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We study two-phase displacement via the steady compression of an air reservoir connected to an oil-
filled capillary tube. Our experiments and modeling reveal complex displacement dynamics depending
on compression rate and reservoir volume that, for large reservoirs, depend on a single dimensionless
compressibility number. We identify two distinct displacement regimes, separated by a critical value of the
compressibility number. While the subcritical regime exhibits quasisteady displacement after an initial
transient, the supercritical regime exhibits burstlike expulsion.
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The gas-driven displacement of viscous liquid from
a confined geometry occurs in various natural and industrial
systems, including subsurface storage of carbon dioxide
[1,2], operation of fuel cells [3], reopening of airways [4,5],
and displacement of subretinal blood during eye surgery [6].
Gas-liquid displacement is one of the simplest classes of
two-phase flows because the viscosity of the gas is typically
negligible, making these flows especially tractable to theo-
retical analysis and firmly establishing their role as the key
model system in interfacial fluid dynamics [7]. Nonetheless,
gas-driven displacements are inherently unsteady due to
the interaction between compression of the gas and viscous
resistance in the liquid. For example, recent work has
identified nonmonotonic variations in pressure or invasion
rates during displacement in porous media [3,8], episodic
growth of intricate patterns during displacement of granular
suspensions [9,10], and time-dependent growth of fractures
during injection of foams into gels [11], despite the constant
nominal injection rate in all cases. Here, we show that even
the simplest gas-driven displacement is a complex dynamical
system where springlike compression drives flow against a
rate- and state-dependent resistance.
To elucidate the nonlinear dynamics underpinning these

flows, we consider a model problem: displacement of
viscous oil from a capillary tube by compressing a con-
nected reservoir of air of initial volume Vi at a fixed
nominal rate Q [Fig. 1(a)]. The fluid mechanics of this
idealized system are fully captured by a simple model that
reproduces our experimental observations both qualita-
tively and quantitatively, as discussed below. Yet, complex
behavior emerges immediately from both experiments and
theory: At the same Q, an experiment can either tend to a
steady velocity after an initial transient when Vi is small
[Fig. 1(b)(i)] or accelerate rapidly toward a burstlike
expulsion when Vi is large [Fig. 1(b)(ii)]. Here, we show
that these examples illustrate the two distinct displacement
regimes that emerge from the coupling of springlike
compression with viscous displacement. We show that this

problem is a specific realization of a simple dynamical
system, the complex behavior of which can be captured with
a reduced model comprising a nonlinear, first-order ordinary
differential equation. This model reproduces and explains
the contrasting dynamics shown in Fig. 1(b), as well as the
sharp transition point between these two dynamical regimes.
Our experimental flow cell comprised a glass capillary

tube of length 10 cm and inner radius R ¼ 0.66� 0.01 mm
[Fig. 1(a)]. One end of the tube was connected to a sealed air
reservoir of initial volume Vi ∈ f4; 8; 16; 32g � 0.1 mL;
the other end fed into a bath of silicone oil at fixed
hydrostatic pressure pHS (viscosity μ ¼ 0.096 Pa s, surface
tension γ ¼ 21 mNm−1, and density ρ ¼ 960 kgm−3 at
laboratory temperature T lab ¼ 22� 1 °C; Dow Corning).
Before each experiment, oil was drawn from the bath
into the tube, filling an initial length L ¼ 56� 1 mm.
Experiments were initiated by compressing the air reservoir
at a fixed rate Q ∈ f0.05; 0.1; 0.2; 0.4; 0.8; 1.6g mL=min,
thus injecting air into the tube and expelling oil into the
bath. We used imaging and image processing to measure the
motion of the interface, the thickness of thin residual films
deposited on the tube walls by the perfectly wetting oil,
and the radius of curvature b of the air-oil interface. We
also measured the gauge pressure pg of the air relative to
atmospheric pressure patm ¼ 101 kPa, and thus calculated
the viscous pressure drop Δp ¼ pg − 2γ=b − pHS across
the oil slug (see Supplemental Material [12]).
For reference, we first consider an incompressible

