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We computationally study the frictional properties of sheared granular media subjected to harmonic
vibration applied at the boundary. Such vibrations are thought to play an important role in weakening flows,
yet the independent effects of amplitude, frequency, and pressure on the process have remained unclear.
Based on a dimensional analysis and DEM simulations, we show that, in addition to a previously proposed
criterion for peak acceleration that leads to breaking of contacts, weakening requires the absolute amplitude
squared of the displacement to be sufficiently large relative to the confining pressure. The analysis provides
a basis for predicting flows subjected to arbitrary external vibration and demonstrates that a previously
unrecognized second process that is dependent on dissipation contributes to shear weakening under
vibrations.
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Recent years have seen dramatic advances in predictive
constitutive laws for steady flows of dense granular media
[1–3], which are dominated by a Coulomblike static friction
coefficient μs [4,5]. Moreover, μs arises primarily from
anisotropic, system-spanning contact networks [6,7] that
can be long-range correlated near the yield criterion [8],
leading to interesting nonlocal effects [9–11] and avalanche-
type behavior [12]. The persistence of these mesoscale
contact networks, often called “force chains,” during slow
shear is predicated on the inherently dissipative nature of
grain-grain interactions [13,14], which arises from plasticity
at individual contacts.
Vibrations, which can be externally applied [15–18] or

generated by the flow itself [19–22], inject energy into the
system, disrupting these contact networks and reducing
μs. Vibrations have been studied in granular pattern
formation [23,24], compaction [25], structural ordering
[26,27], clogging [28], and dense suspension rheology
[29], but their impact on the resistance of shear flows
has been underexplored. Seminal theoretical work [15] and
limited experiments [17] have addressed parts of the
problem, but the lack of a predictive framework for steady
shear flows under vibration represents a significant gap in
our understanding of a wide array of systems, including
earthquakes, landslides, the results of impacts on asteroids,
and the ability of the pharmaceutical industry to mass
produce medication.
In this Letter, we use discrete-element method (DEM)

simulations to systematically study the frictional properties
of sheared, vibrated granular media. We vary amplitude and
frequency of applied vibrations, as well as grain and other
system properties. We find that previously proposed criteria
based on contact breaking are insufficient to predict

frictional weakening; the amplitude must also exceed a
critical value that varies with pressure and grain-grain
energy dissipation. Thus, in addition to contact breaking,
the competition between vibration (energy injection) and
dissipative grain-grain interactions plays a crucial role. We
also find that frictional weakening stops when the fre-
quency exceeds the elastic response frequency of the
grains. Our results serve as the basis of a constitutive
law that could be used to predict more complex steady
flows subject to arbitrary external vibration.
The fundamental question we consider is: when do

vibrations of amplitude A and frequency f cause frictional
weakening, i.e., μs to decrease significantly? We begin with
a dimensional analysis of simple shear of a granular system
subjected to such vibration, as in Fig. 1(a). The shear rate _γ
is imposed by moving the top wall, and the normal stress p
is imposed by applying a fixed external force per area to the
top wall. τ is the average force per area required to maintain
_γ. Grain properties include diameter d, mass density ρ,
elastic modulus E, the restitution coefficient en, and surface
friction coefficient μg, and possibly others (e.g., shape).
Neglecting vibration, five dimensionless groups are neces-
sary to characterize such a system: the material friction
coefficient μ ¼ τ=p, inertial number I ¼ _γd

ffiffiffiffiffiffiffiffi

ρ=p
p

, dimen-
sionless pressure p̃ ¼ p=E, en, and μg. If p̃ is small enough
to be irrelevant, then, for fixed μg and en, we can write μðIÞ,
which can often be well approximated by μðIÞ ¼ μs þ bIa,
where μs is the static friction coefficient [1,3] and a varies
with μg [30,31].
Including A and f requires two more dimensionless

