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Salty water is the most abundant electrolyte aqueous mixture on Earth, however, very little is known
about the NaCl—saturated solution interfacial free energy (y,). Here, we provide the first direct estimation of
v, for several NaCl crystallographic planes by means of the mold integration technique, a highly efficient
computational method to evaluate interfacial free energies with anisotropic crystal resolution. Making use
of the JC-SPC/E model, one of the most benchmarked force fields for NaCl water solutions, we measure y,
of four different crystal planes, (100), (110), (111), and (1 li) with the saturated solution at normal
conditions. We find high anisotropy between the different crystal orientations with values ranging from 100

to 150 mJm™2, and the average value of the distinct planes being 7, = 137(20) mJ m~2. This value for the
coexistence interfacial free energy is in reasonable agreement with previous extrapolations from nucleation
studies. Our Letter represents a milestone in the computational calculation of interfacial free energies

between ionic crystals and aqueous solutions.
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Electrolyte solutions, and more specifically NaCl
solutions, are ubiquitous, with sodium chloride being
the major component of sea salt [1] and atmospheric
aerosols [2], as well as playing a key role in atmospheric
chemistry [3]. At salt concentrations greater than the
solubility, crystals of the ionic salt can be formed, giving
rise to a liquid-solid interface. The amount of energy per unit
of area required to form such interface is known as the
interfacial free energy (y,). However, despite the fact that
this magnitude is highly relevant in controlling salt precipi-
tation, no experimental techniques have been able to accu-
rately measure y, for planar liquid-solid interfaces [4,5].
Therefore, computational techniques can be useful to
provide guidance on such important magnitude.

Computational approaches to directly evaluate the liquid-
crystal y, include cleaving [6], tethered Monte Carlo [7],
metadynamics [8], mold integration [9], capillary wave
fluctuations [10], and other related thermodynamic integra-
tion schemes [11-13]. These techniques have been proven to
provide reliable estimates of the liquid-solid interfacial free
energy for different crystallographic planes and numerous
soft matter systems [14-23]. However, for the case of the
NaCl-saturated water solution interface, none of these
methods have yet been implemented due to their high
computational cost. Currently, the only available estimates
of y, for the NaCl aqueous solution have been obtained at
deep supersaturation via computational nucleation studies
using seeding [24] and forward flux sampling [25], as well as
through experimental measurements of the nucleation
rate [26]. Then, by means of the classical nucleation theory
(CNT) [27,28], v, has been estimated for curved interfaces

0031-9007,/23/130(11)/118001(7)

118001-1

under supersaturation conditions. By extrapolating such
results to the saturation concentration, we find the first
approximation to the crystal NaCl aqueous solution y, at
coexistence conditions. However, this is not an entirely
satisfactory approach given that it relies on the CNT frame-
work, order parameters to identify the number of particles in
the clusters [29], and does not provide any anisotropic crystal
information on y;.

In this Letter, we directly evaluate the interfacial free
energy at normal conditions between the NaCl crystal and
its aqueous solution at the solubility limit for different
crystal planes: (100), (110), (111), and (112). We choose
the simple point charge/extended (SPC/E) water model [30]
in combination with the Joung-Cheetham parametrization
(JC) for Na™ and CI~ ions [31] (further details on the force
field parameters and simulation setups can be found in
Supplemental Material, SM [32]) since it can reasonably
reproduce the experimental behavior of NaCl aqueous
solutions [31,46,47]. Moreover, this model has been
extensively used to benchmark solubility calculations
employing different techniques [48-51], resulting in a
solubility of m = 3.71 molkg™' [52], moderately lower
than the experimental one, 6.15 molkg™'. We use the
GROMACS Molecular Dynamics package [36] in combina-
tion with the mold integration (MI) technique [9], where the
formation of a solid slab in the solution is performed along
a reversible pathway, and the free energy difference
between the initial (aqueous solution) and final state
(aqueous solution + crystal slab) corresponds to y, times
the area of the induced liquid-solid interface. Through MI,
7, can be obtained as
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where € is the energy of the potential wells (and ¢,, the
maximum depth employed), A is the surface of the liquid-
solid interface, N,, the number of wells in the mold, and
(N(¢)) the average number of occupied wells at a given
potential energy depth value. The method consists on
performing thermodynamic integration (TI) along the path
in which the depth of the mold potential wells is gradually
increased to a maximum value of ¢,,,. To ensure reversibility
in Eq. (1), the crystal structure induced by the mold must
quickly melt when the interaction between the potential
wells and the fluid is switched off. Consequently, the TI has
to be performed at well radii (r,,) that are wider than the
optimal one, r{,, at which the crystal slab is fully formed, and
therefore can possibly induce irreversible crystal growth
(i.e., leading to an overestimation of (N(¢))). Therefore,
vs(r,) is estimated for several values of r,, > r4, and then,
extrapolated to rg,, which is the well radius that recovers the
exact free energy value y, [9,14—17]. In practice, the method
consists of two distinct steps [9]: in the first one, we find 79,
by performing several simulations in which we identify the
largest well width at which the induced solid layer grows or
keeps stable without melting (i.e., r,, < r?). In the second
step, multiple simulations at radii wider than the optimal one
are performed, and we measure the average number of wells
occupied for each radius as a function of ¢ to solve Eq. (1).

