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We demonstrate that a paradigm shift from considering the deuteron as a system of a bound proton and
neutron to that of a pseudovector system in which we observe a proton and neutron results in the possibility
of probing a new “incomplete” P-statelike structure on the light front (LF). This occurs at extremely large
internal momenta, which can be achieved in a high energy transfer electrodisintegration of the deuteron.
Investigating the deuteron on the light front, where the vacuum fluctuations are suppressed, we found that
this new structure, together with the conventional S and D states, is leading order in transferred energy of
the reaction and thus not suppressed on the light front. The incompleteness of the observed P state results in
a violation of the angular condition that can happen only if the deuteron contains non-nucleonic structures,
such asΔΔ,N�N or hidden color components. We demonstrate that experimentally verifiable signatures of
incomplete P states are angular anisotropy of the light front momentum distribution of the nucleon in the
deuteron, as well as an enhancement of the tensor polarization strength beyond the S- and D-wave
predictions at large internal momenta in the deuteron.
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One of the outstanding issues of strong interaction
physics is understanding the dynamics of the transition
between hadronic to quark-gluon phases of matter. Such
transitions at high temperature are relevant to the evolution
of the Universe after the big bang and can be studied
experimentally in heavy ion collisions. Transitions at low
(near zero) temperatures and high densities (“cold-dense”
transitions) are relevant for superdense nuclear matter that
can exist at the cores of neutron stars and can set the limits
of matter density before it collapses to a black hole.
However, direct exploration of cold-dense transitions is
severely restricted.
Currently the accepted ways of investigating such

transitions are (i) Studying the nuclear medium modifica-
tion of quark-gluon structure of bound nucleons. Such a
modification was discovered in 1983 by the European
Muon Collaboration [1], commonly referred to as EMC
effect. Little progress has been made in understanding this
effect for past 40 years (for reviews, see Refs. [2,3]),
including the observation of the dependence of the effect on
the local nuclear density [4] and the important role of short
range nucleonic correlations in the EMC effect for medium
to large nuclei [5,6]. In all these cases, the role of the
hadronic to quark-gluon transition is not clearly under-
stood. (ii) Studying the implications of the transition of
baryonic matter to quark matter in the cores of neutron
stars. The situation with the existence of quark matter in the
cores of neutron stars is even more unclear than with the
EMC effect. With the observation of unexpectedly large
neutron star masses [7] (≈2.08M⊙) it was expected that if
such stars would have radii of R < 10 km it will be
indicative of a large quark matter component in their cores.

However, the observed radii for large mass neutron stars are
above R ≥ 12 km (e.g., Ref. [8]).
Currently, the progress in advancing the studies of the

EMC effect is seen in performing a new generation of
experiments in which the density of nuclear medium is
controlled by tagging a recoil nucleon which is in a short
range correlation with the probed nucleon (e.g., Ref. [9]).
The neutron star studies rely on improving the detection
techniques that will allow the identification of anomalously
small-sized neutron stars.
In the present Letter, we are suggesting a new method of

studying the baryon-quark transition using the simplest
known atomic nucleus, the deuteron.
Deuteron on the light front (LF).—Our current mindset

about the deuteron is fully nonrelativistic, within which, the
observation that it has total spin, J ¼ 1 and positive parity,
P, together with the relation that for the nonrelativistic
wave function, P ¼ ð−1Þl, one concludes that the deuteron
consists of S- and D-partial waves for the proton-neutron
system.
However, if we are interested in the deuteron structure at

internal momenta comparable with the nucleon rest mass
then a nonrelativistic framework is not valid and the
problem is more fundamental, related to the description
of a relativistic bound system. There were many important
works to account for relativistic effects in the deuteron
wave function (see, e.g., Refs. [10–12] and the reviews
[13,14]). Our approach is similar to the one used in QCD
for calculation of quark distributions in hadrons, in which
the light-front description of the scattering process allows
us to suppress vacuum fluctuations that overshadow the
composite structure of the hadron [15].
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To discuss the relativistic structure of the deuteron one
needs to identify the process in which the deuteron
structure is probed. In our case we consider the high-
momentum transfer electrodisintegration process:

