].
ETH violation can also occur from fragmentation of

Hilbert space of a quantum system due to the presence of
kinetic constraints [29–38]. The Hamiltonian of such sys-
tems, in the computational basis, breaks down into several
dynamically disconnected blocks. For strong Hilbert space
fragmentation (HSF), the number of such blocks increases
exponentially with the system size [29–38]; this is distinct
from algebraic scaling of the number of disconnected
symmetry sectors. All the studies of strong HSF, so far,
have involved equilibrium Hamiltonians; to the best of our
knowledge, there has been no example of the existence of
strong HSF in out-of-equilibrium quantum systems. In this
Letter we provide the first example of prethermal HSF in a
periodically driven Fermi chain with large drive amplitude at
special drive frequencies.

To this end, we consider a fermion chain with a
Hamiltonian given by HðtÞ ¼ H0ðtÞ þH1

H0ðtÞ ¼ VðtÞ
X

j¼1.:L

n̂jn̂jþ1

H1 ¼
X

j¼1.:L

− Jðc†jcjþ1 þH:c:Þ þ n̂jðV0n̂jþ1 þV2n̂jþ2Þ;

ð1Þ

where cj denotes the fermion annihilation operator for the

site j of the chain, n̂j ¼ c†jcj is the fermion density ope-
rator, V0 þ VðtÞ and V2 are the strengths of nearest- and
next-nearest neighbor interactions, respectively. In what
follows, we drive this chain by making VðtÞ periodic in
time with an amplitude V1 ≫ V0; J; V2 and frequency
ωD ¼ 2π=T, where T is the drive time period. The precise
form of VðtÞ depends on the drive protocol; in this Letter we
shall study both continuous cosine [VðtÞ ¼ V1 cosωDt] and
discrete square-pulse [VðtÞ ¼ −ðþÞV1 for t ≤ ð>ÞT=2]
protocols.
Our results are as follows. First, we derive the Floquet

Hamiltonian of the driven chain in the high amplitude limit
using Floquet perturbation theory (FPT). We show that at
special drive frequencies ωD ¼ ω�

m, whose analytic expres-

sion we provide, the first order Floquet Hamiltonian, Hð1Þ
F ,

of the system reduces to a fermionic model with con-
strained hopping which is known to exhibit HSF [32,33]. In
the high-drive amplitude regime, the higher order correc-

tion to Hð1Þ
F are small; consequently, the driven system

exhibits signatures of fragmentation over a long prethermal
regime. Second, we supplement the analytical result by
numerical computation of the exact time evolution operator

PHYSICAL REVIEW LETTERS 130, 120401 (2023)

0031-9007=23=130(12)=120401(6) 120401-1 © 2023 American Physical Society

https://orcid.org/0000-0002-1295-7905
https://orcid.org/0000-0003-4763-7781
https://orcid.org/0000-0001-9679-3380
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.120401&domain=pdf&date_stamp=2023-03-23
https://doi.org/10.1103/PhysRevLett.130.120401
https://doi.org/10.1103/PhysRevLett.130.120401
https://doi.org/10.1103/PhysRevLett.130.120401
https://doi.org/10.1103/PhysRevLett.130.120401


UðT; 0Þ using exact diagonalization (ED) on Eq. (1). We
obtain exact evolution of the half-chain von Neumann
entanglement entropy SðnTÞ, starting from a random Fock
state, as a function of the number of drive cycles n. We find
that away from ω�

m, SðnTÞ reaches the symmetry resolved
Page value Sp, as expected for nonintegrable ergodic driven
systems [39]; in contrast, at ωD ¼ ω�

m and for large V1,
SðnTÞ saturates to the Page value Sfp of the Hilbert space

fragment ofHð1Þ
F to which the initial state belongs for a long

range of n. Third, using ED, we compute the exact fermion
density autocorrelation function

CjðnTÞ ¼ hψ0j½n̂jðnTÞ − 1=2�½n̂jð0Þ − 1=2�jψ0i ð2Þ

starting from a random infinite-temperature initial state
jψ0i. We find that CjðnTÞ does not attain its ETH predicted
value at ωD ¼ ω�

m beyond a critical V1; instead, it saturates
to a finite value, larger than a lower bound that can be
obtained using Mazur’s inequality [30,31,40,41], as
expected in a system with strong HSF [29]. In contrast,
for ωD ≠ ω�

m, Cj obeys ETH. Fourth, we study the equal-
time correlation function

χjðnTÞ ¼ hψfðnTÞjn̂jn̂jþ2jψfðnTÞi ð3Þ

of fermions starting from frozen states (Fock states jψfi
which are eigenstates of Hð1Þ