numbers. We choose Ã ¼ A=d and Γ ¼ Að2πfÞ2ρd=p,
which is the ratio of Að2πfÞ2, the peak acceleration from
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the vibration, to p=ρd, the acceleration resulting from the
applied normal stress. Experiments by Dijksman et al. [17]
on vibration of a sheared granular bed with a free surface
(using the gravitational acceleration g instead p=ρd) found
that μs ≈ 0 when Γ > 1, corresponding to when the
vibrated bottom wall will lose contact with the particles,
allowing them to rearrange. Γ has also been used in a
variety of other systems [24,28,29]. At high f, the dimen-
sionless number f̃ ¼ ðΓ=Ã p̃Þ1=2 ¼ 2πfd

ffiffiffiffiffiffiffiffi

ρ=E
p

becomes
relevant as the ratio of f to the elastic frequency of grains.

The classic theory of Melosh [15], which has been
heavily utilized in the geophysical sciences [32,33], pro-
posed that fluidization occurs when the peak acoustic
pressure s exceeds the confining pressure p, i.e.,
s=p > 1, breaking grain-grain contacts. In an elastic wave,
peak pressure can be written as s ¼ ρcωA [34], where c ¼
ffiffiffiffiffiffiffiffi

E=ρ
p

is a wave speed and ω ¼ 2πf. Thus, the condition
s=p > 1 in terms of the parameters of this Letter is
ðÃΓ=p̃Þ1=2 > 1. Like the Γ framework, acoustic fluidiza-
tion uses a single criterion related to contact breaking.
Neither framework is set up to disentangle the independent
effects of A and f and thus neither can uncover other
criteria or processes. Other work has noted that additional
parameters are likely necessary in other vibrated flows [28],
but none have clarified what the correct approach might be
for the geologically important situation of shear flows.
We implement a vibrating shear flow using DEM

simulations using LAMMPS [35]. These simulations
involve simple shear of an assembly of N spherical grains
via the motion of a top wall with imposed vibrations at the
bottom wall, as depicted in 2D in Fig. 1(a). The horizontal
dimensions are both periodic with length L. Our results are
insensitive to the system size and aspect ratio, which we
verify by changing L and N as illustrated in Supplemental
Material [36]. This means our results are not primarily due
to vibrational resonance based on L or the ability of
phonons to propagate across the system.
Grain-grain forces consist of a normal repulsive term,

characterized by spring constant kn ¼ Ed, and a viscoelastic
damping force for normal contacts, characterized by damp-
ing coefficient γn that is related to a normal restitution
coefficient en [36,37]. We focus on frictionless particles in
the main text. In the Supplemental Material [36], we include
grain-grain friction via the Cundall-Strack [38] approach, as
well as 2D simulations with bumpy particles [39,40]. We
also show data for Hertzian contacts. In this Letter we focus
on the robust results that are qualitatively similar results for
all cases, regardless of spatial dimension, friction, force law,
or grain shape. Grain diameters are normally distributed
with mean d and standard deviation of 0.2d. Top and bottom
walls are rough, created via rigid assemblies of the same
particles used in the flow, to ensure a no-slip boundary
between the wall and the granular assembly. The wall-grain
forces are computed as the sum of forces between wall
particles and particles in the flow. We approximate μ via
forces on the walls, which neglects second-order effects
related to normal stress difference; these are very small,
especially for frictionless particles at low inertial number, as
shown by Srivastava et al. [31].
We impose a confining (downward) force Fp ¼ pL2 on

the top wall as well as a horizontal velocity v; motion of the
wall in the third dimension is not allowed. We measure the
total horizontal force Fτ ¼ τL2 on the wall due to all wall-
grain contacts. After initial transients have decayed, Fτ