eþ d → e0 þ pþ n; ð1Þ
in which one of the nucleons are struck by the incoming
probe and the spectator nucleon is probed with momenta
comparable to nucleon masses. If one can neglect (or
remove) the effects related to final state interactions of two
outgoing nucleons, then the above reaction at high Q2

measures the probability of probing a proton and neutron in
the deuteron at very large relative momenta. In such a
formulation the deuteron is not a composite system con-
sisting of a proton and neutron, but it is a composite
pseudovector (J ¼ 1, P ¼ þ) “particle” from which one
extracts a proton and neutron. Thus we formulate the
question not as how to describe relativistic motion of proton
and neutron in the deuteron, but how such a proton and
neutron are produced at such extreme conditions relating it
to the dynamical structure of the LF deuteron wave
function. In such formulation the latter may include internal
elastic pn → pn as well as inelastic ΔΔ → pn, N�N → pn
or NcNc → pn transitions. Here, Δ and N� denote Δ isobar
and N� resonances, while Nc is a color octet baryonic state
contributing to the hidden-color component in the deu-
teron. The framework for calculation of reaction (1) in the
relativistic domain is the LF approach (e.g., Refs. [16–21])
in which one introduces the LF deuteron wave function

ψλd
d ðαi; p⊥; λ1λ2Þ ¼ −

ūðp2; λ2Þūðp1; λ1ÞΓμ
dχ

λd
μ

1
2
ðm2

d − 4
m2

Nþp2⊥
αið2−αiÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3

p ; ð2Þ

where αi ¼ 2ðpiþ=pdþÞ, (i ¼ 1, 2) and α1 þ α2 ¼ 2 are LF
momentum fractions of two nucleons coming out from the
deuteron that has four-momentum pμ

d. Absorbing the
energy denominator into the vertex function and using
crossing symmetry one obtains

ψμ
dðαi;p⊥;λ1;λ2Þ¼−ūðp2;λ2ÞΓμ

dðkÞ
ðiγ2γ0Þffiffiffi

2
p ūðp1;λ1ÞT

¼−
X
λ0
1

ūðp1;λ1ÞΓμ
dγ5

ϵλ1;λ01ffiffiffi
2

p uðp1;λ01Þ; ð3Þ

where uðp; λÞ’s are the LF bispinors of the proton and
neutron [22] and ϵi;j is the two-dimensional Levi-Civita
tensor, with i; j ¼ �1 helicity of the nucleon. Since the
deuteron is a pseudovector particle, due to γ5 in Eq. (3), the
vertex Γμ

d is a four-vector which we can construct in a
general form that explicitly satisfies time reversal, parity,
and charge conjugate symmetries. Noticing that at the
d → pn vertex on the light front the “−” (p− ¼ E − pz)
components of the four-momenta of the particles are not
conserved, in addition to the four-momenta of two nucle-
ons, pμ

1 and pν
2, one has the additional four-momentum

Δμ ≡ pμ
1 þ pμ

2 − pμ
d ≡ ðΔ−;Δþ;Δ⊥Þ ¼ ðΔ−; 0; 0Þ; ð4Þ
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: ð5Þ

Here k is the relative momentum in the pn center of mass
(c.o.m.) system defined as

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ k2⊥
α1ð2 − α1Þ

−m2
N

s
and α1 ¼

Ek þ kz
Ek

; ð6Þ

where Ek ¼ m2 þ k2. With pμ
1, p

μ
2, and Δμ four-vectors the

Γμ
d four-vector function is constructed in the following

form:
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ð7Þ
where Γi, (i ¼ 1, 6) are scalar functions describing dynam-
ics of the pn component being observed in the deuteron.
High energy approximation.—For the large Q2 limit, the

LF momenta for reaction (1) are chosen as follows:
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d≡ ðp−

d ;p
þ
d ;pd⊥Þ¼

�
Q2

x
ffiffiffi
s

p
�
1þx

τ
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2

τ

r �
;

