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We report three stages for locomotion of a helical swimmer in yield stress fluids. In the first stage, the
swimmer must overcome the material’s yield strain to generate rotational motion. However, exceeding the
first threshold is not sufficient for locomotion. Only when the viscous forces are sufficiently strong to
plastically deform the material to a finite distance away from the swimmer will net locomotion occur.
Once locomotion is underway in the third stage, the yield stress retards swimming at small pitch
angles. Conversely, at large pitch angles, yield stress dominates the flow by enhancing swimming speed.
Flow visualizations reveal a highly localized flow near the swimmer in yield stress fluids.
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Microorganism locomotion is important in our daily life,
environment, and physiology [1]. For example, penetration
of Helicobacter pylori through gastric mucus may cause
ulcers and cancer [2–4], burrowing nematode worms
through wet soil can enhance soil aeration and fertility
[5,6], motility of bacteria may infect food products, and
hydrogels are used as tissue scaffolds and biofilms [7,8] or
give rise to a new set of advanced biosensors and biofilters
[9,10]. Rheological measurements indicate that these flu-
idic environments display a strong yield stress behavior
[3,6,11]. Therefore, motility of organisms in yield stress
fluids is important in a host of applications, and its
mechanistic understanding provides fundamental insights
that can inform scientists on how to mitigate those health
risks or design and engineer new materials for advanced
applications. Despite admirable progress in our under-
standing of locomotion in polymeric fluids [12–21], little
is known about locomotion in yield stress fluids.
Yield stress materials behave like a solid and barely

deform below the yield stress threshold. A recent experi-
mental study showed that, while at high pH (near neutral)
H. pylori swims in porcine gastric mucus (PGM) freely
[4,22], at low pH (at which PGM is a yield stress fluid
[3,23]) H. pylori is stuck in PGM [4,22]. A relevant
theoretical study of Balmforth and co-workers showed
that, below a critical Bingham number, the yield stress
impedes the locomotion of a 2D undulatory swimmer near
a solid boundary in a simple Bingham fluid model [24].
The Bingham number is defined as Bi ¼ σy=η_γ, where σy,
η, and _γ denote the yield stress, viscosity, and the rate of
deformation, respectively. Although these studies hint at
the existence of some critical thresholds that must be
overcome by organisms to gain motility in yield stress
materials, such critical thresholds have not been quantified
in experiments. Furthermore, only a limited theoretical
effort has been devoted to probing swimming mechanisms,

post yielding, in yield stress fluids [25–28]. Particularly,
Hewitt and Balmforth developed a slender body theory for
yield stress fluids and found that the optimal pitch angle
associated with maximum swimming speed is moderately
larger than the calculated one for Newtonian fluids [26,27].
More recently, Eastham, Mohammadigoushki, and Shoele
investigated locomotion of a squirmer in a Bingham fluid
model [28]. Despite these advances, there is a dearth of
experimental studies that address the mechanisms of
locomotion in yield stress fluids. Here, we present the first
experimental investigation of locomotion in yield stress
fluids. We identify and document, for the very first time,
two critical thresholds that must be overcome by the
swimmer in order to propel itself forward in yield stress
fluids. Furthermore, we show that the yield stress enriches
the fluid dynamics once swimming is underway with a
complex and localized yielded zone near the swimmer
surface accompanied by an unyielded region at a finite
distance away from the swimmer.
Inspired by microswimmers such as H. pylori, we

perform experiments with a 3D printed helical (corkscrew)
swimmer. All swimmer’s dimensions are held fixed except
for the tail pitch angle, which varies as ψ ¼ 12°–74°. The
swimmer is actuated via a uniform magnetic field of a
rotating Helmholtz coil (this setup is similar to the one used
in our previous study [29] and shown in Fig. S1 in
Supplemental Material [30]). A combination of particle
tracking velocimetry and particle image velocimetry (PIV)
is utilized to measure the swimming speed and to visualize
the flow field around the swimmer. Yield stress fluids based
on Carbopol solutions are considered. Additionally,
Newtonian fluids based on corn syrup are prepared for
the purpose of comparison with the results obtained in yield
stress fluids. The rheological properties of these fluids are
reported in Table S1 and Fig. S2 [30].
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The locomotion of the helical swimmer in yield stress
fluids can be divided into three stages. The first stage is
associated with a minimum torque needed to generate
rotational motion. Below a critical torque (T Y), the
swimmer does not have enough power to overcome the
elastic resistance of the yield stress medium and, therefore,
cannot rotate with the rotating magnetic field of the
Helmholtz coil (see Movie S1 and Fig. S3 [30]). Our
hypothesis is that, in stage I, the yield stress around the
swimmer transitions from a fully recoverable elastic net-
work to a permanently plastic fluid and that triggers
rotational motion. To test this hypothesis, we define a
yield strain as

