
Shift-Invariant Orders of an Axionlike Particle

Quentin Bonnefoy ,1,* Christophe Grojean ,1,2,† and Jonathan Kley 1,2,‡
1Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany

2Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany

(Received 8 August 2022; accepted 24 January 2023; published 17 March 2023)

It is generally believed that global symmetries, in particular, axion shift symmetries, can only be
approximate. This motivates one to quantify the breaking of the shift invariance that characterizes the
flavorful effective couplings of an axionlike particle to standard model fermions. We identify a minimal set of
Jarlskog-like flavor invariants that vanish if and only if the axion is shift symmetric. Therefore, they represent
order parameters for the breaking of the axion shift symmetry. We illustrate properties of the invariants by
matching to a UV model, studying the CP transformation of the invariants, calculating their renormalization
group evolution, and investigating similar conditions in the low-energy effective field theory below the
electroweak scale. Finally, we discuss the order parameter associated to the nonperturbative shift-breaking
induced by the axion-gluons coupling, which is also flavorful.
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Introduction.—Axions [1–12] benefit from an approxi-
mate shift symmetry, henceforth referred to as a Peccei-
Quinn (PQ) symmetry, rooted in their pseudo–Nambu-
Goldstone boson (pNGB) nature. This allows, for instance,
QCD axions to receive their mass mostly from QCD or
fuzzy axion dark matter to be ultralight. However, there are
several reasons to consider some amount of shift breaking.
First, quantum gravity objects to exact global symmetries
and is expected to generate irreducible corrections to axion
potentials and interactions [13–15], whose control in pNGB
models goes under the name of axion quality problem.
Second, there are cases where shift breaking is a key aspect
of model building: for instance, a slight amount of shift
breaking is responsible for the scanning of the Higgs mass
and the resolution of the hierarchy problem in relaxion
models [16]. Therefore, considering shift-breaking axion-
like particle (ALP) interactions seems to be necessary to
make contact with theory and phenomenology.
Consequently, it is important to clearly pinpoint the

presence of physical shift-symmetry-breaking couplings,
as well as to quantify their magnitude. To this end, we
scrutinize the couplings of axions to standard model (SM)
fields. As axions arise in a large class of UV models and—
due to their lightness—are omnipresent in processes at all
energy scales, an effective field theory (EFT) analysis is
the appropriate language to study them in a bottom-up
and generic manner. Hence, axion EFTs have been

systematically studied since the early days of axion
physics [17,18]. In this Letter, we carry on the systematic
study of the structural properties of axion EFTs, with a
focus on the breaking of axion shift invariance due to the
axion couplings to SM fermions.
We work in a nonredundant operator basis that captures

the most generic leading-order couplings of a light pseu-
doscalar a to SM fermions, namely,

L ⊃ −
a
f
ðQ̄ỸuH̃uþ Q̄ỸdHdþ L̄ỸeHeþH:c:Þ þO

�
1

f2

�
;

ð1Þ

where f is the axion decay constant [we henceforth take
f ≫ v, the electroweak (EW) scale] and Ỹu;d;e are generic
complex matrices in flavor space. The goal of this Letter is
to revisit the conditions for the couplings of Eq. (1) to be
interpreted as those of a shift-invariant axion and to quantify
the deviations from such conditions.
Interactions of shift-invariant axions are commonly

described using the following Lagrangian, where the axion
shift symmetry a → aþ ϵf is manifest:

L ⊃
∂μa

f

X
ψ∈SM

ψ̄ cψγμψ þO
�
1

f2

�
: ð2Þ

The sum runs over all Weyl fermions of the SM and the cψ
are Hermitian matrices in flavor space. Then, in order to
describe shift-invariant couplings using Eq. (1), one can
map the couplings of Eq. (2) onto those of Eq. (1) via field
redefinitions [19,20]. This mapping procedure produces Ỹ
couplings in Eq. (1) which satisfy [19,20]
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Ỹu;d ¼ iðYu;dcu;d − cQYu;dÞ; Ỹe ¼ iðYece − cLYeÞ; ð3Þ

