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The abstraction of pyrrolic hydrogen from a single phthalocyanine on graphene turns the molecule into a
sensitive probe for graphene phonons. The inelastic electron transport measured with a scanning tunneling
microscope across the molecular adsorbate and graphene becomes strongly enhanced for a graphene out-
of-plane acoustic phonon mode. Supporting density functional and transport calculations elucidate the
underlying physical mechanism. A molecular orbital resonance close to the Fermi energy controls the
inelastic current while specific phonon modes of graphene are magnified due to their coupling to
symmetry-equivalent vibrational quanta of the molecule.
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Inelastic electron tunneling spectroscopy (IETS) is most
relevant to unraveling mechanisms underlying the excita-
tion of vibrational quanta [1,2] and photon emission [3–7]
as well as single-atom spin-flip transitions [8]. After the
initial report on IETS of molecular vibrations in planar
tunneling junctions [1], a seminal work demonstrated the
acquisition of single-molecule vibrational spectra with a
scanning tunneling microscope (STM) [2]. The amount of
ensuing reports on IETS of molecular vibrations is sub-
stantial and has been reviewed in other articles [9–14]. Very
often, the change in the differential conductance (dI=dV: I,
current; V, voltage) due to vibrational quantum excitation is
on the order of only a few percent or is even compensated
by virtual excitations in the elastic electron transport
channel [15–18]. Exceptions can occur in the case of
resonant enhancement [19–24], where a molecular orbital
resonance close to the Fermi energy (EF) overlaps with
energies of molecular vibrational quanta and increases the
residence time of the injected charge carrier for efficient
energy transfer to the vibrational degrees of freedom of the
molecule.
In contrast to molecular vibrations, reports on lattice

phonons using STM-IETS are scarce. Phonon signals from
graphite [25], Bi2Sr2CaCu2O8þδ [26], Au(111) [27,28],
Cu(111) [27], Ag(100) [29], and Cu(110) [30] were
measured across STM junctions. Extraordinarily strong
phonon signals were observed for quasi-free graphene on
SiO2 [31,32], which stimulated the advent of phonon-
mediated tunneling [31]. The inelastic tunneling electrons
can reach Dirac cone final states at the K-point of the
Brillouin zone (BZ) by the emission of a graphene phonon
with an appropriate wave vector. The mechanism was later
extended by inclusion of the phonon density of states
(DOS) [33,34], the electron–phonon coupling, and the
electrode–graphene hybridization [35,36] in order to be

applicable to graphene on metal surfaces as well [34–38].
While the local probing of graphene phonons with
STM-IETS is rare, laterally averaging spectroscopies have
very frequently been used, as thoroughly described in a
previous report [39].
The work presented here reveals two novelties. First,

the orbital resonance of an adsorbate—a phthalocyanine
molecule—enhances the phonon IETS signal of the sub-
strate—graphene. Second, the quasi-free state of graphene
and, thus, phonon-mediated tunneling are not required for
the phonon signal enhancement. These new insights have
been inferred from IETS experiments performed on
C32H18N8 (2H-Pc) as well as on its pyrrolic-H-abstracted
variant Pc adsorbed on graphene-covered Ir(111). While
intact 2H-Pc does not give rise to any vibrational signature
in the spectra, in agreement with the absence of phonon
signals of graphene on Ir(111) [34], charge injection into Pc
leads to strong inelastic excitations whose energies are
compatible with molecular vibrations and graphene pho-
nons. The physical mechanisms underlying these observa-
tions are unveiled by the accompanying density functional
theory (DFT) and transport calculations. The removal of
pyrrolic H induces an orbital resonance close to EF, which
is absent for the intact molecule. Importantly, while the
molecular orbital resonance enhances the inelastic electron
transport across the junction, the magnification of specific
graphene phonon signals is driven by the coupling of
symmetrically equivalent molecule and graphene vibrations.
Figure 1(a) illustrates, with ball-and-stick models of the