In Fig. 1, we describe such procedure for the (112)
crystal plane at 7T =298 K and p =1 bar. First, to
determine rg, we develop a configuration in which the
NaCl crystal positions of the mold are already occupied

(a)

with their corresponding type of ions [Fig. 1(a)].
Additionally, a crystal layer displaying vacancies (ran-
domly located) in half of the Na*/CI~ lattice positions is
placed at each side of the inserted mold. Importantly, the
ions within such adjacent two semioccupied crystal layers
are not held through potential wells to retain their
equilibrium lattice positions. Since the crystal growth
of the NaCl solid at solubility conditions is extremely
slow [49], especially for crystal planes with low Miller
indices [such as the (100) [53] ], we can estimate r9, in the
limit at which each of the adjacent half layers of NaCl ions
to the potential mold dissolves or not. If they melt, the
potential wells are too wide to induce crystallization,
whereas if the ions of the layers aside the mold remain
crystalline over long timescales (or even grow), such value
of r,, is considered below the optimal radius. Importantly,
to ensure that the solution concentration remains constant
at m ~3.7 molkg™' despite partial melting or growth
from the crystal slab [Fig. 1(b)], we employ system sizes
with over 10 000 water molecules, which can absorb small
variations of ions from the slab to the solution or vice
versa [Fig. 1(a)]. We use the isothermal-isobaric (NpT)
ensemble—where pressure is only applied to the
perpendicular axis to the crystal-liquid interface—to keep
constant both temperature and pressure. We note that an
alternative approach to keep constant the solution con-
centration in our MD simulations without requiring an
elongated box is through the grand canonical ensemble
[54,55]. Nevertheless, it may have only sped up our
simulations by a factor of 3 since system sizes of at least
3500 molecules would have been still needed to prevent
finite size effects in our MI calculations [9,14].
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FIG. 1. Determination of y, for the (112) crystal plane: (a) Representative simulation box employed for the MI technique along with a
close view of the mold occupied by ions. The images were rendered using ovITO [56]. (b) First step of the MI calculation to determine
the optimal well radius (r{,): time evolution of the number of ions conforming the NaCl crystal slab is depicted for different well widths
(r,,)- The horizontal dashed line indicates the total number of ions that can be accommodated within the mold. N,;q4 was determined
through the g,-g¢ local order parameter [57] (further details in SM [32]). (c) Second step of MI calculations: simulations at different well
depth (¢) values for a fixed r,, are performed to evaluate the integral from Eq. (1). The average number of occupied wells (N (¢)) against
¢ is plotted here for r,, = 0.78 A. The green shaded area gives the integral of Eq. (1).
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In Fig. 1(b), we show the time evolution of solid-like
ions (evaluated through the g4-g local order parameter
[571; further details on SM [32]) for different well widths of
the (112) plane. Here, well radii greater than 0.68 A results
in gradual dissolution of the crystal layers located at each
side of the crystal plane induced by the mold. However, for
r,, = 0.57 A those ions remain ordered aside the crystal
slab and even mildly grow over time, hence indicating that
such r,, is lower than rg,. Therefore, we determine r¢, at the
intermediate value of 0.625 A.

Once Y, has been determined, we perform TI to compute
the required free energy to induce the formation of the
crystal slab. TI requires performing simulations at different
well depths (¢) for a fixed r,, and measuring the average
occupation of the mold at each &, which is the integrand of
Eq. (1). To minimize the extent of irreversibility (due to
crystal growth) in these calculations, we integrate at r,,
values of 0.78 and 0.92 A. In Fig. 1(c) we show the average
number of occupied wells as a function of the well depth (¢)
for r,, = 0.78 A, where the shaded area corresponds to the
integral in Eq. (1), from which we can directly obtain the
interfacial free energy. In Sec. SII of SM [32] we include a
detailed discussion of the different sources of uncertainty
along the integration pathway, including the small hyste-
resis associated with the steep change in (N(¢)) at the mold
high occupation regime (Fig. S2). Once y, is evaluated for
different r,, values, it can be extrapolated to the optimal r{,.
In Fig. 2 we show the obtained interfacial free energy for
r,, > rg, depicted with filled symbols, along with the
corresponding extrapolations to the optimal radius, repre-
sented by empty symbols. Apart from the (112) plane, we
also evaluate y, for the (100), (110), and (111) planes. For
all planes we follow the same procedure described for the
(112) face. The final interfacial free energies for the
different planes are reported in Table I, where we also