where Yu;d;e are the SM Yukawa couplings. Conversely,
when the above relations hold for some Hermitian matrices
cQ;u;d;L;e, Eq. (1) can be turned into Eq. (2) via appropriate
field redefinitions [20].
However, these conditions are implicit: given a set of

couplings, one has to check whether a set of equations can
be solved. In addition, they do not allow one to differentiate
between approximate and badly broken shift symmetries,
nor to identify a power counting parameter suppressing the
breaking. Instead, we will present explicit conditions on the
axion Yukawa couplings of Eq. (1), which can be directly
evaluated given the SM Yukawa couplings. They define
quantities that vanish if and only if the axion shift symmetry
is preserved and their size quantifies how badly it is broken.
Hence, they are order parameters of the breaking of the
axion shift symmetry.
This is very similar in spirit to finding the Jarlskog

invariant for CP violation in the SM [21,22], or in the SM
effective field theory [23], instead of scanning possible field
redefinitions that absorb unphysical complex Lagrangian
parameters. Hence, it is no surprise that our conditions are
expressed in terms of flavor invariants, namely, combina-
tions of Lagrangian parameters that are left unchanged
under flavor field redefinitions. This allows us to encode the
physical collective effects associated with the presence of
the axion shift symmetry.
Flavor-invariant order parameters for the breaking of

an axion shift symmetry.—To identify all conditions on
Ỹu;d;e, let us first count how many we expect, by comparing
the free parameters in the operator bases of Eqs. (1) and (2).
We classify couplings according to their behavior underCP:
since the axion is a pseudoscalar, real Ỹψ in Eq. (1) and
imaginary cψ in Eq. (2) are CP odd in the mass basis.
When the axion shift symmetry is broken, we need to

use the non-shift-symmetric EFT of Eq. (1), in which the
couplings Ỹ are arbitrary 3 × 3 complex matrices. Instead,
in the shift-invariant basis of Eq. (2), there are two
Hermitian matrices cL;e in the lepton sector and three in
the quark sector cQ;u;d. In both cases, two unphysical
phases can be removed by the lepton family numbers
Uð1ÞLi

, which are symmetries in the SM. Furthermore,
a freedom exists in the derivative basis, associated with

the addition of the operator ∂μaJμ, for any (classically)
conserved fermionic current of the SM Jμ [24], namely, the
baryon number Uð1ÞB and the three lepton numbers
Uð1ÞLi

. Counting the resulting physical parameters leads
us to Table I, where we see that we expect three CP-odd
relations in the lepton sector together with nine CP-odd
and one CP-even relation in the quark sector that char-
acterize the presence of a shift symmetry in the basis
of Eq. (1).
Let us now derive those relations, first for quarks and then

for leptons. In order to manipulate physical quantities
independent of the flavor basis, we work with flavor
invariants, i.e., singlets of the Uð3Þ5 fermion transforma-
tions affecting the flavorful couplings in the Lagrangian. As
already mentioned, we want to find equivalent conditions to
those in Eq. (3). Solving Eq. (3) for cu;d and enforcing
Hermiticity, we obtain the following commutator relation:

½cQ; Xx� ¼ iðỸxY
†
x þ YxỸ

†
xÞ; ð4Þ

with Xx ≡ YxY
†
x and x ¼ u, d. We can then find flavor-

invariant constraints by exploiting well-known commutator
identities, for instance, by using that for any two matrices A,
B, TrðAn½A; B�Þ ¼ 0∀ n ∈ Z. In the lepton sector, this
already exhausts the number of conditions of Table I, while
for the quarks the presence of cQ in both the up and down
sectors demands that we consider more commutator iden-
tities to obtain the remaining relations. Eventually, we
consider the following minimal set [25] of flavor invariants,
linear in Ỹu;d;e:

Ið1;2Þu;d;e ¼ ReTrðX0;1
u;d;eỸu;d;eY

†
u;d;eÞ; Ið3Þe ¼ ReTrðX2

eỸeY
†
eÞ; Ið3Þq ¼ ReTrðX2

uỸuY
†
u þ X2

dỸdY
†
dÞ;