εY ¼ τY
Go

; ð1Þ

where τY and Go are the stress needed for the material to
yield around the swimmer and the elastic modulus of the
material, respectively. Here, τY ≅ ðT Y=A:LÞ, where A and
L are the total surface area and length of the swimmer,
respectively (see caption of Fig. S3 [30]). Figure 1 shows
that, while the minimum yield strain needed to initiate
rotational motion is independent of the swimmer’s pitch
angle, it increases by the yield stress of the material. To
further analyze these data, we measured the yield strain of
these fluids via a commercial rheometer (εc; see Fig. S4
[30]). The inset in Fig. 1 shows that the ratio of these two
yield strain values is remarkably close to unity. The latter
result not only supports our hypothesis on the underlying
cause of the first transition in swimming experiments, but
also suggests that this swimmer may be used as an in situ
rheometer with potentially some broader impacts. For
example, a magnetically actuated helical microswimmer
robot could be used as an in situ rheometer to characterize
the yield strain of valuable biological gels and tissues that

are not accessible in large quantity for bulk rheological
measurements. Exceeding the first threshold is yet not
sufficient for locomotion. In fact, for ε > εY and below a
critical rotational velocity (Ω < Ωc), the swimmer enters a
second stage at which, despite in-place rotational motion,
net locomotion cannot be achieved [see Fig. 2(a)]. We
checked that this critical rotational velocity is a strong
function of yield stress and the swimmer’s pitch angle
(shown in Fig. S6 [30]). Our hypothesis is that this critical
threshold is controlled by a balance between viscous and
yield stresses, which is captured through the Bingham
number defined here based on the shear-thinning viscosity
ηð_γÞ, and a characteristic shear rate of _γ ¼ RΩ=R ¼ Ω,
with R being the radius of the swimmer’s cross section.
Figure 2(b) shows that through a Bingham number we can
collapse all critical rotational velocities into a single graph
over a broad range of swimmer pitch angles and fluid
rheological properties. Note that, above this critical
Bingham Bic ≈ 0.6, a rotating swimmer does not generate
net locomotion. Finally, swimmers with larger pitch angles
(ψ ≥ 37°) always undergo locomotion even at the lowest
accessible imposed rotation rates (Ωmin ¼ 4 × 10−3 Hz).

FIG. 1. The critical yield strain as a function of the swimmer’s
pitch angle in various yield stress fluids. The inset shows the ratio
of yield strain obtained from swimming experiments to those
measured in a commercial rheometer.

FIG. 2. (a) The trajectory of a swimmer with a pitch angle
ψ ¼ 26° as a function of time for different imposed rotation rates
in a fluid with σy ¼ 5.4 [Pa]. (b) The critical Bingham number
associated with the onset of swimming as a function of pitch
angle ψ ½°� for various yield stress fluids. The inset shows the
critical Bingham number as function of plateau modulus G0.
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By overcoming the above two critical thresholds (εY and
Bic), the swimmer enters stage III of locomotion, at which
it is propelled at a constant velocity U. Figure 3(a) shows
the normalized swimming speed (U=RΩ) as a function of
the pitch angle for the Newtonian and sample yield stress
fluids for Bi < Bic. Below the critical Bingham number,
we observe that U=RΩ in the yield stress fluids is constant
at different imposed rotation rates (see Fig. S6 [30]).
Therefore, Fig. 3(a) shows the averaged swimming speed
over a broad range of imposed rotation rates above Ωc.
Additionally, we confirmed that U=RΩ is independent of
the viscosity of the Newtonian fluid consistent with the
resistive force theory [31,32]. Figure 3(a) provides three
important and novel aspects of swimming in yield stress
fluids. First, at low pitch angles (12° ≤ ψ ≤ 37°), the
swimming speed in the yield stress fluids is lower than
those measured in the Newtonian fluid. As the yield stress
increases in this range of pitch angles, the swimming speed
further decreases and approaches zero [see Fig. 3(b)].
These yield stress fluids are strongly shear thinning, and