175FT T T T T T T T T
150 % ~~~~~~~ '}ﬁii 1
E 7 \"‘§~~~.§ 1
'S 125F .
. e (100)
100k - % m (110)H
--- e (111)
A (112)
1 1 1 1 1 1 1 I 1
75 0.6 0.8 1 . 1.2 1.4 1.6
r /A
FIG. 2. Interfacial free energy as a function of the potential well

radius evaluated for four different crystal orientations. Filled
symbols indicate y, obtained through Eq. (1) for r,, > ¢, while
dashed lines depict linear extrapolations to the optimal well

radius r9, (empty symbols).

include the planar density as the number of ions
per nanometer?, as well as the total number of potential
wells employed for the calculation of each crystal plane.
For all the different orientations, we make use of two layers
of potential wells to induce the formation of the crystal slab.
For reproducibility purposes, in SM [32] we provide source
data links to all the liquid-crystal and pure NaCl solid
configurations employed in our MI calculations, along with
snapshots of the four planes studied (Fig. S3).

Strikingly, when comparing the interfacial free energy of
the distinct crystal orientations (Fig. 2), we find large
differences, of up to 50% higher values, for the (110) and
(111) planes compared to the (100) face (Table I); showing
high resemblance to the anisotropy found in the crystal-
molten NaCl interfacial free energy (although with the
Tosi-Fumi model [15]). However, while the differences in
7, between these distinct planes in crystal-molten NaCl
were of the order of 5-15 mJ m~2 [15,18], in NaCl aqueous
solutions they can reach up to 40-50 mJ m~2. We note that
within the uncertainty of our calculations (Table I), the
anisotropy in y, is only statistically significant between the
(100) plane and the (110) and (111) crystal orientations.
The higher interfacial anisotropy in NaCl aqueous solutions
is also consistent with the fact that the average y, for the
studied planes (7,) is ~137 mJ m~2, whereas for the crystal-
molten NaCl is between 90-100 mJ m~2 [15,18]. This is a
reasonable result given that in the crystal-molten interface,
both phases are formed by particles of the same nature
(Na®™ and CI~ ions) and, therefore, the energetic cost to
form an interface should be lower [58]. Nonetheless, the
crystal-molten NaCl calculations were performed for the
Tosi-Fumi model at its coexistence temperature (1082 K),
and therefore, this cannot be taken as a direct comparison.

By applying a Wulff’s construction [59,60] (further
details provided in SM [32]), we also determine the shape
of the macroscopic NaCl crystals through our calculations,
and estimate an average value of the interfacial free energy
for such crystals (y, w = 109 mJm~2). The lower average
value of y, y obtained via the Wulff’s construction com-
pared to 7, can be explained through the much greater
contribution of the (100) plane to the macroscopic crystal

TABLE 1. Values of the ion density per layer, number of
potential wells (N,,) employed in the MI calculations, and the
resulting liquid-solid interfacial free energy (y,) for each of
the studied crystal orientations. 7, represents the average of the
different crystal orientations.

Crystal plane Layer density/(ions nm™2) N,, y,/(mJm™2)
(100) 11.967 200 104 £ 18
(110) 8.462 140 153+ 11
(111) 6.909 112 152 +8
(112) 4.885 84 140+ 10

Average 7, = 137 =20 mJm~2
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compared to the rest of crystal orientations studied here.
Moreover, in reasonable agreement with experiments [61],
the predicted shape by the JC-SPC/E model for the
macroscopic NaCl crystal is roughly cubic with the corners
cut out by the exposure of the (112) plane (Fig. S4).

Interestingly, we also note that there is no clear corre-
lation between the plane density and interfacial free energy
of the studied orientations (Table I), in contrast to some
previously investigated systems such as Hard-Spheres
[20,62—64] or Lennard-Jones [9,19,65]. The reason behind
such observation in Hard-Spheres or Lennard-Jones sys-
tems is that higher planar density usually implies higher
differences in density between the lower density coexisting
liquid and the higher density crystal phase. However, in
NaCl aqueous solutions, although such behavior also
applies, the delicate balance between electrostatic repulsion
and ion ordering might additionally modulate y,.