Ið1Þud ¼ ReTrðXdỸuY
†
u þ XuỸdY

†
dÞ; Ið2Þud;u;d ¼ ReTrðX2

u;dỸd;uY
†
d;u þ fXu; XdgỸu;dY

†
u;dÞ;

Ið3Þud ¼ ReTrðXdXuXdỸuY
†
u þ XuXdXuỸdY

†
dÞ; Ið4Þud ¼ ImTrð½Xu; Xd�2ð½Xd; ỸuY

†
u� − ½Xu; ỸdY

†
d�ÞÞ: ð5Þ

These invariants have to vanish for the EFT in the Yukawa
basis of Eq. (1) to be shift invariant, which also provides
sufficient conditions. This is shown by taking advantage of

their linearity in Ỹu;d;e, which allows us to use simple linear
algebra: we compute the rank of the matrix that relates the
set of invariants fIAg to the entries of Ỹu;d;e in a given flavor

TABLE I. Number of physical coefficients at dimension-five in
the EFTs of Eqs. (2) and (1), and numbers of constraints that
Ỹu;d;e need to verify to respect an exact shift invariance.

Shift-sym. coeff.
cQ;u;d;L;e

Generic coeff.
Ỹu;d;e

No. of
constraints

CP
even

CP
odd

CP
even

CP
odd

CP
even

CP
odd

Quark sector 17 9 18 18 1 9
Lepton sector 9 4 9 7 0 3
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basis. It corresponds to the number of conditions associated
with the set of equalities IA ¼ 0∀A and is found to be 13,
namely, 10 in the quark sector and 3 in the lepton sector,
which agrees with the number of conditions from shift
invariance (see Supplemental Material [26]). Therefore, the
invariants in Eq. (5) vanish if and only if Ỹu;d;e describe the
couplings of a shift-symmetric axion. We stress that these
conditions are algebraic and explicit: given values for
Ỹu;d;e, evaluating the invariants suffices to discriminate
between shift-invariant or shift-breaking couplings. Let us
also emphasize that the five last invariants in Eq. (5) encode
collective effects, namely, they are associated with the
simultaneous presence of both the up- and down-quark
sectors.
Examples and properties.—To illustrate the use of our

invariants, and confirm that they capture the sources of
PQ-breaking and its collective nature, we can match the
ALP EFT onto UV models and evaluate them. For
definiteness, we focus on the axiflavon-flaxion model
[27–30], which realizes the Froggatt-Nielsen and Peccei-
Quinn mechanisms through the same spontaneously broken
U(1). One introduces a complex scalar flavon ϕ, with the
following effective interactions with the SM fields:

−L ¼ αdij

�
ϕ

M

�
qQi

−qdj
Q̄iHdj þ αuij

�
ϕ

M

�
qQi

−quj
Q̄iH̃uj

þ αeij

�
ϕ

M

�
qLi−qej

L̄iHej þ H:c:; ð6Þ

with M as the cutoff of the model and qi as the charges of
the SM fields under the new U(1) (qϕ ¼ þ1; qH ¼ 0). The
symmetry is broken by the flavon vacuum expectation
value hϕi ¼ f, which also sources the hierarchy of the SM
Yukawa couplings. Writing ϕ ¼ ð1= ffiffiffi

2
p Þðf þ sþ iaÞ,

where s is a massive radial mode and a is the axion field
of the theory, one obtains the SM and axion-fermion
Yukawa couplings,

Yx
ij ¼ αxij

�
fffiffiffi
2

p
M

�
qxL;i−qxR;j

; Ỹx
ij ¼ ðqxL;i −qxR;jÞYx

ij: ð7Þ

The Lagrangian in Eq. (6) is PQ invariant, hence all
couplings in Eq. (7) correspond to a shift-symmetric axion.
This is consistent with the fact that our invariants IA vanish
when evaluated on the above couplings. They become
nonzero when one introduces a PQ-breaking term. For
instance, by adding