displacement at a rate Q (dashed lines in Fig. 2).
Neglecting thin residual films, the air-oil interface must
advance linearly with time t, such that its displacement
relative to its initial position is l¼Qt=ðπR2Þ [Fig. 2(a)] and
its velocity u¼dl=dt¼Q=ðπR2Þ is constant [Fig. 2(b)].
The experiment ends at breakout time tbo ¼ πR2L=Q,
when the interface reaches the outlet [i.e., lðtboÞ ¼ L].
Assuming laminar Hagen-Poiseuille flow (see below), the
pressure gradient in the oil Δp=ðL − lÞ ¼ 8μQ=ðπR4Þ is
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constant and the pressure drop Δp decreases linearly
from its maximum value of 8μQL=ðπR4Þ (reached
instantaneously after flow starts at t ¼ 0) to its breakout
value of Δpbo ¼ 0 [Fig. 2(c)]. We normalize our com-
pressible results below by these incompressible reference
values, such that l̂ ¼ l=L, t̂ ¼ t=ðπR2L=QÞ, Δp̂ ¼
Δp=½8μQL=ðπR4Þ� and û ¼ u=½Q=ðπR2Þ�. Hatted quan-
tities throughout are dimensionless.
In our experiments, the interface advances nonlinearly

in time [Fig. 2(a)], initially moving slowly [û < 1; Fig 2(b)]
as the air compresses and pressurizes [Δp̂ increases;
Fig. 2(c)]. As oil drains and air pressure builds, û increases.
Once û > 1, the oil flux exceeds the nominal flux imposed
by the pump and the air begins decompressing [Δp̂
decreases; Fig. 2(c)]. (Ref. [16] made similar observations,
but across a more limited range of parameters.) As a result,
the maximum in Δp̂ occurs when Δp̂ crosses the incom-
pressible solution, for which Δp̂ ¼ 1 − l̂ and û ¼ 1. As Vi
is increased (arrows in Fig. 2), we observe the transition
from quasisteady to burstlike expulsion [e.g., Figs. 1(b)(i)
and 1(b)(ii), respectively]. This transition is most apparent
in the normalized velocities measured close to breakout
[ûðl̂ ≈ 1Þ], which increase dramatically from slightly above
to more than 10 times the nominal velocity as Vi increases
[not visible on the scale of Fig. 2(b); see Fig. 4(c)]. We next
introduce a simple model that captures these observations.

We model the air as a fixed mass of isothermal ideal gas.
We take the oil pressure at the outlet to be atmospheric, so
the initial absolute air pressure is patm þ 2γ=R. We neglect
pHS ≪ patm as it is arbitrary, but retain 2γ=R ≪ patm
for generality as it depends on the system parameters.
The gauge pressure of the air is then

pgðtÞ ¼ ðpatm þ 2γ=RÞ Vi

VðtÞ − patm; ð1Þ

where VðtÞ is the current volume of air and Vð0Þ ¼ Vi.
The syringe pump acts to decrease V at a steady rate Q,
while the motion of the interface acts to increase V at a rate
πR2ðdl=dtÞ; hence,

VðtÞ ¼ Vi −Qtþ πR2lðtÞ: ð2Þ
We model the oil flow as Hagen-Poiseuille flow. In the
absence of thin films, the interface velocity must be equal to
the mean oil velocity, such that

dl
dt

¼ R2

8μ

�
Δp
L − l

�
; ð3Þ

where the viscous pressure drop along the oil slug is
Δp ¼ pg − 2γ=R. Substituting Eqs. (1) and (2) into Eq. (3)
and introducing l̂, t̂, and Δp̂ from above yields

FIG. 1. Displacement of silicone oil from a capillary tube by the injection of air from a reservoir of initial volume Vi that is
compressed at a constant volume rateQ using a syringe pump. (a) Experimental setup. We measure the displacement of the interface
lðtÞ relative to its initial position [lð0Þ ¼ 0] as well as the gauge pressure pg of the air. The oil slug has initial length L.
(b) Experimental time lapses of overlaid frames at equal time steps Δt ¼ 2.05� 0.02 s show the motion of the interface; interframe
spacing of interfaces is inversely proportional to interface velocity. (i) and (ii) are for Vi ¼ 4 and 32 mL, respectively, and
Q ¼ 0.2 mL=min (Ĉ ¼ 0.50 and 4.0; see also Fig. 2).