molecules, the abstraction of pyrrolic H. The top model
(2H-Pc) exhibits two central H atoms, each covalently
bonded to an N atom of the opposite pyrrole moieties. Such
intact molecules appear with a crosslike shape and nearly
uniform contrast in STM images [40], with the exception of
a central depression [Fig. 1(b)]. The STM topograph further
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reveals that room-temperature deposition of 2H-Pc on
graphene-covered Ir(111) leads to a molecular superstruc-
ture with a square primitive unit cell [41,58,59]. The
pyrrolic H can be removed from the macrocycle by placing
the STM tip atop the center of 2H-Pc, deactivating the
feedback loop at 1 V, 10 pA and ramping the bias voltage
up to 3.3 V [41]. The resulting product Pc molecule appears
with brighter contrast and submolecular structural motifs in
STM images [Fig. 1(b)]. It was previously shown that the
intramolecular contrast of Pc is due to the spatial distribution
of the highest occupied molecular orbital (HOMO) that
depopulates in the course of pyrrolic-H detachment [41].
The key experimental finding reported here is the

marked difference of dI=dV spectra acquired atop pristine
graphene [Figs. 1(c) and 1(d)], intact 2H-Pc [Figs. 1(e)
and 1(f)], and pyrrolic-H-abstracted Pc [Figs. 1(g)
and 1(h)] on graphene. In the explored voltage ranges,
jVj ≤ 100 mV [Figs. 1(c), 1(e), and 1(g)] and jVj ≤
500 mV [Figs. 1(d), 1(f), and 1(h)], spectra of graphene
and 2H-Pc are virtually identical. The absence of the
K-point Dirac cone from dI=dV data is due to its rapidly
decaying wave function [60]. A Γ-point Ir(111) surface
resonance close to EF (V ¼ 0 in the spectra) contributes
strongly to the tunneling current [asterisk in Fig. 1(d)] and
masks the Dirac cone signature [60]. Upon 2H-Pc, this
resonance shifts by approximately 40 meV toward EF.
Intriguingly, the situation changes strongly for dI=dV
spectra recorded atop the center of Pc. Pronounced step-
like signatures occur that are symmetrically positioned at
positive and negative voltages [Fig. 1(g), steps at�15 mV,
�32 mV, �53 mV, �60 mV, �78 mV]. Moreover, the
steps are generally more pronounced for negative voltage,
exceeding, for instance, a factor 2 for the signature at
�32 mV. An enlarged view of these data, together with a
d2I=dV2 spectrum, is presented in the Supplemental
Material [40]. Figure 1(h) additionally reveals that the

dI=dV steps are superimposed with broad resonances
peaked at −100 mV and 82 mV. Such resonances are
absent from the spectra observed for graphene and intact
2H-Pc. A minority of Pc molecules give rise to a resonance
energy shifted well above EF and, concomitantly, to
strongly attenuated inelastic signals [40]. Most likely, these
molecules reside at graphene lattice defects that caused a
different charge transfer compared to the majority of Pc
decorating intact graphene. This hints at the role of the
molecular resonance and its position within the range of
vibrational energies around EF for understanding the
observed effect, as discussed below.
It is tempting to associate molecular vibrational quanta

with the dI=dV steps. An ambiguity in this assignment
arises, however, due to graphene phonons with similar
energies, in particular, due to an out-of-plane acoustic
phonon at the M point (49 meV) of the BZ as well as
degenerate transverse acoustic and out-of-plane optical
phonons at M (80 meV) [34,35,61]. The computational
results to be discussed below will resolve this ambiguity.
Prior to presenting the underlying theory, additional exper-
imental data characterize the spatial variation of dI=dV
spectra.
Figure 2 shows spatially resolved dI=dV spectra acquired

atop the pyrrole [Figs. 2(a) and 2(b)] and the benzene
[Figs. 2(c) and 2(d)] moiety of Pc. Compared to the spectra
atop the Pc center [Fig. 1(g)], the steplike changes in dI=dV
are attenuated above the pyrrole group and entirely sup-
pressed atop benzene. The resonance pair around zero bias is
still present with different peak voltages, i.e., at −122 mV,
127 mVatop pyrrole and at −180 mV, 56 mVatop benzene.
These resonances may be due to pz states of the molecule
with ample spectral weight at the benzene moieties [41].
To interpret the data, inelastic transport calculations