−L=PQ ¼ δi1δj1α
0
�
ϕ

M

�
q0Qi

−q0uj
Q̄iH̃uj þ H:c: ð8Þ

to Eq. (6), one finds that all our invariants are proportional
to the one quantity that violates the PQ symmetry,
qQ1

− qu1 − ½q0Q1
− q0u1 �. Another illuminating example

arises when considering Eq. (6) and changing qQ1
→ q0Q1

in the up-quark coupling only. In this case, the quantity
q0Q1

− qQ1
violates the PQ symmetry, but is only resolved by

invariants that are sensitive to the collective nature of PQ
breaking, namely, those that simultaneously involve Ỹu and
Ỹd. Indeed, the change qQ1

→ q0Q1
is a mere relabeling from

the perspective of the up-quarks alone, but it breaks PQ
symmetry when the down quarks are taken into account.
It is also worth investigating the renormalization group

(RG) flow of the set of invariants of Eq. (5), which, as for
any complete set of order parameters, should remain
closed [31]. Using the ALP EFT RG equations (RGEs)
presented in Refs. [19,20], we computed the RG evolution
of our set of invariants and checked that it closes on itself,
thereby verifying its completeness [34]. The obtained
RGEs feature seemingly new flavor-invariant expressions
that, however, can be expressed as combinations of our
invariants, using the Cayley-Hamilton theorem and related
techniques (see, e.g., Refs. [35–38]).
Running to lower energies, one eventually encounters the

need to match the SMþ ALP EFT onto an EFT below the
weak scale, where the generic axion-fermion dimension-
five couplings read

L ⊃ −
a
f
ðūLm̃uuR þ d̄Lm̃ddR þ ēLm̃eeR þ H:c:Þ ð9Þ

for arbitrary complex matrices m̃u;d;e, and the shift-
symmetric ones are identical to those of Eq. (2), except
that now ψ ∈ fðu; d; eÞL;Rg. Upon matching, one may
expect that the conditions that ensure shift invariance also
match. However, it turns out that the conditions inherited
from the UV are strictly stronger than those that would be
derived purely from the IR, since at low energies the up- and
down-quark sectors are no longer entangled by electroweak
interactions: the conditions for shift invariance in the IR are
similar to those of the lepton sector in the UV,

Iðiþ1;IRÞ
x ≡ TrðXi¼0;1;…;Nx−1

x m̃xm
†
xÞ ¼ 0; ð10Þ

where x ¼ u, d, e, Nu ¼ 2; Nd;e ¼ 3, the mx are the
(Nx × Nx complex) mass matrices, Xx ≡mxm

†
x, and, as

announced, there are no longer conditions connecting the up
and down sectors. This should not come as a surprise, since
both linear and nonlinear realizations of the electroweak
symmetry above the weak scale [39,40] match onto the
same IR EFT, although the latter allows one to write strictly
more dimension-five couplings with a manifest axion shift
symmetry than those of Eq. (2). Nevertheless, assuming a
matching to a linear phase of the EW symmetry [i.e., using
a Higgs doublet H, as in Eq. (2)] and an exact axion shift
symmetry, one can derive more conditions at the matching
scale. For instance, one finds that

PHYSICAL REVIEW LETTERS 130, 111803 (2023)

111803-3



Ið1;IRÞud ≡ ReðLV1;LL
uddu;prst½ðmdm

†
dÞrsðm̃um

†
uÞtp

þðm̃dm
†
dÞrsðmum

†
uÞtp�Þ ¼ 0 ð11Þ

at the matching scale, where LV1;LL
uddu refers to the Wilson

coefficient of the following four-quark operator:

L ⊃ −
4

v2
VCKM;prV�

CKM;tsūL;pγ
μdL;rd̄L;sγμuL;t

≡ LV1;LL
uddu;prstO

V1;LL
uddu;prst; ð12Þ

where VCKM refers to the Cabibbo–Kobayashi–Maskawa
(CKM) matrix. Interestingly, Eq. (11) and all the similar
ones at the matching scale remain valid when evolved to
lower energies via the RG flow [at the one-loop and
Oð1=ðfv2ÞÞ order] using formulas of Refs. [20,41,42];
i.e., one can show that the RG flow of all invariants that
vanish at the matching scale due to the axion shift symmetry
is closed. The flow admits as a stable subset the invariants of
Eq. (10), consistent with the fact that they represent the
order parameters for axion shift breaking at any low energy.
In the Supplemental Material [26], we give more details on
the RG running of the invariants above and below the EW
scale, as well as on the matching to a UV EFT with
nonlinearly realized EW symmetry [39,43,44].
Finally, there is a close interplay between leading-order

CP violation and shift symmetry in the ALP Lagrangian.

All invariants in Eq. (5) but Ið4Þud are CP odd, hence CP
conservation almost implies axion shift symmetry.
Furthermore, the connection holds exactly in the lepton
sector of the EFT (or in the IR). Conversely, an exact shift
symmetry reduces the number of independent sources of
CP violation in the axion EFT, which has an impact on
CP-violating observables like electric dipole moments
(EDMs), allowing one to distinguish a shift symmetric
ALP from a generic one (see below). This connection
deserves further investigation, in line with recent works
that considered the possibility to reintroduce CP violation
through the axion [45,46].
Applications.—Our invariants represent the physical (i.e.,

invariant under flavor transformations) shift-breaking
parameters of the ALP EFT. As such, they can be used
to assign and track the different power countings of the
shift-breaking and shift-symmetric couplings, which are
usually generated at very different scales, in a basis- and
model-independent EFT approach. Doing this from the
relations in Eq. (3) is not at all obvious. These different
power countings are directly imprinted on PQ-breaking
observables, which are proportional to our invariants.
In addition, the stability of the invariants and of the

associated power countings under RG flow allows us to use
them at any energy and to identify their impact on
observables. Focusing on indirect probes, which may play
an important role in constraining axion couplings, we

illustrate this in two examples by exhibiting sum rules
valid in the presence of an approximate shift symmetry.
First, we revisit the results of Ref. [45], where the authors

map bounds on the neutron EDM dn and the EDM dHg of
the diamagnetic atom 199Hg, to bounds on ALP couplings,
allowing for shift-breaking couplings in the generic basis of
Eq. (9). The relevant expressions are given in Ref. [45] in
terms of the couplings m̃ of Eq. (9) [47], as well asCP-even
and -odd couplings of the axion to gluons and photons,
under the assumption that the axion mass is of order a few
GeV’s so that QCD can be treated perturbatively. Assuming
that the axion shift symmetry is approximate, one can use at
leading order in the PQ breaking the constraints of Eq. (10)
and find that

dHg ≃ 4 × 10−4dn; ð13Þ

which is an example of a sum rule between observables
following from the axion shift symmetry. Once interpreted
in terms of the fundamental parameters m̃, the bounds on dn
and dHg turn out to be of very similar magnitude [45].
Second, we consider the axion-induced RG running of

couplings between SM particles at high energy. Those,
assuming no further light degree of freedom, can be
captured by the standard model effective field theory
(SMEFT). The presence of dimension-five axion couplings
induces a RG evolution [48], which deviates from that in the
pure SMEFT [49–52], and the invariants in Eq. (5) allow us
to immediately identify implications of the axion shift
symmetry, by forming flavor-invariant sum rules on the
RG evolution of the SMEFTWilson coefficients that are not
sensitive to the axion contribution. Observing RGEs com-
patible with the SMEFT for the combinations of Wilson
coefficients entering those sum rules would then suggest
that the axion shift symmetry is at most weakly broken [53].
More precisely, we follow Ref. [48] and define the terms
sourcing the deviations from the SMEFT RGEs driven by
the ALP as follows:

μ
dCSMEFT

i

dμ
− γSMEFT

ji CSMEFT
j ≡ Si

ð4πfÞ2 : ð14Þ

Then, we contract them appropriately in order to make our
invariants appear. For instance, using the explicit expres-
sions of the Si [48], one finds that