FIG. 2. (a)–(c) Experimental results (symbols) and numerical solutions to the full model with films (solid lines; see Supplemental
Material [12]) for Q ¼ 0.2 mL=min and Vi ¼ 4, 8, 16, and 32 mL (Ĉ ¼ 0.50, 1.0, 2.0, and 4.0; dark to light). (a) Normalized
displacement l̂ of the interface as a function of normalized time t̂. (b)–(c) Normalized velocity û and normalized pressure drop Δp̂ as
functions of l̂. Dashed lines show corresponding incompressible behavior for reference. Arrows indicate increasing Vi and Ĉ.
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dl̂
dt̂

¼
�
p̂0 þ 2=Ĉa

V̂i þ ðl̂ − t̂Þ

��
t̂ − l̂

1 − l̂

�
¼ Δp̂

ð1 − l̂Þ : ð4Þ

Equation (4) is a nonlinear ordinary differential equation
containing three independent nondimensional parameters:
p̂0 ¼ πR4patm=ð8μQLÞ, comparing the compressive and
viscous pressure scales; the capillary number Ĉa ¼
8μQL=ðπR3γÞ, comparing the viscous and capillary pres-
sure scales; and V̂i ¼ Vi=ðπR2LÞ, comparing the initial
volumes of air and oil.
To quantitatively compare with experiments requires the

inclusion of thin films, which modify the interfacial capillary
pressure and the kinematic relation between interface and oil
velocities. We do so in the Supplemental Material [12] using
well-established results and corrections. The full model with
thin films (solid lines in Fig. 2) is in strong quantitative
agreement with the experiments with no fitting parameters.
As demonstrated below, however, the key qualitative features
of this system can be captured with a much simpler model
that does not include thin films.
Our model can be simplified by considering the limit of a

much larger initial volume of air than of oil, V̂i ≫ 1, which
is the case in our experiments (V̂i ≈ 60–450). In this limit,
which corresponds to approximating the air as a linear
spring, Eq. (4) reduces to

dl̂
dt̂

≈
�
p̂0 þ 2=Ĉa

V̂i

��
t̂ − l̂

1 − l̂

�
≡ 4

Ĉ

�
t̂ − l̂

1 − l̂

�
: ð5Þ

The system is then governed by a single nondimensional
“compressibility number,”

Ĉ ¼ 32μQVi

π2R6patm

�
1þ 2γ

Rpatm

�
−1
: ð6Þ

The reduced model, Eq. (5), captures most features of the
full model and the experiments, and permits an implicit
analytical solution given in the Supplemental Material [12].
The compressibility number Ĉ can be interpreted by
considering the characteristic rates at which compressive
and viscous pressures vary, i.e., _PC ¼ Qpatm=Vi and _PV ¼
8μQ2=ðπ2R6Þ, respectively. Comparing with Eq. (6), we
find that Ĉ ≈ 4ð _PV= _PCÞ when 2γ=ðRpatmÞ ≪ 1 (i.e., when
the capillary pressure is much less than patm), as is the case
for R≳ 10 μm. Thus, Ĉ measures the rate of viscous
depressurization relative to compressive pressurization.
The effect of varying Ĉ in the reduced model [Eq. (5)]

is summarized in Fig. 3, which shows (normalized)
breakout time t̂bo [Fig. 3(a)], breakout pressure drop
Δp̂bo [Fig. 3(b)], and breakout velocity ûbo [Fig. 3(c)]
as functions of Ĉ. These breakout quantities all exhibit two
distinct regimes separated by a critical compressibility
number Ĉcrit ¼ 1 (dashed lines). For all Ĉ ≤ Ĉcrit

(i.e., subcritical expulsion), breakout occurs at exactly
t̂bo ≡ 1, meaning that the time taken to drain the oil is
identical to that of an incompressible displacement at the
same Q. As a result, the volume of air displaced by the
piston at the moment of breakout is exactly equal to the
volume of oil expelled, so the air returns precisely to its
initial volume and pressure (i.e., Δp̂bo ≡ 0). For all
Ĉ > Ĉcrit (i.e., supercritical expulsion), breakout is delayed
[t̂bo > 1; Fig. 4(a)]. The volume displaced by the piston at
the moment of breakout is greater than the volume of oil
expelled, so the air is compressed and the system terminates
with an overpressure, Δp̂bo > 0 [Fig. 4(b)]. These two
scenarios have dramatically different consequences for the
breakout velocity, ûbo ¼ liml̂→1Δp̂=ð1 − l̂Þ, which can
only remain finite if Δp̂ tends to zero at the same rate
that l̂ tends to 1. This is the case only for subcritical
expulsion, in which 1 ≤ ûbo ≤ 2. During supercritical
expulsion, the overpressure at breakout results in infinite
breakout velocities. Note that our use of the terms sub-
critical and supercritical refers only to the value of Ĉ

