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Long-term quantum coherence constitutes one of the main challenges when engineering quantum
devices. However, easily accessible means to quantify complex decoherence mechanisms are not readily
available, nor are sufficiently stable systems. We harness novel phase-space methods—expressed through
non-Gaussian convolutions of highly singular Glauber-Sudarshan quasiprobabilities—to dynamically
monitor quantum coherence in polariton condensates with significantly enhanced coherence times. Via
intensity- and time-resolved reconstructions of such phase-space functions from homodyne detection data,
we probe the systems’ resourcefulness for quantum information processing up to the nanosecond regime.
Our experimental findings are confirmed through numerical simulations, for which we develop an
approach that renders established algorithms compatible with our methodology. In contrast to commonly
applied phase-space functions, our distributions can be directly sampled from measured data, including
uncertainties, and yield a simple operational measure of quantum coherence via the distribution’s variance
in phase. Therefore, we present a broadly applicable framework and a platform to explore time-dependent
quantum phenomena and resources.
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Introduction.—Applications in quantum information
science require stable quantum superpositions as a key
resource. Therefore, a great deal of effort is dedicated to
quantifying quantum coherence [1–6]. Beyond assessing
the amount of useful quantumness, however, the evolution
of quantum coherence is, at least, equally important to
actually processing information in quantum algorithms
[7–9]. Furthermore, quantum coherence, providing a single
number, does not yield an exhaustive quantum state
description, generally not allowing for proposing schemes
to access particular quantum resources. In this Letter, we
overcome the challenging problem of studying dynamic
quantum coherence, while also providing a comprehensive
and accessible quantum state description.
In quantum information science, quantum coherence

is based on a set of computational and orthonormal
basis states [3], which are number states jni in our
study. Exceeding incoherent mixtures—i.e., diagonal ρ̂ ¼P

n pnjnihnj—results in quantum superpositions—e.g.,
ρ̂ ¼ jψihψ j with jψi ¼ P

n ψnjni—that form the founda-
tion of quantum algorithms [5], such as quantum

teleportation [10], Shor’s factorization [11], quantum key
distribution [12], etc. It was shown in Ref. [13] that, in
optical and semiconductor systems, this operational quan-
tification of quantum coherence for practical quantum
protocols is distinctively different from commonly applied
notions of nonclassicality and macroscopic coherence as
characterized through negativities in phase-space functions
[14] and determined by correlation functions [15],
respectively.
Polaritons in semiconductor microcavities present a so-

far untapped resource of quantum coherence [13].
Polaritons—i.e., hybrid light-matter quasiparticles—arise
from the strong coupling between the cavity photons and
the quantum well excitons. Under nonresonant excitation,
polaritons can spontaneously form a macroscopic coherent
condensate [16,17]. The buildup of quantum coherence was
demonstrated across the condensation threshold, while an
incoherent thermal behavior was observed below threshold
[13]. Nevertheless, the evolution and other vital informa-
tion about the produced states were inaccessible, posing
open problems to date. Generally, the dynamics of
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polariton condensates has been studied in previous experi-
ments, mainly by measuring the field correlation gð1Þ using
Michelson and Mach-Zehnder interferometry [18–21], and
the second-order correlation gð2Þ via Hanbury Brown–Twiss
interferometry [22,23]. But such correlation functions do
not yield information about quantum coherence in the
quantum-informational sense [13], which depends on
superimposing computational basis states [3].
In this contribution, we establish an easily applicable

method for analyzing quantum coherence via time-resolved
quantum tomography. To this end, we adopt advanced
phase-space functions, labeled as PΩ, for tracking quantum
coherence produced by a polariton microcavity system.
The phase variance of PΩ allows us to quantify quantum
coherence, and we demonstrate that PΩ can be directly
sampled from our data using pattern functions.
Exceptionally long coherence times—up to 1390 ps—are
experimentally observed. This is further supported by
microscopic simulations, advancing the truncated Wigner
approximation [24,25] to phase-space methods based on
PΩ. This renders it possible to reconstruct PΩ, compare the
numerical results to our experiment, reveal important
parameter dynamics, and relate our measurements to key
aspects of the underlying physical system.
Regularized phase-space functions PΩ.—Phase-space

distributions based on coherent states jαi are useful for
determining typical nonclassical effects, and they provide a
full state description [14]. However, information-based
quantum coherence relies on orthogonal states as the
classical reference, such as number states jni, but not
coherent states. Moreover, the fundamental Glauber-
Sudarshan phase-space distribution P [26,27], where
ρ̂ ¼ R

d2αPðαÞjαihαj, can exhibit an exponential order of
singularities [28]. Thus, convolution-based regularizations
were developed [29,30]:

PΩðαÞ ¼
Z

d2γΩðγ − αÞPðγÞ: ð1Þ

For instance, the seminal Husimi Q function and the
Wigner function are obtained when Ω is a Gaussian kernel.
Still, the reconstruction of such common phase-space
functions can be rather challenging, including ill-posed
inversions [31,32], diverging pattern functions [33,34], and
demanding maximum-likelihood estimations [35–37].
For optical scenarios, a regularization of P distributions

has been proposed to characterize nonclassical light by
utilizing non-Gaussian kernels [38]; see Refs. [39,40] for
recent experiments. While phase-space representations
have been applied to semiconductor systems in pioneering
papers [41–43], to date, this modern non-Gaussian
approach to phase-space representations has not been
exploited to analyze quantum coherence properties of
semiconductors and their dynamics.

Here, we use the non-Gaussian and phase-invariant
kernel

ΩðγÞ ¼
�
J1ð2RjγjÞffiffiffi

π
p jγj

�
2

; ð2Þ

with J1 denoting the first Bessel function of the first kind
and R > 0 being an adjustable width parameter.
Remarkably, the regularized function PΩ can be directly
obtained from data [44], with PΩðαÞ ≈

P
i wifΩðα; xi;φiÞ,

circumventing all aforementioned reconstruction problems.
In the formula, ðxi;φiÞ is the ith quadrature measurement
from balanced homodyne detection, wi’s are weights, and
fΩ’s are pattern functions; see the Supplemental Material
[45] for details.
Incoherent contributions to the density operator—e.g.,

jnihnj—relate to phase-independent parts of PΩ, depending
on the amplitude jαj only. Conversely, the distribution of
the phase ϕ ¼ arg α is directly connected to off-diagonal
density operator terms, jnihmj for m ≠ n, thus determining
quantum coherence [13,45]. Therefore, we here introduce
the width of PΩ in phase as an operational measure of
quantum coherence. Specifically, the circular variance [61]

VarðϕÞ ¼ 1 − jhrij; with hri ¼
Z

d2αPΩðαÞ
α

jαj ð3Þ

takes the maximal value 1 for a fully phase-randomized—
i.e., incoherent—state; a narrow phase distribution—hence,
a low circular variance—is obtained for strongly off-
diagonal density operators, verifying a high degree of
quantum coherence [45]. Therefore, the evolution of this
circular variance of PΩ monitors the dynamics of quantum
coherence.
Experimental time-resolved tomography.—Our system

is a GaAs polariton microcavity [13,45,46]. The sample is
held in a cryostat at 10 K and is excited nonresonantly at the
first minimum of the stop band, with a linearly polarized
continuous-wave laser. A nonresonant excitation prevents
the system from inheriting coherence from the pump
[47,62].
For our time-resolved tomography, the sample emission

is divided into three homodyne detection channels (see
Fig. 1). Two channels provide a proxy measurement of a
Husimi function [13,48], and the third one acts as a target
arm [49]. Between the target and proxy, a temporal offset τ
is controlled via a delay line. An annulus-shaped region of
Qðqps; ppsÞ, specified by radius s and thickness w, selects
specific intensities. For data in that region, we process the
quadrature values q from the target. Besides this, we recon-
struct the relative phase φ between the local oscillator (LO)
and signal in the target channel by adding the relative phase
of the two selection channels, φps ¼ arctanðpps=qpsÞ, to
the relative phase Δφ between the LOs in the proxy and
target channels. Then, the values ðq;φÞ are fed into the
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previously described reconstruction scheme. This yields PΩ
as a function of the variable time delay τ, providing
information resolved for each selected intensity region
beyond other approaches that average over intensities.
In homodyne detection, one measures the overlap of

signal and LO, resulting in a mode selectivity. This allows

us to track the evolution of selected signal modes sepa-
rately. Here, our LO is aligned to the most dominant linear
polarization mode in the emission. The LO’s wavelength is
resonant to the most intense zero-momentum ground-state
mode of the polariton emission. The LO has a spectral full
width at half maximum (FWHM) of 1.9 nm, a pulse du-
ration of 460 fs, and a FWHM in k space of 1.3 μm−1,
centered at k ¼ 0.
Experimental results.—Figure 2 (right column) exem-

plifies reconstructed PΩ functions for the highest excitation
power Pexc ¼ 1.7Pthr [63] for three different time delays τ.
The phase diffuses with increasing τ, resulting in a broad-
ening of the angular distribution. Simultaneously, the mean
amplitude of PΩ relaxes towards a steady-state value.
To resolve the mean amplitude and the circular variance

as functions of the selected intensity s and time delays τ,
hjαji and VarðϕÞ are derived from reconstructed PΩðαÞ via
Eq. (3) and hjαji ¼ R

d2αPΩðαÞjαj, using a discretized set
of points α ¼ qþ ip. The behavior of both quantities is
plotted in Figs. 2(a) and 2(b) for Pexc ¼ 1.7Pthr, while
w ¼ 0.6 is kept constant. Lines depict an exponential fit,
empirically yielding the best results compared to Gaussian
and power-law fits [45]. VarðϕÞ in Fig. 2(a) has its
minimum around τ ¼ 0, the smallest value being 0.14
for the highest selected intensity, s ¼ 11. This minimum
increases for smaller s because of the phase-photon number
uncertainty relation [45]. For increasing delays, the circular