based on DFT and nonequilibrium Green function methods
[42] at the generalized-gradient approximation [43] level
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FIG. 1. (a) Ball-and-stick models of 2H-Pc and Pc. (b) STM image of molecule-covered graphene on Ir(111) (sample voltage: 0.78 V;
tunneling current: 25 pA; size: 8 nm × 8 nm). The 2H-Pc and Pc molecules are marked by dashed circles. Inset: overview STM image
with 2H-Pc-covered graphene (left) adjacent to pristine graphene (right) with the characteristic hexagonal Moiré pattern (0.81 V, 30 pA,
30 nm × 19 nm). (c)–(h) Spectra of dI=dV acquired atop positions marked by dots in (b), i.e., atop (c),(d) graphene, and the center of
(e),(f) 2H-Pc and (g),(h) Pc. Rectangles in panels (d), (f), and (h) mark the region of spectroscopic data in panels (c), (e), and (g). The
asterisk in panel (d) indicates the signature of an Ir(111) surface resonance that exhibits a shift upon 2H-Pc adsorption [dashed lines in
panels (d) and (f)]. Feedback loop parameters: (c),(e),(g) 0.1 V; (d),(f) 0.5 V; (h) 0.3 V and 50 pA.
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were used. The model setup is presented in Figs. 3(a)
and 3(b) where 2H-Pc (or Pc) is positioned atop graphene
on a static Ir(111) substrate [40]. The molecule–graphene
and graphene–surface distances are set to 0.32 nm as
previously determined [41]. The simulations use a Au tip
thatmatches theAu-coatedW tip apex in the experiment [40]
and the Tersoff-Hamann approximation of a spherical tip
wave function [62,63]. The tip is placed symmetrically above
the molecule with a vertical distance of 0.4 nm to the
molecular center. Individually relaxed geometries are used
for the model elements; i.e., the impact of the interactions is
neglected. Self-energies describe open-electrode regions,
which are in the Ir and Au electrodes as well as in the
infinite graphene with adsorbed 2H-Pc (or Pc). For the
calculations of elastic and inelastic electron transmissions,
the molecular supercell of the experiment is used [Fig. 3(b)];
that is, a Pc molecule (dashed circle) is surrounded by intact
2H-Pc molecules.
The resulting elastic conductance of the junction is plotted

in Fig. 3(c) for Pc (solid line) and 2H-Pc (dashed line). The
most obvious change is the overall increase of the elastic
transmission,whichmaybedue to the increased symmetryof
Pc and its electronic states that facilitate the electron transport
between a spherically symmetric tip and graphene via the
molecule [64]. The resonant transmission behavior close to
EF in the case of Pc will be most important for the discussion
of the inelastic electron transport. Calculations of the
projected DOS [40] unveil that the transmission resonances
closest to EF can be associated with the Pc molecule alone.
They are due to the degenerate HOMO [41] with a more
weakly (sharp resonant feature) and more strongly (broad
signature) coupled linear combination of theHOMOstates to
the substrate.
The inelastic differential conductance [Fig. 3(d)] is com-

puted in the lowest-order perturbation of the electron–
vibration coupling [44,45] using the expression

dIi
dV

¼
X

λ;σ

γλ;σ
∂I
∂V

�
V − σ

ℏωλ

e

�
ð1Þ

[ℏ ¼ h=ð2πÞ; h is the Planck constant, and e the elementary
charge], where γλ;σ is the calculated inelastic scattering rate
for mode λ with energy ℏωλ and ∂I=∂VðV − σℏωλ=eÞ
represents a broadened step function with a step at bias
voltage σℏωλ=e (σ ¼ �1). In these calculations, the motion
of atoms is excited in the molecule and graphene, while
the electron–vibration coupling is restricted to the tip–
molecule–graphene region. Pronounced steplike signatures
appear in the inelastic conductance trace of Pc (solid line),
while they are featureless for 2H-Pc (dashed line) in the
explored energy range. This behavior can be understood
by the strongly resonant transmission structure of Pc
[Fig. 3(c)], which enhances the inelastic electron transport
[45]. Besides the energies of inelastic signals at �23 meV,
�32 meV, �50 meV, �68 meV, and �72 meV, which
are in good agreement with the experimentally observed
voltages of the abrupt dI=dV changes, the polarity asym-
metry is well reproduced, too. Because the Pc orbital
resonance comprises occupied states, the latter become
active in inelastic electron transport for negative sample
bias. It is noteworthy that in simulations that neglect the
hybridization with the Ir(111) surface, the results are
essentially the same; i.e., strong inelastic transmission is
present for Pc and absent for 2H-Pc. This observation
strengthens the importance of the Pc orbital resonance.
An important remaining task is the disentanglement of