Q2

x
ffiffiffi
s

p
�
1þx

τ
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2

τ

r �
;0⊥

�

qμ≡ ðq−;qþ;q⊥Þ¼
�

Q2

x
ffiffiffi
s

p
�
1−xþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2

τ

r �
;

Q2

x
ffiffiffi
s

p
�
1−x−

ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2

τ

r �
;0⊥

�
; ð8Þ

where s ¼ ðqþ pdÞ2, τ ¼ ðQ2=M2
dÞ, and x ¼ ðQ2=Mdq0Þ,

with q0 being the virtual photon energy in the deuteron rest
frame. The high energy nature of this process results in,

pþ
d ∼

ffiffiffiffiffiffi
Q2

p
≫ mN . Then one observes in Eq. (5) that the

Δ− term is suppressed by the large pþ
d factor.

Analyzing now the vertex function (7) one observes that
ðΔ−=2mNÞ is a small parameter. Here the Γ3 and Γ4 terms
enter with order O1ðΔ−=2mNÞ, while the Γ6 term enters as
O2ðΔ−=2mNÞ. The situation with the Γ5 term is, however,
different; since the covariant components Δþ ¼ 1

2
Δ− and

pd;− ¼ 1
2
pþ
d , the term with ϵμþ⊥− is leading order

½O0ðΔ−=2mNÞ� due to the fact that the large pþ
d factor is

canceled in the pd;−Δþ ¼ 1
4
pþ
dΔ− combination.
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Keeping the leading, O0ðΔ−Þ, terms in Eq. (7) the LF
deuteron wave function reduces to [20,21]

ψλd
d ðαi;p⊥Þ¼−

X
λ2;λ1;λ01

ūðp2;λ2Þ
�
Γ1γ

μþΓ2

ðp1−p2Þμ
2mN

þ
X2
i¼1

iΓ5

1

8m3
N
ϵμþi−pþ

d kiΔ−
�

× γ5
ϵλ1;λ0iffiffiffi

2
p uðp1;λ01Þχλdμ ; ð9Þ

where ki ¼ ½ðp1;i − p2;iÞ=2�, for i ¼ 1, 2. The deuteron’s
polarization four-vector is chosen as

χλdμ ¼ ðχλd0 ; χλd⊥ ; χλdz Þ ¼
�
p12sd;z
M12

; ss;⊥;
E12sd;z
M12

�
; ð10Þ

where p12 ¼ ðp1z
þ p2;z; 0⊥Þ, E12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

12 þ p2
12

p
, and

M2
12 ¼ sNN ¼ 4½ðm2

N þ k2⊥Þ=α1ð2 − α1Þ�.
Since the wave function in Eq. (9) is Lorentz boost

invariant along the z axis, it is convenient to calculate it in
the deuteron c.o.m. frame obtained by boosting with velo-
city v ¼ ðp12=E12Þ. Such a transformation results in [21]

ψλd
d ðαi; k⊥Þ ¼ −

X
λ2;λ1;λ01

ūð−k; λ2Þ
�
Γ1γ

μ þ Γ2

k̃μ
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þ
X2
i¼1

iΓ5

1

8m3
N
ϵμþi−p0þ

d kiΔ0−
�

× γ5
ϵλ1;λ0iffiffiffi

2
p uðk; λ01Þsλdμ ; ð11Þ

where k̃μ ¼ ð0; kz; k⊥Þ with k⊥ ¼ p1⊥, k2 ¼ k2z þ k2⊥ and
Ek ¼ ð ffiffiffiffiffiffiffiffi

SNN
p

=2Þ and sλdμ ¼ ð0; sλdÞ in which

s1d ¼ −
1ffiffiffi
2

p ð1; i; 0Þ; s1d ¼
1ffiffiffi
2

p ð1;−i; 0Þs0d ¼ ð0; 0; 1Þ:

ð12Þ
In Eq. (11) “primed” variables correspond to the Lorentz
boosts of the respective unprimed quantities:

p0þ
d ¼ ffiffiffiffiffiffiffiffi

sNN
p

; Δ0−¼ 1ffiffiffiffiffiffiffiffi
sNN

p
�
4ðm2

N þk2⊥Þ
α1ð2−α1Þ

−M2
d

�
: ð13Þ

Since the term related to Γ5 is proportional to
½4ðm2

N þ k2⊥Þ=α1ð2 − α1Þ� −M2
d, which diminishes at small

momenta, only the Γ1 and Γ2 terms will contribute in the
nonrelativistic limit defining the S andD components of the
deuteron. Thus, the LF wave function in Eq. (11) provides a
smooth transition to the nonrelativistic deuteron wave
function. This can be seen by expressing Eq. (11) through
two-component spinors:

ψλd
d ðα1;kt;λ1;λ2Þ¼

X
λ0
1

ϕ†
λ2

ffiffiffiffiffiffi
Ek

p �
UðkÞffiffiffiffiffiffi
4π

p σsλdd

−
WðkÞffiffiffiffiffiffi
4π

p ffiffiffi
2

p
�
3ðσkÞðksλdÞ

k2
−σsλd

�

þð−1Þ1þλd
2 PðkÞYλd

1 ðθ;ϕÞδ1;jλdj
�
ϵλ1;λ01ffiffiffi

2
p ϕλ0

1
:

ð14Þ
Here the first two terms have explicit S and D structures
where the radial functions are defined as

UðkÞ ¼ 2
ffiffiffiffiffiffi
4π

p ffiffiffiffiffiffi
Ek

p
3

�
Γ1

�
2þmN

Ek

�
þ Γ2

k2

mNEk

�
;

WðkÞ ¼ 2
ffiffiffiffiffiffi
4π

p ffiffiffiffiffiffiffiffi
2Ek

p
3

�
Γ1

�
1 −

mN

Ek

�
− Γ2

k2

mNEk

�
: ð15Þ

This relation is known for pn-component deuteron wave
function [16,23], which allows us to model the LF wave
function through known radial S and D wave functions
evaluated at the LF relative momentum k defined in Eq. (6).
However, in addition to the S and D terms, our obser-

vation is that due to the Γ5 term there is an additional lead-
ing contribution, which because of the relation Y�

1 ðθ;ϕÞ ¼
∓ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið3=4πÞp P
2
i¼1½ðk × s�1

d Þz=k�, has a P-wavelike struc-
ture, where the P- radial function is defined as

PðkÞ ¼
ffiffiffiffiffiffi
4π

p Γ5ðkÞ
ffiffiffiffiffiffi
Ek

p
ffiffiffi
3

p k3

m3
N
: ð16Þ

It is worth emphasizing that this term is purely relativistic in
origin: as it follows from Eq. (16) it has an extra ðk2=m2

NÞ
factor in addition to the ðkl¼1=mNÞ term characteristic to
the radial P wave. As a result, one has a smooth transition
to S and D states in the nonrelativistic limit.
The interesting feature of the above result, which we will

discuss in the next section, is that the P wave is “incom-
plete,” that is it contributes only for λd ¼ �1 polarizations
of the deuteron.
Closing this section we would like to mention that the

consideration of six invariant vertex functions and the
contribution of P-radial waves in the relativistic description
of the deuteron were discussed earlier in the literature; see,
e.g., Refs. [10,24]. However, to the best of our knowledge,
the observation that Γ5 is a leading term on the light front
(while Γ3;4;6 terms are suppressed) in the high energy limit
and it results in a noncomplete P-wave contribution are
original results of the present Letter.
Light front density matrix of the deuteron.—Using

Eq. (14) one defines the unpolarized deuteron light-front
density matrix in the form [2,16]

ρdðα; k⊥Þ ¼
ndðk; k⊥Þ
2 − α

; ð17Þ
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where the LF momentum distribution is expressed through
the radial wave functions as follows:

ndðk; k⊥Þ ¼
1

3

X1
λd¼−1

jψλd
d ðα; k⊥Þj2

¼ 1

4π

�
UðkÞ2 þWðkÞ2 þ k2⊥

k2
P2ðkÞ

�
: ð18Þ

The LF density matrix satisfies the baryonic and momen-
tum sum rules as follows:Z