FIG. 1. Experimental concept as conditional intensity spectros-
copy. The signal is split into three homodyne detection channels.
Two are used for intensity selection, delivering field quadratures
ðqps; ppsÞ of a Husimi function QðαpsÞ, with αps ¼ qps þ ipps.
Thereby, a specific region with radius s and width w is chosen,
fixing the signal’s mean intensity and its uncertainty. The third
quadrature is the target channel for quadratures q. Together with
the corresponding phases, this allows us to directly sample PΩ.
The time delay τ determines the elapsed time of the system’s
evolution.

FIG. 2. Temporal behavior of the mean amplitude hjαji and the circular phase variance VarðϕÞ of reconstructed PΩ, depending on the
selected intensity radius s. A shaded area around the curves corresponds to a 1-standard-deviation error margin, directly derived from
PΩ’s uncertainty, but is mostly not visible. Lines depict exponential fits. Plots (a) and (b) are for Pexc ¼ 1.7Pthr. The width w of the
selected phase-space region is 0.57. Plots (c) and (d) are for Pexc ¼ 0.8Pthr. The width w is 0.1, except for the two highest radii s, where
w ¼ 0.57. Insets in (a) and (c) show the Husimi functions from which the radius s is selected, cf. Fig. 1. The inset in (d) displays a zoom
of the region τ ≈ 0, revealing an oscillation of the mean amplitude. The right column exemplifies three PΩ for Pexc ¼ 1.7Pthr and a
selected radius s ¼ 9.9 at time delays τ ¼ −6 ps (top), τ ¼ 494 ps (middle), and τ ¼ 1214 ps (bottom).
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variance increases but does not arrive at a uniform
distribution [i.e., VarðϕÞ ¼ 1], even for the longest delay
τ ¼ 1214 ps. By contrast, the mean amplitude hjαji in
Fig. 2(b) relaxes almost completely toward the steady-state
value, thus decaying faster than the quantum phase.
Figures 2(c) and 2(d) show the results for a lower

excitation power, Pexc ¼ 0.8Pthr. Here, the phase variance
increases faster and reaches almost 1, describing full phase
decoherence. Meanwhile, the mean amplitude rapidly
decays toward the steady-state value. Our method also
reveals an oscillation around the stationary value, with a
frequency of 12.5 GHz. (This can be seen for Pexc ¼ Pthr as
well, but not for higher powers.) We attribute this effect to
mode competition between modes of orthogonal linear
polarizations [45]. Such a bistable regime of two cross-
linear polarizations and oscillatory behavior has also
been proposed in Ref. [64]. But modulations of the spatial
density of the polariton condensate—e.g., breathing
modes—can also lie in this frequency range [65].
In addition, we estimate decay times τc by fitting the

temporal dependence of hjαji and VarðϕÞ to exponential
functions, a exp ð−τ=τcÞ þ d. In Figs. 3(a) and 3(b), this
decay time is plotted versus the selected intensity radius s
for different excitation powers. For hjαji, there is no
significant dependence on s. For VarðϕÞ, there is a
tendency for states with higher s to have a larger decay
time for higher excitation powers, whereas the opposite
trend appears for lower powers. This might be explained

with a lower stability of the system for lower powers, and
thus faster relaxation upon perturbations. At Pexc ¼ Pthr,
the phase decay time is exceptionally long. At this
transition between the thermal and coherent states, the
system is least affected by heating, interaction with the
reservoir, and polariton-polariton interactions, which
become relevant decoherence mechanisms at higher exci-
tation powers.
In Fig. 3(c), the decay times are averaged over s and

plotted versus Pexc. Clearly, the amplitude has a shorter
decay time than the phase. Notably, the mean phase
coherence time is exceptionally long, between 520 ps
and 1390 ps. In earlier studies, values around 100 ps were
reported by employing a noise-free single-mode excitation
laser [19] and a spatially confined cavity, favoring single-
mode emission [21,66]. By condensate trapping with a
patterned pump, diminishing reservoir interactions, nano-
second coherence times were demonstrated [18,20,23].
Top-hat-shaped pump lasers, causing less spread of the
condensate in k space, led to coherence times of up to 90 ps
[18]. However, most of these studies reported a Gaussian
shape of gð1ÞðτÞ, especially for higher excitation powers
[21,66], suggesting inhomogeneous signal broadening. We,
however, attribute our long coherence times to a combi-
nation of using a single-mode excitation laser with a
relatively large beam diameter, leading to a small spread
in k space and less reservoir density, as well as filtering our
signal with the LO to remove inhomogeneous broadening.
Simulation.—We also carried out theoretical simulations