fluctuates around a constant value, as shown in Fig. 1(b).
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FIG. 1. (a) Depiction of the simulations; real simulations have
rough walls. (b) Plots of Fτ=Fp versus shear strain γ for two
simulations with I ¼ 10−5 after transients have subsided. The
curves have Γ ¼ 0.004, Ã ¼ 0.0003 (dark gray), and Γ ¼ 0.4,
Ã ¼ 0.03 (red). Dashed lines show the average, μ. (c) μ versus I
for varying Γ and Ã, with en ¼ 0.2 and p̃ ¼ 10−3. (d) μs=μs;0
versus Γ for varying f̃. Solid and open symbols correspond to
p̃ ¼ 10−5 and p̃ ¼ 10−4, respectively; experimental data is from
Fig. 2 of Dijksman et al. [17] using the smallest shear rate shown.
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For each simulation, we measure μ ¼ hFτi=Fp ¼ τ=p as
the average, steady-state friction coefficient. The height H
fluctuates around an average value hHi ∼ Nd3=L2, and we
measure the mean strain rate _γ ¼ v=hHi and thereby the
inertial number I ¼ _γd

ffiffiffiffiffiffiffiffi

ρ=p
p

. We do not allow the lower
wall to move except for an imposed vertical harmonic
displacement with amplitude A and frequency f.
The output of each simulation is μ as a function of I, p̃,

en, Γ, and Ã. Figure 1(b) shows results from two typical
simulations with differing Γ. As expected, μ is lower for
larger Γ. We observe very little dilation for all results we
show here, i.e., hHi does not vary strongly with Ã or Γ. The
time step is 100 times smaller than the time scale for a
grain-grain collision (see Supplemental Material [36]),
which is sufficient to resolve vibration frequencies for
f̃ < 10. We also verify that the vibrations imposed on the
bottom traverse the system by measuring their perturbation
on the top wall [Fig. 1(b)]. Because of the large shear and
correspondingly large number of samples in the mean
values reported for each simulation, uncertainty estimates
based on bootstrap resampling [41] are between 0.1% and
0.5%. This uncertainty is smaller than the symbols here and
in the remainder of the figures.
Figure 1(c) investigates the shear rate-dependent friction

by measuring μðIÞ curves with en ¼ 0.2, p̃ ¼ 10−4, and
varied Γ and Ã (including Γ ¼ Ã ¼ 0). For each curve, μ is
roughly constant for I ≤ 10−4, corresponding to μ ¼ μs. All
measurements of μs use I ¼ 10−4, and we verify with
selected simulations at I ¼ 10−5 that we are in the slow-
shear limit. With Γ ¼ Ã ¼ 0, μs ≈ 0.12, as expected for
frictionless spheres [6,8]. For the remainder of the Letter,
we denote μs;0 as the friction coefficient in the limit of low
inertial number and no applied vibration (e.g., for stiff,
frictionless spheres, μs;0 ≈ 0.12).
The results in Fig. 1(c) demonstrate that frictional weak-

ening cannot be predicted from Γ alone. For three curves, we
keep constant frequency and increase amplitude, and μ
decreases as Γ and Ã increase, as expected. However, an
additional μðIÞ-curve with the largest value of Γ but a higher
f and lower Ã results in friction similar to the low-Γ result.
Additional support for the need for multiple parameters,

and thus multiple mechanisms, to describe vibrational
weakening comes from Fig. 1(d), which shows the nor-
malized friction μs=μs;0 as a function of Γ with f held
constant and Ã increased from 10−4 to 0.3. The low-f̃
simulations are an excellent match to the experimental data
from Dijksman et al. [17]. However, as f and p̃ are varied,
the value of Γ where μs transitions to zero varies dramati-
cally, over more than 3 orders of magnitude. As in Fig. 1(c)
variations cannot be mapped simply as a function of Γ. For
f̃ > 1, no weakening occurs since f exceeds the elastic
frequency of the grains. The significant dependence on Ã,
p̃, and f̃ requires a more complete description of both the
parameters and the physics.