F ). The dynamics of these
states, at ωD ¼ ω�

m, arise solely due to the presence of
higher order terms in the Floquet Hamiltonian which is well
captured in our exact numerics obtained using ED on HðtÞ
[Eq. (1)]. We find that for large V1, χðnTÞ remain close to
their initial values at ωD ¼ ω�

m over a large range of n for
random frozen initial states. In contrast, they saturate to the
ETH predicted value at other frequencies. Moreover, for
the frozen state jψfi ¼ jZ2i≡ j0; 1; 0; 1;…i, we find the
existence of novel oscillatory dynamics of χjðnTÞ when
J=V0 ≪ 1; we provide a semianalytic explanation of this
dynamics and tie the existence of such oscillations to both
the broken Z2 symmetry of the initial Fock state and the
presence of HSF which confines the dynamics to a small
class of states in the Hilbert space.
FPT and Floquet Hamiltonian.—To derive the Floquet

Hamiltonian for the driven chain, we start from Eq. (1) and
adapt a perturbative scheme (FPT), where J=V1 is the small
parameter; this distinguishes it from standard high-
frequency Magnus expansion [42–44]. Within this scheme,
one computes the evolution operator corresponding to
H0ðtÞ exactly; U0ðt; 0Þ ¼ T exp½−i R t

0 dt
0H0ðt0Þ=ℏ�, where

T is the time ordering operator. The contribution of H1 to
the full evolution operator Uðt; 0Þ is then computed using
standard perturbation theory. To first order in perturbation,
this leads toU1ðT; 0Þ ¼ ð−i=ℏÞ R T

0 dt½U0ðt; 0Þ�†H1U0ðt; 0Þ
and yields the leading order Floquet Hamiltonian

Hð1Þ
F ¼ iℏU1ðT; 0Þ=T. A straightforward calculation detai-

led in [41] leads to

Hð1Þ
F ¼

X

j¼1.:L

n̂jðV0n̂jþ1 þ V2n̂jþ2Þ

− J
X

j¼1.:L

½ð1 − Â2
jÞ þ fðγ0ÞÂ2

j �c†jcjþ1 þ H:c:; ð4Þ

where Âj ¼ ðn̂jþ2 − n̂j−1Þ, γ0 ¼ V1T=ð4ℏÞ, and fðγ0Þ ¼
J0½2γ0=π� for the cosine protocol and fðγ0Þ ¼
γ−10 sin γ0 exp½iγ0Âj� for the square-pulse protocol, where
J0 is the zeroth order Bessel function.
Equation (4) represents one of the central results of this

Letter; it shows the existence of special drive frequencies
ωD ¼ ω�

m for which fðγ0Þ ¼ 0. These correspond to γ0 ¼
πζm=2 and γ0 ¼ mπ, respectively, for the cosine and
square-pulse protocols, where m is a positive integer and
ζm denotes the position of the mth zero of J0. This yields

ω�
m ¼ V1=ðℏζmÞ for cosine protocol

¼ V1=ð2ℏmÞ for square-pulse protocol: ð5Þ

At these frequencies, Hð1Þ
F reduces to the constrained

hopping Hamiltonian studied in Refs. [32,33] which is
known to show strong HSF. Such constrained Hamiltonian
hosts several conserved quantities, namely, the fermion
density N ¼ P

j n̂j=L, Nd ¼
P

j n̂jn̂jþ1, and N0
d ¼P

jð−1Þjn̂jn̂jþ1; the corresponding Hilbert space splits
into exponentially large number of fragments including
exponentially large number of frozen states jψfi [32,33].
Furthermore, in the high-drive amplitude regime, a straight-
forward calculation detailed in [41] shows that the higher
order terms of HF are suppressed by at least a factor of
J=V1. Thus in this regime, we expect the driven fermion
chain to show signatures of HSF in the prethermal regime
at ωD ¼ ω�

m. For the rest of this Letter, we present our
numerical results using the square-pulse protocol; the
corresponding results for the cosine drive protocol is
presented in Ref. [41].
Entanglement entropy.—To find the signature of frag-