   1

   2

   3

0

0.2

0.4

10
0

10
1

10
0

10
1

(a)

(b)

(c)

FIG. 3. Normalized breakout quantities calculated analytically
from the reduced model [Eq. (5)]. Thick black curves show
(a) t̂bo, (b) Δp̂bo, and (c) ûbo as functions of Ĉ. Vertical dashed
lines at Ĉ ¼ Ĉcrit separate the sub- and supercritical regimes. In
(c), the near-breakout velocity ûnb is plotted as a thick dashed
curve. For comparison, t̂bo, Δp̂bo, and ûnb are also shown for
experiments (symbols) and the full model with thin films
(red curves; see Supplemental Material [12]) for different V̂i
[see legend in (a)].
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relative to Ĉcrit, and is not intended to imply anything
about the nature of the bifurcation. See Table S1 of the
Supplemental Material [12] for analytical expressions for
breakout quantities in each regime.
Measurements of breakout time t̂bo, breakout pressure

Δp̂bo and near-breakout velocity ûnb are also plotted in
Figs. 3(a)–3(c) for experiments and for the full model with
films for different values of V̂i. We measure ûnb two tube
diameters from the outlet [ûnb ¼ ûðl̂ ¼ 1–4R=LÞ] to reduce
uncertainty by avoiding large ûbo at high Ĉ. Our experimental
results clearly reflect a transition between sub- and super-
critical regimes at Ĉ ¼ Ĉcrit, consistentwith the predictions of
the reducedmodel [Eq. (5)]. For Ĉ < Ĉcrit,Δp̂bo ≈ 0 towithin
experimental uncertainty [Fig. 3(b)], suggesting the pressure
driving the flow vanishes at breakout, and the breakout
velocities are modest [ûnb ≳ 1; Fig. 3(c)]. For Ĉ > Ĉcrit, we
observe a marked rise in bothΔp̂bo and ûnb, consistent with
an overpressure driving burstlike expulsions with ûnb ∼ 10.
The spread in the data and in the predictions of the full model
for different V̂i ∝ Vi at fixed Ĉ ∝ QVi is due to residual
films, the thickness of which depends strongly on Ĉa ∝ Q.
The reduced model [Eq. (5)] describes a dynamical

system in which the steady compression of a linear spring
drives motion against a state-dependent viscous damper.
To rationalize the emergence of such complex behavior
from this simple, first-order dynamical system, we consider
the generalized system in û-l̂ phase space, as depicted in
Fig. 4. Introducing the resistance ω̂ ¼ 1 − l̂, Eq. (5) can be
written as

RðûÞ ¼ RðΔp̂Þ −Rðω̂Þ ¼ 4

ω̂ Ĉ

�
1

û
− 1þ Ĉ

4
û

�
; ð7Þ

whereRðx̂Þ ¼ _x=x̂ is the relative rate of change of variable
x̂ðt̂Þ, with _x ¼ dx̂=dt̂. Steady solutions ū of the reduced
model are given by _uðūÞ ¼ 0. There are two steady
solutions for a subcritical expulsion,

ū� ¼ 2

Ĉ

�
1�

ffiffiffiffiffiffiffiffiffiffiffi
1 − Ĉ

p �
; ð8Þ

plotted as dashed and solid black lines in Fig. 4(a). These
steady solutions merge and annihilate at a saddle-node
bifurcation at Ĉ ¼ Ĉcrit, so that there are no real steady
solutions for a supercritical expulsion. Physically, these
steady displacements are states in which the driving
pressure and the opposing resistance decrease at the same
relative rate, RðΔp̂Þ ¼ Rðω̂Þ.
For a subcritical expulsion [Fig 4(a)], the stability of