When we vary Γ by varying f and holding A fixed, a
clearer picture emerges, as shown in Fig. 2. Figure 2(a)
again shows the normalized friction μs=μs;0 as a function of
Γ for sheared, vibrated, frictionless spheres with en ¼ 0.2,
but with each curve having a fixed Ã and only the frequency
f varied. For Γ < 0.1, all curves have μs ≈ μs;0. For
Γ > 0.1, we find μs begins decreasing in a way that
depends on Ã and p̃. Thus, Γ < 0.1 always corresponds
to no frictional weakening. We also observe no frictional
weakening at very high Γ; Fig. 2(b) demonstrates that this
is due to f̃ > 1.
However, Γ > 1 and f̃ < 1 are still not sufficient to

predict frictional weakening; Ã must be also large enough.
This indicates an additional process at play. Perhaps the
amplitude needs to be large enough to induce sufficient
rearrangements to disrupt the force network. Weakening
will not occur if these amplitudes are not high enough for a
given p̃, regardless of Γ. We now consider how μ varies
with Ã and p̃ at fixed Γ.
We measure μmin as lowest value of μðΓÞ between the

dashed lines shown in Fig. 2(a), i.e., Γ ≈ 100. This
definition is selected so as to keep Γ fixed throughout
the comparison. We repeat all simulations for en ¼ 0.5 and
en ¼ 0.8 and find very similar results to those shown in
Fig. 2. Figure 3(a) shows curves of μmin versus Ã for
different combinations of en and p̃. For small Ã, μmin ≈ μs;0,
and μmin decreases from μs;0 to 0 at a characteristic value of
Ã, denoted Ã�, that depends on p̃ and en.
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FIG. 2. (a) μs=μs;0 versus Γ, where f is varied and Ã is held
constant. We use the data between the vertical dashed lines to
characterize the dependence of μs on Ã and p̃; see text for
discussion. (b) μs=μs;0 versus f̃ for the same data shown in (a),
showing that f̃ > 1 corresponds to the rise of μs at high Γ.
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We estimate Ã� by fitting a sigmoidlike curve to the data
in Fig. 3(a) to extract Ã� as the value where μmin ¼ μs;0=2.
Figure 3(b) shows that ðÃ�Þ2 ∝ p̃β. Best fits give β near 1
for all three values of en: β ¼ 0.90� 0.02, 0.92� 0.13,
and 0.76� 0.09 for en ¼ 0.8, 0.5, and 0.2, respectively,
where the data point with p̃ ¼ 10−2 is disregarded for
en ¼ 0.2. We assume β ≈ 1, and the fact that β < 1 may be
due to additional contacts leading to more dissipation at
higher pressure. This is consistent with the deviation at

en ¼ 0.2 especially for the highest pressure; future analysis
may provide some further insight. Decreasing en corre-
sponds to higher ðÃ�Þ2 at fixed p̃, meaning more vibration
amplitude is required at higher dissipation rates for fric-
tional weakening to occur. Figure 3(c),3(d), and 3(e) show
μmin=μs;0 as a function of Ã2=p̃ for all three values of en.
These plots show a reasonable data collapse with μmin

decreasing to 0 for Ã2=p̃ of approximately 102 for
en ¼ 0.2, 101 for en ¼ 0.5, and 100 for en ¼ 0.8. This
significant variation with en highlights the crucial role of
grain-grain dissipation.
Our results can be summarized in the phase diagram

shown in Fig. 4. As in prior work, when Γ > 1 contacts can
be broken, but the current simulations show that large Γ
corresponds to frictional weakening only when Ã2=p̃ is
large. The magnitude of Ã2=p̃ required depends on en,
since more amplitude at the boundary is required to give
individual grains sufficient vibrational energy to disrupt the
contact network and reduce μs. This dependence on en can
be seen in Fig. 4 at, e.g., Γ ¼ 10, Ã2=p̃ ¼ 1. The control-
ling parameter Ã2=p̃ might be interpreted as the ratio of a
force scale related to the amplitude of the vibration coupled
to the particle stiffness, EA2, to a characteristic force on a
particle due to the confining pressure, pd2. Future work
may shed further light on the interpretation of this criterion.
Importantly, the phase diagram shows that prior work