mentation in the driven chain, we first study SðnTÞ starting
from a random Fock state jψ0i as a function of the number
of drive cycles n. We numerically compute UðT; 0Þ using
ED starting from HðtÞ [Eq. (1)] as outlined in Ref. [41].
This allows us to obtain jψðnTÞi ¼ UðnT; 0Þjψ0i.
One then constructs the density matrix ρðnTÞ ¼
jψðnTÞihψðnTÞj for the driven chain. Finally, one carries
out a partial trace of ρðnTÞ over half the chain, to obtain
the reduced density matrix ρredðnTÞ [17]; this leads to
SðnTÞ ¼ −Tr½ρredðnTÞ ln ρredðnTÞ�.
For an ergodic chain, one expects SðnTÞ to saturate to the

symmetry resolved Page value Sp [39] corresponding to
the symmetry sector to which the initial state belongs.
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In contrast, for a system with HSF, it saturates to the Page

value Sfp of the fragment of Hð1Þ
F to which the initial state

belongs; since for strong HSF the Hilbert space dimension
(HSD) of any fragment is exponentially smaller than the
total HSD, Sfp < Sp.
In Fig. 1, plots of SðnTÞ corresponding to the symmetry

sector N ¼ P
j nj=L ¼ 1=2 are shown. For these plots we

have chosen V0 ¼ V2 ¼ 2J and used periodic boundary
condition. Figure 1(a) shows that for ωD ¼ ω�

1 and large
V1=J, SðnTÞ saturates to Sfp ≃ 0.8Sp till n ∼ 200. In
contrast, it saturates to Sp for small V1=J. We find a clear
crossover between these two regimes. This behavior is to be
contrasted with its counterpart at 2ω�

1 [Fig. 1(b)], where
SðnTÞ always saturates to Sp within n ≤ 50. The depend-

ence of ΔS ¼ ½SðnTÞ − Sfp�=Sp on 1=V1 for both ω�
1 (red

dots) and 2ω�
1 (blue dots) for n ¼ 200 is shown in Fig. 1(c).

The latter always stays finite indicating proximity to Sp
while the former sharply drops to zero beyond a critical
drive amplitude. Finally, we compute SðnTÞ=Sp for several
random Fock states which belong to different Hilbert space

fragments of Hð1Þ
F . We find that for V1=J ¼ 25 and at ω�

1,
SðnTÞ for these initial states saturate to their respective Sfp.
All these features show a clear signature of prethermal HSF
at ω�

1.

Autocorrelation.—For further signature of HSF at large
V1, we study the autocorrelation function Cj¼LðnTÞ≡
CLðnTÞ [Eq. (2)] using ED and starting from Eq. (1), as a
function of n. We use open boundary condition and set
V0 ¼ V2 ¼ 2J. It is well known that the presence of HSF
leads to a finite long-term value of the autocorrelator which
is bounded from below [30,31,40,41]; for the present
system, this bound is estimated to be 0.125 [41]. In contrast
it decays to its ETH predicted value, CETH ¼ 0, in the
absence of HSF. The behavior of CjðnTÞ for j ≠ L is
qualitatively similar [31,41].
Figure 2(a) shows the behavior of CLðnTÞ as a function

of n at ω�
1 for several V1=J. We again find that for large

V1=J, CLðnTÞ stays above the lower bound 0.125 and close
to its value predicted by Hð1Þ

F exhibiting strong HSF for a
large number of drive cycles. The behavior of CLðnTÞ for
other drive frequencies is shown in Fig. 2(b) for V1 ¼ 25J;
the plot clearly indicates that deviation from ω�

1 leads to
rapid, ETH predicted, thermalization of CLðnTÞ.
The plot of CLðnTÞ for n ¼ 5000 at ω�

1 is shown as a
function of V1=J in Fig. 2(c) for several system sizes (L).
We find CL becomes almost independent of L at both large
and small V1=J; in between, the crossover region reduces
in width with increasing L. This may indicate a sharp

(a) (b)

(c) (d)

FIG. 1. (a) Plot of SðnTÞ=Sp as a function of n for ω�
1 and

several V1 starting from a random Fock state. The red dotted line

corresponds to Sfp=Sp of the largest fragment of Hð1Þ
F with HSD

1008 to which the initial state belongs. SðnTÞ saturates to Sfp ¼
0.8Sp for large V1 and n ≤ 200. (b) Same as (a) but at 2ω�

1; here S

saturates to Sp for all V1. (c) Plot of ΔS ¼ ðSðnTÞ − SfpÞ=Sp as a
function of 1=V1 for n ¼ 200. ΔS → 0 at ω�

1 and for large V1.
(d) Plot of SðnTÞ=Sp for V1 ¼ 25 and at ω�

1 corresponding to

several initial Fock states belonging to fragments of Hð1Þ
F with

HSD 1008 (green), 288 (black), 144 (brown), and 56 (pink). The
dotted lines correspond to Sfp=Sp to which SðnTÞ=Sp saturates for
n ≤ 200. All plots indicate clear signature of prethermal strong
HSF at ω�

1. For all plots L ¼ 16, V0 ¼ V2 ¼ 2 and all energies
are scaled in units of J.

(a) (b)

(c) (d)

FIG. 2. (a) CLðnTÞ as a function of n at ω�
1 computed using

exact HF for several V1 starting from a random thermal state. For
large V1, CLðnTÞ saturates to the black dotted line which

corresponds to its value computed using Hð1Þ
F indicating pre-

thermal HSF. (b) Plot of CLðnTÞ as a function of n for several ωD
for V1 ¼ 19 showing ETH predicted thermalization away from
ω�
1. (c) Plot of CLðnTÞ for n ¼ 5000 as a function of V1 at ω�

1 for
several L showing a clear crossover to a prethermal HSF regime
at large V1. The inset shows the number of cycles nth required for
CLðnTÞ to reach its ETH predicted value at ω�

1 for L ¼ 16; nth
scales exponentially with V1 showing a long prethermal regime at
large V1. (d) Phase diagram obtained from plot of CLðnTÞ for
n ¼ 5000 as a function of V1 and ℏωD=V1 showing clear
signature of finite value of CL at large V1 at ℏω�

1ð2Þ ¼
V1=2ð4Þ. For all plots V0 ¼ V2 ¼ 2 and all energies are scaled
in units of J. L ¼ 16 for (a) and (b) and L ¼ 14 for (d).
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transition in the thermodynamic limit; however, it is
difficult to conclude this from the present data.
The inset of Fig. 2(c), shows a plot of nth, the number of

drive cycles required for CL to reach the ETH predicted
value, as a function of V1=J. The data clearly demonstrates
exponential scaling of nth with V1=J [7,45,46]. A numeri-
cal fit suggests nth ∼ exp½0.72V1=J�. This behavior of nth
can be understood as follows. It is expected that for large
ωD, the extent of the prethermal regime scales exponen-
tially with ωD: nth ∼ exp½c0ℏωD=J� where c0 is a constant
[45]. In the present case, ωD ¼ ω�

1; so one expects nth ¼
exp½c0V1=ð2JÞ� which yields the exponential scaling. The
numerical value of c0 is determined to be order unity from
our numerics; an analytic estimate of c0, which necessitates
information about breakdown of convergence of the FPT
series, is beyond the scope of the present Letter. However,
we would like to point out that this exponential scaling
indicates a long and stable prethermal regime where HSF
signatures can be found.
Finally, in Fig. 2(d), we show a phase diagram distin-

guishing between regimes displaying ETH predicted ther-
mal and HSF features of CL as a function of V1=J and
ℏωD=V1. The plot represents a clear crossover between the
two regimes at both ω�

1 ¼ V1=ð2ℏÞ and ω�
2 ¼ V1=ð4ℏÞ as

V1=J is increased; we note that this is consistent with our

theoretical expectation based on Hð1Þ
F .

Dynamics of frozen states.—The frozen states corre-
spond to Fock states which are eigenstates of Hð1Þ

F ;
however, they have nontrivial evolution under HF due to
higher order terms in FPT. The nature of this evolution, for
a random frozen state with no particular symmetries, is
expected to obey ETH away from ω�

m; in contrast, at ω�
m,

they are expected to stay close to their initial values at large
drive amplitudes for a wide range of n.
To capture this behavior we numerically compute

χj¼1ðnTÞ≡ χ1ðnTÞ [Eq. (3)] using ED and starting from
Eq. (1) and plot it as a function of n in Fig. 3(a) for ω�

1 and
6ω�

1 at V1 ¼ 19J. These computations are done for chains
with periodic boundary conditions and V0 ¼ 10V2 ¼ 2J.
The plot clearly shows that χ1ðnTÞ reaches its ETH
predicted value for 6ω�

1; in contrast it never reaches the
ETH predicted value at ω�

1. The plot of hχ1i [χ1ðnTÞ
averaged over 5000 drive cycles starting from n ¼ 5000] as
a function of V1=J at ω�

1 is shown in Fig. 3(b). We find that
hχ1i stays close to its initial value at large V1=J which is
consistent with prethermal strong HSF. We have checked
that this behavior is similar for all hχji.
Next, we study the dynamics of frozen state when

jψfi ¼ jZ2i. As shown in Fig. 3(c), when the system is
driven at ω�

1 (blue curve), the equal-time correlation
function χ1ðnTÞ shows slow oscillations with a time period
that is orders of magnitude longer than the bare timescales
implied in the Hamiltonian of Eq. (1). On the other hand,
the oscillations are absent for 6ω�

1 [red curve in Fig. 3(c)].
In fact, the occurrence of the slow oscillations require two

conditions to be satisfied. First, the system has to be
fragmented in a prethermal sense so that, starting from
the state jZ2i, over long timescales the system stays
effectively confined in the ND ¼ 0 sector with no nearest
neighbor occupations. This sector comprises the states jZ2i
and jZ̄2i≡ j1; 0; 1; 0;…i. Second, the energy scales
J=V0 ≲ 1 and V2=V0 ≤ 1=2, so that ND ¼ 0 is the lowest
energy manifold in the Fock space, while ND ≠ 0 are high
energy states as shown in Fig. 3(d). In such a situation the
higher order terms in FPT provide tunneling paths for
the system to oscillate between jZ2i and jZ̄2i. Since
n̂1n̂3jZ2i ¼ 0, while n̂1n̂3jZ̄2i ¼ 1, the equal-time corre-
lation function χ1ðnTÞ oscillates between zero and nearly
one (the deviation from one is due to finite mixing with the
states in the ND ≠ 0 sectors). In other words, the oscil-
lations are manifestation of the tunneling processes that
restore Z2 symmetry in a finite system such that the
approximate eigenstates of HF are the bonding and anti-
bonding states jψB;Ai≡ jZ2i � jZ̄2i. Therefore, the oscil-
lation frequency is proportional to the energy split 2ℏαd
between the bonding and antibonding states; this is
expected to be a small energy scale as it arises from higher
order terms in HF (which we verified using ED). Thus, if
HFjψB;Ai ≈ ℏðαs � αdÞjψB;Ai for a constant αs, one can
show that χ1ðnTÞ ≈ sin2ðαdnTÞ which explains the slow
oscillations. In passing, we note that similar oscilla-
tions also appear in the fidelity function FðnTÞ≡
jhZ2ð0ÞjZ2ðnTÞij2 [41].

(a) (b)

(c) (d)

FIG. 3. (a) Plot of χ1ðnTÞ as a function of n for V1 ¼ 19 at ω�
1

(blue curve) and 6ω�
1 (red curve) starting from a random frozen

state showing lack of ETH predicted thermalization at ω�
1. (b) Plot

of hχ1i as a function of V1 at ω�
1; hχ1i stays close to its initial

value for large V1 which is consistent with prethermal HSF.
(c) Same as in (a) but for initial jZ2i state showing slow
oscillations at ω�

1. (d) Schematic diagram for the Floquet
quasienergies showing doubly degenerate jZ2i and jZ̄2i with
Nd ¼ 0 and other states with Nd ≠ 0. The arrows indicate
transition to jZ̄2i from jZ2i using intermediate states with Nd ≠
0 leading to slow oscillations. For all plots V0 ¼ 10V2 ¼ 2,
L ¼ 14, and all energies are scaled in units of J.
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Discussion.—In conclusion, we have proposed a novel
mechanism to obtain the first realization of prethermal
strong HSF in a periodically driven fermionic chain at
ωD ¼ ω�

m. We support this claim by exact numerical
computation of entanglement entropy, autocorrelation,
and equal-time correlation functions of the fermions and
provide analytic expression of ω�

m using FPT. We have also
studied the dynamics of these fermions starting from frozen
states and have identified a novel oscillatory dynamics for
the jZ2i initial state; such oscillations arise due to both HSF
and Z2 symmetry breaking. We expect our results to be of
relevance for ultracold atom platforms where such fermion
chains may be experimentally realized [35,47].
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