ρdðα; k⊥Þ
dα
α

¼ 1 and
Z

αρdðα; k⊥Þ
dα
α

¼ 1: ð19Þ

From the above, the normalization condition for the radial
wave functions is

Z �
UðkÞ2 þWðkÞ2 þ 2

3
P2ðkÞ

�
k2dk ¼ 1: ð20Þ

The Γ5-term and non-nucleonic component in the deu-
teron.—The unusual result of Eq. (14) is that the P-wavelike
term enters only for deuteron polarizations λd ¼ �1. The
later is the reason that momentum distribution in Eq. (18)

depends explicitly on the transverse component of the relative
momentumon the light front. Such behavior is impossible for
nonrelativistic quantum mechanics of the deuteron since in
this case the potential of the interaction is real (no inelastic-
ities) and the solution of Lippmann-Schwinger equation for
partial S and D waves satisfies the “angular condition,”
according to which the momentum distribution in the un-
polarized deuteron depends on the magnitude of the relative
momentumonly. Our result does not contradict the properties
of the nonrelativistic deuteron wave function since, as
discussed earlier, according to Eq. (16) the P wave is purely
relativistic in nature. On the other hand, in the relativistic
domain the definition of the interaction potential is not
straightforward to allow the use of quantum-mechanical
arguments in claiming that the momentum distribution in
Eq. (18) should satisfy the angular condition (i.e., depends
only on the magnitude of k).
For the relativistic domain, on the light front, the analog

of the Lippmann-Schwinger equation is the Weinberg
type equation [25], using which for the Nucleon-
Nucleon (NN) scattering amplitude, in which only nucle-
onic degrees are considered, in the c.o.m. of the NN
system, one obtains [26]

TNNðαi; ki⊥; αf; kf;⊥Þ≡ TNNðki;z; ki⊥; kf;z; kf;⊥Þ ¼ Vðki;z; ki⊥; kf;z; kf;⊥Þ þ
Z

Vðki;z; ki⊥; km;z; km;⊥Þ
d3km

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2m

p

×
TNNðkm;z; km⊥; kf;z; kf;⊥Þ

4ðk2m − k2fÞ
; ð21Þ

where the “i,” “m,” and “f” subscripts correspond to initial,
intermediate, and final NN states, respectively, and mo-
menta ki;m;f are defined similar to Eq. (6). The realization
of the angular condition for the relativistic case will require
that the light-front potential satisfy the condition

Vðki;z; ki⊥; km;z; km;⊥Þ ¼ V½k2i ; ðk⃗m − k⃗iÞ2�: ð22Þ
Such a condition is obvious for the on-shell limit, since the
Lorentz invariance of the TNN amplitude requires

Ton shell
NN ðki;z;ki⊥;km;z;km;⊥Þ¼Ton shell

NN ½k2i ;ðk⃗m− k⃗iÞ2� ð23Þ
and the existence of the Born term in Eq. (21) indicates that
the potential V satisfies the same condition in the on-shell
limit.
For the off-shell potential the angular condition is not

obvious. In Refs. [2,26,27] it was shown that requirements
of the potential V satisfying angular condition in the on-
shell limit and that it can be constructed through the series
of elastic pn scatterings result in a potential which is an
analytic function of angular momentum. With the
assumption that the potential, analytically continued to
the complex angular momentum space, does not diverge
exponentially, it was shown that the V and TNN functions

satisfy the angular condition [Eqs. (22), (23)] in general.
Using the same potential to calculate the LF deuteron wave
function will result in a momentum distribution dependent
only on the magnitude of the relative pn momentum. This
observation requires a consideration of the pn component
only in the deuteron.
Inclusion of the inelastic transitions will completely

change the LF equation for the pn scattering. For example,
the contribution of N�N transition to the elastic NN
scattering:

TNNðki;z;ki⊥;kf;z;kf;⊥Þ¼
Z

VNN�ðki;z;ki⊥;km;z;km;⊥Þ

×
d3km

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þk2m

p

×
TN�Nðkm;z;km⊥;kf;z;kf;⊥Þ
4ðk2m−k2fþm2

N�−m2
NÞ

; ð24Þ

will not require the condition of Eq. (22) with the tran-
sition potential having also an imaginary component.
Equation (24) cannot be described with any combination
of elasticNN interaction potentials that satisfies the angular
condition. The same will be true also for ΔΔ → NN and
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Nc; Nc → NN transitions. This indicates that if the Γ5 term
is not zero then it should originate from a non-nucleonic
component in the deuteron.
Estimate of the possible effects.—Our prediction is that

the observation of anisotropic LF momentum distribution
depending on the center of mass k and k⊥ separately will
indicate the presence of a nonnucleonic component in the
deuteron. Since this effect is due to theP-wavelike structure,
(originating from the Γ5 term) which has an extra ðk2=m2

NÞ
factor [Eq. (15)] compared to the S andD radial waves, one
expects it to become important at k > mN .
To give qualitative estimates of the possible effects we

evaluate the Γ5 vertex function assuming two color-octet
baryon transition to the pn system (NcNc → pn) through
one-gluon exchange, parametrizing it in the dipole form
fA=½1þ ðk2=0.71Þ�2g. The parameter A is estimated by
assuming 1% contribution to the total normalization from
the P wave in Eq. (20). The latter is consistent with the
experimental estimation in Ref. [28] of 0.7%. In Fig. 1 we
consider the dependence of the momentum distribution of
Eq. (18) as a function of cos θ ¼ ½ðα − 1ÞEk=k� for different
values of k. Notice that if the momentum distribution is
generated by a pn component only, the angular condition is
satisfied, and no dependence should be observed.
As the figure shows one may expect measurable angular

dependence at k≳ 1 GeV=c, which is consistent with the
expectation that the inelastic transition in the deuteron
corresponding to the non-nucleonic components takes
place at k≳ 800 MeV=c. Additionally, due to the fact that
the P component contributes only for λd ¼ �1 polar-
izations of the deuteron [Eq. (14)] one expects an enhanced
effect in the asymmetry from scattering off the tensor
polarized deuteron:

AT ¼ nλd¼1
d ðk; k⊥Þ þ nλd¼−1

d ðk; k⊥Þ − 2nλd¼0
d ðk; k⊥Þ

ndðk; k⊥Þ
: ð25Þ

As Fig. 2 shows the presence of a non-nucleonic compo-
nent will be visible already at k ≈ 800 MeV=c, resulting in

a qualitative difference in asymmetry at larger momenta as
compared with the asymmetry predicted by the deuteron
wave function with a pn component only.
The reason why a small, 1% effect in overall normali-

zation gives large measurable effect in LF momentum
distribution and asymmetry at k ≥ 1 GeV=c is due to the
fact that the observed “incomplete Pwave” structure enters
with the ðp2=m2

NÞ prefactor [see Eq. (16)], which signifi-
cantly amplifies the effect at very large internal momenta.
Outlook on experimental verification of the effect.—The

prediction that a non-nucleonic component in the deuteron
wave function may result in angular dependence of the LF-
momentum distribution can be verified at c.o.m. momenta
k≳ 1 GeV=c. This seems incredibly large momenta to be
measured in experiment. However, the first such mea-
surement at high Q2 disintegration of the deuteron has
already been performed at Jefferson Lab [29] reaching k∼
1 GeV=c. It is intriguing that the results of thismeasurement
qualitatively disagree with predictions based on conven-
tional deuteron wave functions once k≳ 800 MeV=c. The
planned new measurements [30] will significantly improve
the quality of the data, allowing possible verification of the
effects discussed in this Letter. It is worth mentioning that
the analysis of the experiment will require a careful account
for competing nuclear effects such as final state interactions,
(FSI) for which there has been significant theoretical and
experimental progress during the last decade [31,32]. The
advantage of high energy scattering is that the eikonal
regime is established, which makes FSI to be strongly
isolated in transverse kinematics and be suppressed in near
collinear directions. Additionally, the comparison with the
first high Q2 experimental data [32] indicates that the
accuracy of FSI calculations increases with Q2 which will
allow a meaningful analysis of new high-Q2 data.
If the experiment will not find the angular dependence in

the momentum distribution this will allow us to set a new
limit on the dominance of the pn component at instanta-
neous high nuclear densities that correspond to ∼1 GeV=c
internal momentum in the deuteron. If, however, the
angular dependence is found, it will motivate theoretical
modeling of non-nucleonic components in the deuteron,