utilizing a stochastic Gross-Pitaevskii model, based on the
truncated Wigner approximation [24,25]. This method was
successfully employed to study coherence properties of
condensates [13,50,67,68]. Similarly to the experiment, the
phase variance is dynamically tracked to probe the decay of
quantum coherence. We initialize the system as a displaced
thermal state that then evolves. The mean displacement and
the standard deviation of the initial distribution are deter-
mined through the steady-state values for mean polariton
numbers and quantum coherences [45].
Importantly, we employ a convolution-deconvolution

approach to derive a relation between our PΩ function
and the Wigner function that unifies existing simulations
with our method [45]. While the deconvolution part from
the Wigner function to the P distribution would diverge, we
find that the following convolution with our non-Gaussian
Ω in Eq. (2) eventually yields well-defined expressions,
being paramount for numerical analyses.
Figure 4 shows the numerical results for the time-

dependent circular variance and the correspondingly fitted
coherence time τc of the zero-momentum condensate mode
for different excitation powers. τc increases significantly
around the threshold excitation power Pthr and reaches
values from 0.5 ns to 1.5 ns, being comparable to the
experiment until about 1.5Pthr. Decoherence can be attrib-
uted to the nonlinear part of the effective potential, caused

FIG. 3. Decay times (a) τc of VarðϕÞ and (b) of the mean
amplitude hjαji versus the selected radius s for different excitation
powers. Connecting lines are guides for the eye. Triangles
indicate the mean radius averaged over the Husimi distribution
—i.e., the stationary state. For the amplitude decay times, s
values too close to the mean radius are discarded, as fits are error
prone due to the flat curve shape in those cases. (c) Decay time τc,
averaged over the radii s, versus excitation power. For the
average, the decay time for each radius has been weighted by
the number of data points.
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by interactions of the polaritons with themselves and the
reservoir. Density fluctuations, in turn, lead to frequency
fluctuations in the condensate mode that constitute an
intrinsic decoherence mechanism [19], which is particu-
larly relevant for lower polariton densities near the thresh-
old. Unlike the experiment, however, the coherence time in
the simulation does not saturate, but continues to increase
beyond 1.5Pthr. This is due to the lack of decoherence
mechanisms in the numerical model, which become exper-
imentally important at higher excitation powers—e.g.,
temperature effects due to sample heating and higher-order
scattering processes, as discussed above.
We further find that τc decreases with increasing inter-

action strength gc and with decreasing condensate-reservoir
interaction gr. These trends are an effect of the effective
potential that causes the decoherence in the numerical
model. Up to first order, the nonlinear part of the effective
potential reads Vnl ¼ gc½1 − P�

pumpðgrγcÞ=ðgcγrÞ�jψ j2 [69],
with P�

pump ≡ PpumpRr=ðγcγrÞ, revealing the observed
parameter trends. Coherence times also depend on the
spatial pump profile, altering the spectral shape of the
emission [51]. Moreover, we find that, in the presence of a
realistic static disorder potential, the condensate emission is
slightly shifted to finite k values, but the coherence times of
the maximum-intensity mode remain similar to the values
without disorder.
Conclusion.—By combining quantum dynamics,

modern phase-space methods, and coherence quantifiers
of quantum-technological resourcefulness, we explored the
evolution of polariton condensates. We implemented a
phase-space-based approach to access quantum coherence

via circular variances and to characterize the state,
while also overcoming limitations of other phase-space
reconstruction techniques. And we devised a numerical
approach that renders state-of-the-art simulations compat-
ible to our methodology. Thereby, an advanced framework
to dynamically track the quantum-informational resource-
fulness of polariton condensates is established and
implemented.
We employed multichannel homodyne detection to

directly reconstruct advanced phase-space representations.
While homodyne detection allows one to selectively filter
on one mode for measurement, our conditional spectro-
scopy further enabled us to analyze the dynamics of the
state as a function of the initial intensity. We thereby
observed long decay times of quantum coherence on the
order of 1 ns, agreeing well with our simulations.
Combining the here-developed strategies with our multi-

channel detection [49] and generalized multimode phase-
space methods [70] further paves the way for future
investigations, such as the interplay between different
condensate modes to explore mode competition [23] and
the dynamical characterization of multimode quantum
correlations [40]. Furthermore, our approach can also
advance the study of other quantum systems beyond the
specific scenario explored here, such as trapped ions [71]
and ensembles of atoms [72].
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