ImTrðXdXuXdSuGY
†
u þ XuXdXuSdGY

†
dÞ ¼

g23
8π2

CgI
ð3Þ
ud ;

ð15Þ

where SqG are the ALP-induced source terms of the dipole

operators Q̄Lσ
μνTað∼Þ

H
qRGa

μν and Cg is the coefficient of the
operator
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−
Cgg23
16π2

a
f
TrðGμνG̃

μνÞ; ð16Þ

for G the gluon field strength, G̃μν ≡ ðϵμνρσ=2ÞGρσ its dual,
and g3 the SUð3ÞC coupling constant.
Coupling to gluons and nonperturbative shift

invariance.—Previously, we have focused on the breaking
of shift invariance that arises at the perturbative level. This
is, for instance, relevant for interactions that induce axion
potentials at the tree or loop levels. We have, however,
neglected axion couplings to gauge bosons of the SM and,
in particular, to gluons. The latter do not break the shift
symmetry at the perturbative level, but they do so non-
perturbatively [54]. Let us thus add to the Lagrangian of
Eq. (1) the term of Eq. (16) and to that of Eq. (2) the same
term with Cg → CðsÞ

g .
As before, we will now look for quantities that must

vanish for the shift invariance to hold nonperturbatively.
When the axion shift symmetry is exact, it is unbroken at the
perturbative level and one can work in the basis of Eq. (2)
for axion-fermion couplings, where all terms are unchanged
by a shift of a. At the nonperturbative level, one needs to
require Ig ≡ CðsÞ

g ¼ 0 to cancel the gluon-induced shift-
breaking contributions, for instance, to the axion potential.
To identify the nonperturbative order parameter in the most
general basis of Eq. (1), we need to account for anomalies
when matching from Eq. (2) to Eq. (1),

Cg ¼ CðsÞ
g þ Trð2cQ − cu − cdÞ: ð17Þ

Eventually, we find a new CP-even condition,

Ig ¼ Cg þ ImTrðY−1
u Ỹu þ Y−1

d ỸdÞ ¼ 0: ð18Þ

The invariant Ig, which features couplings from the up and
down sectors, highlights a new kind of collective breaking at
the nonperturbative level, accounting for all contributions to
the mixed PQ anomaly with SUð3ÞC. In addition, it is valid
below the EW scale, after replacing Y; Ỹ → m; m̃.
Using once more the RGEs of the SM and axion Yukawa

couplings [19,20], we can show that all contributions to the
running of this invariant cancel at the one-loop level above
and below the EW scale [55], μðdIg=dμÞ ¼ 0.
Conclusions.—In this Letter, we have investigated the

implications of an axion shift symmetry on the dimension-
five axion couplings to the SM fermions. In particular, we
have found explicit and algebraic conditions implied by the
shift symmetry on these couplings, instead of the implicit
relations that are well known in the literature. The set of
constraints is formulated in a flavor-invariant way and gives
necessary and sufficient conditions for shift symmetry to
hold, hence yielding a set of 13 order parameters for shift
symmetry in the dimension-five axion EFT. Our results
make it explicit that the axion shift symmetry is a collective
effect. We confirmed these aspects by matching explicit

UV scenarios onto the ALP EFT. We stressed that most of
the invariants are CP odd and showed that they form a
closed set under the RG flow, consistent with the fact that
they capture a complete set of order parameters for shift
symmetry breaking. We also studied their fate at low
energies, below the EW scale, and used the associated
constraints to derive sum rules on illustrative observables.
Finally, we have extended the discussion to the nonpertur-
bative breaking of the PQ symmetry induced by the axion
couplings to gluons. Throughout the Letter, we focused on
the constraints at dimension five, i.e., at Oð1=fÞ, but shift
symmetry correlates the Oð1=f2Þ couplings involving two
axion fields and those at Oð1=fÞ. It would be interesting to
extend our formalism to these extra conditions.
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uỸuY
†
u−

X2
dỸdY
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