FIG. 1. LF momentum distribution of the deuteron as a function
of cos θ, for different values of k. Dashed lines, deuteron with
pn component only; solid lines, with P-wavelike component
included.

FIG. 2. Tensor asymmetry as a function of cos θ for different k.
Dashed lines, deuteron with pn component only; solid lines, with
P component included.
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such asΔΔ,N�N, or hidden-colorNcNc that can reproduce
the observed result. In both cases the results of such studies
will advance the understanding of the dynamics of high
density nuclear matter and the relevance of the quark-
hadron transition. Measuring of tensor asymmetries will
significantly complement the above studies. Another venue
of studies will be the extension to deep-inelastic processes
on tensor polarized target aiming at the measurement of the
b1 structure function [33] as well as systematic studies of
generalized parton distributions in the deuteron at high
Bjorken x [34].

We are thankful to Dr. Leonid Frankfurt, Dr. Chris Leon,
and Dr. Mark Strikman for useful discussions. This work is
supported by the U.S. DOE Office of Nuclear Physics
Grant No. DE-FG02-01ER41172.

[1] J. J. Aubert et al. (European Muon Collaboration), Phys.
Lett. 123B, 275 (1983).

[2] L. L. Frankfurt and M. I. Strikman, Phys. Rep. 160, 235
(1988).

[3] O. Hen, G. A. Miller, E. Piasetzky, and L. B. Weinstein, Rev.
Mod. Phys. 89, 045002 (2017).

[4] J. Seelyet al., Phys. Rev. Lett. 103, 202301 (2009).
[5] L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J.

Gomez, O. Hen, and R. Shneor, Phys. Rev. Lett. 106,
052301 (2011).

[6] B. Schmookler et al. (CLAS Collaboration), Nature
(London) 566, 354 (2019).

[7] E. Fonsecaet al., Astrophys. J. Lett. 915, L12 (2021).
[8] M. C. Milleret al., Astrophys. J. Lett. 918, L28 (2021).
[9] W. Melnitchouk, M. Sargsian, and M. I. Strikman, Z. Phys.

A 359, 99 (1997).
[10] W.W. Buck and F. Gross, Phys. Rev. D 20, 2361 (1979).
[11] R. G. Arnold, C. E. Carlson, and F. Gross, Phys. Rev. C 23,

363 (1981).

[12] R. Dymarz and F. C. Khanna, Phys. Rev. Lett. 56, 1448
(1986).

[13] M. Garcon and J. W. Van Orden, Adv. Nucl. Phys. 26, 293
(2001).

[14] R. A. Gilman and F. Gross, J. Phys. G 28, R37 (2002).
[15] R. P. Feynman, Photon-Hadron Interactions (CRC Press,

Boca Raton, 1972).
[16] L. Frankfurt and M. Strikman, Phys. Rep. 76, 215 (1981).
[17] G. A. Miller, Prog. Part. Nucl. Phys. 45, 83 (2000).
[18] S. J. Brodsky, H. C. Pauli, and S. S. Pinsky, Phys. Rep. 301,

299 (1998).
[19] T. Frederico, E. M. Henley, and G. A. Miller, Nucl. Phys.

A533, 617 (1991).
[20] F. Vera, arXiv:2108.11502.
[21] M.M. Sargsian and F. Vera (to be published).
[22] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157

(1980).
[23] J. Carbonell and V. A. Karmanov, Nucl. Phys. A581, 625

(1995).
[24] J. Carbonell, B. Desplanques, V. A. Karmanov, and J. F.