individual vibrational contributions to the total inelastic
electron transport. To this end, the inelastic conductance is
decomposed into components using the vibrational modes
and their weights projected onto the molecule and gra-
phene. From the vibrational mode vector vλ, projections
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onto in-plane (xy) and out-of-plane (z) atom motions of
the molecule (m) and graphene (g) are defined and referred
to as wX

λ , with X ∈ fmxy;mz; gxy; gzg and
P

X w
X
λ ¼ 1 [40].

Individual contributions to dIi=dV [Eq. (1)] are then
defined as

dIXi
dV

¼
X

λ;σ

wX
λ γλ;σ

∂I
∂V

�
V − σ

ℏωλ

e

�
: ð2Þ

Figure 4(a) shows that the inelastic signal at 50 meV is
exceptional in that the strongest contribution originates
from a graphene out-of-plane phonon mode. At the same
time, an out-of-plane vibration of Pc contributes signifi-
cantly to this signal. These observations lend evidence to
the physical mechanism underlying the magnification of a
graphene phonon via a single molecule, which requires the
efficient coupling of lattice and molecule vibrations with
matching symmetry. The mixing of vibrational quanta
can be quantified by using the weights wX

λ . Figure 4(b)
shows the variation of wgz

λ · wmz
λ with the vibrational energy

(the variation of other weights are presented in the
Supplemental Material [40]). The product of weights is
maximal if, for a particular mode λ, both graphene and
Pc contribute equally. The latter applies to a vibrational
mode at 50 meV, which for graphene represents an out-of-
plane acoustic mode at the BZ M point [61,65], while it
is a twisting vibration of all isoindole moieties of the

molecule [58]. For several other modes, large products
are attained, too; however, their inelastic scattering rate
γλ;σ is orders of magnitude lower [Fig. 4(a)]. These results
demonstrate clearly that for the magnification of the
graphene phonon mode, both ingredients are required,
i.e., the adsorbate orbital resonance as well as the coupling
between adsorbate and substrate vibrations.
The presented findings are unexpected. The current

picture of enhanced inelastic electron transport relies on
the presence of orbital resonances covering the relevant
range of vibrational energies [19,22,66,67]. Importantly, in
this picture, the resonance and vibrational excitations
belong to one and the same quantum object. Examples
are O2 vibrations on Ag(110) [68–70], C60 Jahn-Teller
modes on Pb(111) [21,23,24], as well as highly resolved
molecular vibrational quanta on a superconductor [71]. In
the present Letter, a resonance of an adsorbate, Pc, is used
to enhance vibrations of the substrate, graphene. In this
sense, the adsorbed molecule acts as a sensitive and local
probe of graphene phonons. Moreover, the phonon-
mediated tunneling mechanism [31] put forward as a
rationale for the observed enhancement of phonon signals
in IETS does not apply. Rather than the previously required
match of electron and phonon momenta, the local breaking
of symmetry due to the adsorbed molecule and the substrate
surface is likely to provide final states for the inelastic
tunneling electrons close to the BZ center.
In conclusion, an adsorbate orbital resonance magnifies

spectroscopic signals of substrate phonons. To this end,
besides the overlap of electronic and vibrational energies, the
symmetry of atomic motions must match. In the presented
case of 2H-Pc adsorbed on graphene-covered Ir(111), the
molecular orbital resonance can be chemically engineered by
pyrrolic-H abstraction, allowing a clear-cut correlation
between the presence (absence) of the resonance and the
appearance (nonappearance) of the magnified graphene
phonon inelastic signal. The magnification is maximum at
the center of the macrocyclic molecule, which turns the
molecule into a local probe of the substrate vibrational
quanta. Therefore, the findings open the path to locally
explore phonon excitations at atom defects or impurities.
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