shear thinning has been known to enhance swimming speed
of helical swimmers [33,34]. Hence, for these pitch angles,
the yield stress dominates the flow by resisting against
locomotion, and shear-thinning effects are negligible.
For ψ ¼ 45°, the swimming speed in the yield stress fluid

is similar to those measured in the Newtonian fluid, and by
increasing the yield stress this ratio changes modestly [see
Fig. 3(b)]. For larger pitch angles ψ > 45°, the swimming
speed in the yield stress fluid is much larger than those
measured in the Newtonian fluids, and increasing the yield
stress further enhances the swimming speed [see Fig. 3(b)].
In shear-thinning fluids with a shear-thinning index of
n ¼ 0.47–0.9, the maximum swimming enhancement has
been noted to be about 50% [34]. We surmise from these
results that, although shear thinning might have contributed
to swimming enhancement at large pitch angles, the
swimming dynamics are primarily controlled by the yield
stress. Finally, the optimal pitch angle in the yield stress
fluid has shifted to much larger values compared to the
Newtonian fluid (e.g., ψ ≈ 56° and ψ ≈ 63° for fluids with
σy ¼ 5.4 and σy ¼ 27.5, respectively). The latter result is
consistent with predictions of the slender body theory in the
Bingham model [26]. Note that the Reynolds number is
very small in these experiments, and, therefore, inertia does
not play any role in these experiments (see Table S1 [30]).
To better understand the physics underlying the above

stages of locomotion in yield stress fluids, we analyzed the
detailed form of flow field around the swimmer. In stage I,
no net motion is observed. Hence, the fluid is stationary
around the swimmer and PIV does not detect any motion.
Figures 4(a)–4(h) show a series of time-averaged two-
dimensional velocity profiles around the swimmer in stages
II and III of locomotion (see Movie S2 and S3 [30]). Recall
that in stage II, despite in-place rotation, a swimmer cannot
generate net locomotion. In particular, Fig. 4(a) shows that
in stage II of locomotion and at high Bingham numbers
(Bi > Bic; e.g., Bi ¼ 0.68), while a weak propulsion is
observed in the interior region of the helix in the r − z
plane, the fluid around the swimmer’s head in the r − θ
plane does not deform due to the presence of a significant
wall slip [albeit within the precision of our PIV measure-
ments; see Figs. 4(e) and 4(i)]. This result is similar to
experimental findings of Daneshi et al. [35] that showed
capillary flows of yield stress fluids at low pressure
gradients produce a fully plug flow with a significant wall
slip at the walls. As the Bingham number decreases toward
Bic (e.g., Bi ¼ 0.63) and the swimmer approaches stage III
of its locomotion, the tail propulsion is boosted [shown in
Fig. 4(b)], and the yielded zone in the r − θ plane is shifted
to a finite distance away from the swimmer’s surface with a
weaker wall slip [see Figs. 4(f) and 4(i)]. The correspond-
ing flow fields in the Newtonian fluid are distinct from
those measured in the yield stress fluids (see Fig. S7 [30]).
While the velocity of the yield stress fluid decays quickly
and approaches a nonyielded zone at a finite distance (rσ)