Mathiot, Phys. Rep. 300, 215 (1998).
[25] S. Weinberg, Phys. Rev. 150, 1313 (1966).
[26] L. L. Frankfurt and M. I. Strikman, in Modern Topics in

Electron Scattering, edited by B. Frois and I. Sick (World
Scientific Publishing Company, Singapore, 1991).

[27] L. L. Frankfurt, M. I. Strikman, L. Mankiewicz, and M.
Sawicki, Few Body Syst. 8, 37 (1990).

[28] P. V. Degtyarenko, Y. V. Efremenko, V. B. Gavrilov, and
G. A. Leksin, Z. Phys. A 335, 231 (1990).

[29] C. Yero et al. (Hall Collaboration), Phys. Rev. Lett. 125,
262501 (2020).

[30] W. U. Boeglinet al., arXiv:1410.6770.
[31] M.M. Sargsian, Phys. Rev. C 82, 014612 (2010).
[32] W. Boeglin and M. Sargsian, Int. J. Mod. Phys. E 24,

1530003 (2015).
[33] W. Cosyn, Y. B. Dong, S. Kumano, and M. Sargsian, Phys.

Rev. D 95, 074036 (2017).
[34] E. R. Berger, F. Cano, M. Diehl, and B. Pire, Phys. Rev.

Lett. 87, 142302 (2001).

PHYSICAL REVIEW LETTERS 130, 112502 (2023)

112502-6

https://doi.org/10.1016/0370-2693(83)90437-9
https://doi.org/10.1016/0370-2693(83)90437-9
https://doi.org/10.1016/0370-1573(88)90179-2
https://doi.org/10.1016/0370-1573(88)90179-2
https://doi.org/10.1103/RevModPhys.89.045002
https://doi.org/10.1103/RevModPhys.89.045002
https://doi.org/10.1103/PhysRevLett.103.202301
https://doi.org/10.1103/PhysRevLett.106.052301
https://doi.org/10.1103/PhysRevLett.106.052301
https://doi.org/10.1038/s41586-019-0925-9
https://doi.org/10.1038/s41586-019-0925-9
https://doi.org/10.3847/2041-8213/ac03b8
https://doi.org/10.3847/2041-8213/ac089b
https://doi.org/10.1007/s002180050372
https://doi.org/10.1007/s002180050372
https://doi.org/10.1103/PhysRevD.20.2361
https://doi.org/10.1103/PhysRevC.23.363
https://doi.org/10.1103/PhysRevC.23.363
https://doi.org/10.1103/PhysRevLett.56.1448
https://doi.org/10.1103/PhysRevLett.56.1448
https://doi.org/10.1007/0-306-47915-X_4
https://doi.org/10.1007/0-306-47915-X_4
https://doi.org/10.1088/0954-3899/28/4/201
https://doi.org/10.1016/0370-1573(81)90129-0
https://doi.org/10.1016/S0146-6410(00)00103-4
https://doi.org/10.1016/S0370-1573(97)00089-6
https://doi.org/10.1016/S0370-1573(97)00089-6
https://doi.org/10.1016/0375-9474(91)90536-F
https://doi.org/10.1016/0375-9474(91)90536-F
https://arXiv.org/abs/2108.11502
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1016/0375-9474(94)00430-U
https://doi.org/10.1016/0375-9474(94)00430-U
https://doi.org/10.1016/S0370-1573(97)00090-2
https://doi.org/10.1103/PhysRev.150.1313
https://doi.org/10.1007/BF01079801
https://doi.org/10.1007/BF01294478
https://doi.org/10.1103/PhysRevLett.125.262501
https://doi.org/10.1103/PhysRevLett.125.262501
https://arXiv.org/abs/1410.6770
https://doi.org/10.1103/PhysRevC.82.014612
https://doi.org/10.1142/S0218301315300039
https://doi.org/10.1142/S0218301315300039
https://doi.org/10.1103/PhysRevD.95.074036
https://doi.org/10.1103/PhysRevD.95.074036
https://doi.org/10.1103/PhysRevLett.87.142302
https://doi.org/10.1103/PhysRevLett.87.142302