We compare our values of y, at the solubility concen-
tration with those previously estimated from nucleation
studies at high supersaturation. From both experimental [26]
and computational [24,25,29] nucleation rates, an average of
v, (for a curved interface containing contributions of all
the possible crystal orientations) can be inferred by means of
the Classical Nucleation Theory [27,28]. Importantly,
since most of the previous computational nucleation studies
were performed using the JC-SPC/E model [24,25,29],
we can establish a direct comparison of our results to those
from supersaturated concentrations. In Fig. 3, we plot the
interfacial free energy as a function of supersaturation ().
Our results for y, at coexistence are shown for each of the
crystal orientation that we studied (empty triangles) together
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FIG. 3. Interfacial free energy (y,) as a function of super-
saturation (S = m/mg,), being my = 3.71 molkg™" for the
JC-SPC/E model, and 6.15 mol kg™! for the experimental data.
Our calculations at S = 1 for different crystal orientations (empty
triangles) as well as for 7, and y, y (filled circles) are depicted by
black and gray symbols, respectively. Interfacial free energies
obtained from nucleation studies at high supersaturations, both
computational [24,25,29] and experimental [26], are also in-
cluded as indicated in the legend.

with the mean value of them (¥,; black circle) and the
average value from the Wulff’s construction for the equi-
librium crystal (y,; gray circle). As can be seen, the
extrapolated interfacial free energy trend to S =1 from
Lamas et al. [24] and Jiang et al. [25] are in excellent
agreement with our direct calculations of y, for different
crystal planes. However, a significant better agreement is
found between the extrapolated interfacial free energy from
these nucleation studies and ¥, (arithmetic mean) than with
the obtained y,y from the Wulff’s construction (Fig. 3).
That might be explained by the fact that in nucleation studies
the typical size of the NaCl clusters is of the order of tens of
ions (i.e., from 10 to 100 ions [24,25,29]), and their shape is
roughly spherical. Hence, the overall y; for these small
critical nuclei may be contributed by different crystallo-
graphic planes, interfacial defects, curvature effects, or by
the Laplace pressure [49,66]. In fact, even large critical
nuclei stable at much less supersaturated concentrations
(i.e., S ~ 1.5) typically display spherical shapes which may
exhibit curvature effects [49]. In contrast, at the saturation
concentration, macroscopic roughly cubic crystals mainly
exposing the (100) plane [with a possible small contribution
of the (112), or (111) planes on the vertices [61]] are
expected to be formed displaying an overall interfacial free
energy that highly resembles that of the (100) plane: y, =
109 mIm™2 vs 7, (199 = 104 mJm~2. Such a mostly cubic
shape of the equilibrium NaCl crystal predicted through the
Waulff’s construction (Fig. S4) is in good agreement
with experimental observations for macroscopic NaCl
crystallites [61,67].

On the contrary, the extrapolated trend from
Zimmermann et al. [29] significantly underestimates ¥,
and y,y at coexistence conditions (Fig. 3). That is not
surprising considering that the nucleation rates from which
the interfacial free energies were obtained in Ref. [29]
severely overestimated those from Refs. [24,25].
Importantly, the y, dependence with supersaturation which
reasonably extrapolates to our calculations (those from
Refs. [24,25]) suggests that y, decreases as the salt con-
centration increases. This observation would be consistent
with the fact that the chemical composition of both phases
becomes increasingly similar with supersaturation, and thus,
at the limit of infinite supersaturation (molten NaCl), the
interfacial free energy should be lower than at the solubility
limit [15]. The observed substantial differences in y, from
nucleation studies also evidence the critical relevance of the
employed local order parameter for determining the nucleus
size, and thus, the interfacial free energy [29]. Finally, we
also compare with the experimental interfacial free energy
inferred by Na et al. [26] using the CNT framework (Fig. 3,
red square), which is significantly below the predicted y,
from Refs. [24,25] (not from Ref. [29]), although it is
qualitatively consistent with the hypothesis that the inter-
facial free energy may decrease with supersaturation. A
simple possible explanation for the observed discrepancies
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between these computational vs experimental nucleation
estimates of y, may be the force field performance,
nevertheless, the difficult determination of the experimental
CNT kinetic prefactor to infer the nucleation free energy
barrier, from which the interfacial free energy is ultimately
extracted, might also add a significant degree of uncertainty.

In summary, we provide here the first direct measure-
ment of the NaCl-brine solution interfacial free energy at
the saturation concentration and normal conditions. We
overcome inherent difficulties of these calculations, such as
the slow crystal growth dynamics, by employing mold
integration, a computational technique which evaluates the
free energy work to form a crystal slab from the saturated
solution. By using the JC-SPC/E model, one of the most
benchmarked force fields for NaCl in water, we measure
the interfacial free energy of four different planes: the
(100), (110), (111), and (112); obtaining an average value
of 7, = 137(20) mJ m~2. Remarkably, large differences of
up to 50 mIm=2 in y, between the different crystal
orientations are found. Finally, we note that our results
of y, at the solubility limit are consistent with extrapolated
values from nucleation studies (using the same model) as
well as with experimental data inferred from a CNT
analysis at high supersaturation. Taken together, this
Letter represents a milestone in the computational calcu-
lation of interfacial free energies between aqueous solu-
tions and ionic crystals.
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