based on a single criterion could overpredict fluidization in
geologically relevant situations. For instance, in the near-
field of an impact or shallow fault zone, a wave with a
frequency of 10 Hz and amplitude 1 mm can interact with
sand-sized particles with with d ¼ 0.1 mm and E ¼
70 GPa at pressure 0.25 MPa, corresponding to 10 m
depth. These reasonable values correspond to Γ ≈ 4 × 10−6

and Ã2=p̃ ≈ 3 × 107. This is far in the upper left quadrant of
Fig. 4, where no fluidization would occur. However, the
fluidization condition of Melosh [15] would predict fluid-
ization, since ðÃΓ=p̃Þ1=2 ≈ 3, which is greater than the

(a)

(c)(b)

(e)(d)

FIG. 3. (a) μmin, measured between the dashed lines in
Fig. 2(a), is plotted as a function of Ã2 for different p̃ and en.
Dashed black line shows a fit to a sigmoidlike function,
μmin ¼ ðμs;0=2Þf1 − tanh½log10ðÃ=Ã�Þ2�g, to the data for p̃ ¼
10−4 and en ¼ 0.8. The fit estimates Ã� as the value of Ã where
μs=μs;0 ¼ 1=2, which we use as the characteristic value of Ã for
frictional weakening. (b) ðÃ�Þ2 versus p̃ for en ¼ 0.2 (circles),
en ¼ 0.5 (triangles), and en ¼ 0.8 (squares). Color denotes p̃;
large and small symbols have different values of E, confirming
that p̃ captures the scaling. All data are approximately captured
by ðÃ�Þ2 ∝ p̃. (c–e) μmin=μs;0 versus Ã2=p̃ for (c) en ¼ 0.2,
(d) en ¼ 0.5, and (e) en ¼ 0.8, with the same symbol convention
as in (b).

FIG. 4. A phase diagram of μs as a function of Γ and Ã2=p̃.
Symbol shapes correspond to different en and are slightly shifted
for visibility, with circles for en ¼ 0.2 (shifted down), triangles
for en ¼ 0.5, and squares for en ¼ 0.8 (shifted up). Symbol size
and color represents the amount of frictional weakening. Dashed
lines show Γ ¼ 1 and Ã2=p̃ ¼ 1.
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threshold of 1. Practical applications of acoustic fluidiza-
tion theory to observations have adjusted the acoustic
wavelength (and hence frequency) to match observations
where independent constraints are not possible [42]. Our
results may be useful in reconsidering such inferences, as
well as in other situations where weakening is experimen-
tally observed due to acoustic excitation [19,43].
In summary, we find that frictional weakening requires

both sufficiently high acceleration and amplitude, appro-
priately normalized. The acceleration criterion (Γ) can be
attributed to a need to break individual contacts as noted by
many prior works [15,17]. The amplitude criterion (Ã2=p̃)
shows the need for an additional process that is sensitive to
the degree of dissipation, which provides an important clue.
Dissipation is required to maintain the mesoscale network
structures or “force chains” during shear [13,14,44]. These
structures are known to control the macroscopic frictional
properties of granular media [6,45]. Thus we speculate that
the amplitude criterion relates to the disruption of these
structures. Simple contact breaking is not sufficient if the
latent mesoscale structure is preserved; sufficiently large
amplitude is required to break them up. The lack of
inclusion of this amplitude criterion results in an over-
prediction of frictional weakening. More importantly, the
recognition of an additional process positions the field to
investigate the correct criteria to determine the efficacy of
frictional weakening in some of nature’s most important
granular flows.
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