each steady solution can be inferred from the sign of RðûÞ
close to that solution, which is indicated by the color map in
Fig. 4 (note û > 0). Small perturbations decay close to ū−
and grow close to ūþ meaning that these solutions are,
respectively, an attractor and a repeller. To understand the
physical mechanisms that give each branch its stability,
we consider how RðΔp̂Þ and Rðω̂Þ vary with û. When
RðΔp̂Þ > Rðω̂Þ, the interface accelerates, RðûÞ > 0. This
is the case in most of the phase diagram: when û < 1
because the gas is compressing (Δ _p > 0 and _ω < 0), when
1 < û < ū− because the gas is decompressing slowly
(Δ _p < 0 and small), and when ūþ < û because the gas
is overcompressed (Δp̂ is large). When RðΔp̂Þ < Rðω̂Þ,
however, the interface decelerates, RðûÞ < 0. This only
occurs during subcritical expulsion when ū− < û < ūþ, for
which the air undergoes fast decompression (Δ _p < 0 and
large). The fast decompression region thus gives rise to the
two steady states ū� and imparts their respective stabilities.
In the supercritical phase space [Fig 4(b)], there are only
two regions because the fast decompression region collap-
ses and ceases to exist when the two steady states annihilate
at Ĉ ¼ Ĉcrit. Hence, _u > 0 for all û.
Finally, the striking breakout features observed in our

models and experiments are a consequence of the vanishing
resistance at breakout. For subcritical expulsion, this means
the attractive and repelling states become arbitrarily strong
[RðûÞ diverges except at ū�] and the system terminates at
ûbo ≡ ū−. For supercritical expulsion, in the absence of
steady solutions, û diverges at the moment of breakout. To
illustrate this, we plot several trajectories (magenta lines) in
Figs. 4(a) and 4(b) for a range of initial velocities ûð0Þ. In
our experiments, a nonzero ûð0Þ could be imposed by pre-
compressing the air before opening a valve to initiate flow.
In the subcritical phase space [Fig. 4(a)], all trajectories
with ûð0Þ < ūþ terminate on the attractive solution ū−,
while those with ûð0Þ > ūþ exhibit divergent ûbo. In the
supercritical phase space [Fig. 4(b)], û diverges for all ûð0Þ.
In summary, we have shown that the gas-driven dis-

placement of a confined viscous liquid is an example of a
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FIG. 4. Phase diagram in û-l̂ space for (a) sub- and (b) super-
critical expulsion dynamics (Ĉ ¼ 0.88 and 1.12, respectively).
Example trajectories with varying ûð0Þ are plotted as magenta
lines; the thick trajectory has ûð0Þ ¼ 0, as in our experiments.
Dashed, solid, and dotted black lines indicate u� and û ¼ 1,
respectively. The color map indicates _u=û (see color bar), which
is saturated in regions close to l̂ ¼ 1 and û ¼ 0.
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simple, first-order dynamical system [Eq. (5)] that exhibits
unexpectedly complex dynamical regimes. A single dimen-
sionless parameter determines whether these dynamics are
subcritical or supercritical, leading to “on-time” and qua-
sisteady or delayed and burstlike dynamics, respectively. The
key features of this idealized system are strikingly evident
in our fluid-mechanical realization, demonstrating that the
underlying dynamical framework can exert a powerful
control on real-world systems. We therefore expect that
analogous dynamics would occur in other nonlinear systems
that couple the key ingredients embodied in the reduced
model: a linear spring and a reducing, state-dependent
resistance. In fluid mechanical systems, for instance, spring-
like compressibility can also originate from elastic walls,
which act as volumetric capacitors [17]. More broadly,
analogous time-dependent currents may occur in electrical
circuits, which are an established test bed of nonlinear
dynamics [18]; an idealized memristor-capacitor circuit has
the right key ingredients and can therefore be represented by
an equation that is analogous to the reduced model. In
general, subcritical dynamics could be used to mitigate the
presence of springlike components as a relatively minor and
transient perturbation from corresponding “incompressible”
behavior. Supercritical dynamics could wreak havoc if
encountered unexpectedly (such as while squeezing a condi-
ment bottle), but could also be exploited as a new design
tool—for example, as a means of detecting otherwise-
imperceptible flows or currents via passive amplification.
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