FIG. 3. (a) Normalized swimming speed U=ðRΩÞ as a function
of pitch angle ψ ½∘� for various swimmers in yield stress fluids and
Newtonian fluids. (b) Swimming speed normalized by the
Newtonian speed (U=UN) as a function of σy for swimmers
with different pitch angles. In (b), the comparison is performed at
the same imposed rotational velocity.
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away from the swimmer [Fig. 4(j)], the flow of a Newtonian
fluid extends to much farther distances away from the
swimmer, despite rotating at the same angular velocities.
What these flow visualization findings reveal to us is that,
for Bi > Bic, the swimmer experiences an extremely
confined space (and, consequently, a significant drag)
around its head in yield stress fluids such that the weak
fluid propulsion generated in the interior region of the helix
is not strong enough to overcome this drag. Consequently,
despite in-place rotation, the swimmer does not progress
forward in yield stress fluids.
Next, we investigate the impact of the tail pitch angle on

the flow field around the swimmer and discuss the link
between such flow fields and swimming speed results in
Fig. 3(a). For this purpose, we consider two swimmers with
ψ ¼ 26° and ψ ¼ 56° at Bi ¼ 0.46 in stage III of their
locomotion [cf. Figs. 4(c) and 4(d)]. Figures 4(c) and 4(d)
show that, while the propulsion generated in the interior
region of the helix is much stronger for the swimmer with a
larger pitch angle, the velocity field in the r − θ
plane [Figs. 4(g)–4(i)] and the location of the yield surface
[Fig. 4(j)] are the same for the two swimmers. These
observations suggest that, although swimmers experience a
similar confinement (or drag) around their head, the
swimmer with ψ ¼ 56° experiences a stronger thrust
and, therefore, should be propelled faster than the swimmer

with ψ ¼ 26°. This conclusion is consistent with the
swimming speed data reported in Fig. 3(a). Again, the
corresponding experiments in Newtonian fluid reveal a
stark difference with those obtained in yield stress fluid.
The Newtonian fluid deforms to much farther distances
away from the swimmer surface with a negligible wall slip
(see Fig. S8 [30]). These results highlight the strong
coupling between a highly localized flow around the
swimmer and the swimming dynamics in yield stress fluids.
In summary, we provided the first experimental inves-

tigation of the helical locomotion in yield stress fluids and
illustrated that swimming can be divided into three stages.
In the first stage, the swimmer must create rotational
motion by overcoming the yield strain of the material
(εY). However, exceeding the first threshold is not sufficient
for locomotion. For Bi > Bic, the yield stress fluid is hardly
deformed around the swimmer, and the tail propulsion is
not strong enough to generate locomotion. Only below a
critical Bic ≈ 0.6, when the rotational motion forces the
material to yield at a finite distance away from the
swimmer, will forward motion occur. Once swimming is
underway in the third stage of locomotion, the swimming
speed in the yield stress fluids is lower than those mea-
sured in Newtonian fluids for ψ ≤ 37°. Conversely, for
ψ ≥ 45°, the swimmer moves faster in the yield stress
fluids compared to their Newtonian counterparts. These

FIG. 4. Time-averaged 2D velocity profiles in the r − z plane [(a)–(d)] and orthogonal to the direction of locomotion [(e),(h)] in a yield
stress fluid with σy ¼ 5.4 [Pa]. In (e)–(h), the swimmer is rotating clockwise. Panels (a), (e), (b), (f), (c), (g), and (d), (h) correspond to
(ψ ¼ 26°, Bi ¼ 0.68), (ψ ¼ 26°, Bi ¼ 0.63), (ψ ¼ 26°, Bi ¼ 0.46), and (ψ ¼ 56°, Bi ¼ 0.46), respectively. (i) The time-averaged 1D
angular velocity profile as a function of the radial location around the head of the swimmer. (j) Location of the yield surface as a function
of the Bingham number for swimmers with different pitch angles. u and Uθ denote the fluid velocity in the z and θ directions,
respectively. Finally, the details of the time averaging are given in Fig. S7 [30].

PHYSICAL REVIEW LETTERS 130, 114002 (2023)

114002-4



observations open a new field of study, and, to fully
understand them, there are still several questions that need
to be answered, including the following. Why has the
optimal pitch angle shifted to larger values in the yield
stress fluid? What controls optimal swimming in yield
stress fluids? What is the role of the swimmer’s head? How
does changing swimming strategy to a force- or torque-free
mode affect the locomotion in yield stress fluids? We hope
to address these questions in the near future.

We are grateful to Neil Balmforth and Philipe Coussot
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