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Using first-principle lattice simulations, we demonstrate that in the background of a strong magnetic
field (around 1020 T), the electroweak sector of the vacuum experiences two consecutive crossover
transitions associated with dramatic changes in the zero-temperature dynamics of the vectorW bosons and
the scalar Higgs particles, respectively. Above the first crossover, we observe the appearance of large,
inhomogeneous structures consistent with a classical picture of the formation of W and Z condensates
pierced by vortices. The presence of the W and Z condensates supports the emergence of the exotic
superconducting and superfluid properties induced by a strong magnetic field in the vacuum. We find
evidence that the vortices form a disordered solid or a liquid rather than a crystal. The second transition
restores the electroweak symmetry. Such conditions can be realized in the near-horizon region of the
magnetized black holes.
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Powerful magnetic-field background can modify the
physical properties of the vacuum. For electromagnetic
interactions described by quantum electrodynamics, the
relevant intensity of the magnetic field is set by the
Schwinger limit, BQED ¼ m2

e=e ≃ 4 × 109 T [1] deter-
mined by the electron mass me [2]. At this strength—
which is already bypassed by the fields near the surface of
magnetars [3]—the vacuum acquires optical birefringence
properties [4] and can act as a “magnetic lens” which can
distort and magnify images [5] similarly to the celebrated
galaxy-scale gravitational lengths.
Strong fundamental interactions, described by quantum

chromodynamics, are affected by the magnetic field of the
strength of the hadronic mass scale, BQCD ∼m2

p=e ∼
1016 T where mp is the proton mass. Such fields generate
the magnetic catalysis [6–8], which implies, in particular,
a persistent enhancement of the chiral symmetry breaking
in the QCD vacuum as the external magnetic field
strengthens. The QCD vacuum can also acquire electro-
magnetic superconducting properties supported by con-
densation of electrically charged mesonic bound states
with vector, ρ-meson quantum numbers [9]. The transient
magnetic fields of relevant scales appear in noncentral and
ultraperipheral heavy-ion collisions at RHIC and LHC
facilities [10,11].

Electroweak fundamental interactions provide us with an
additional source of vacuum instability at the critical
magnetic field [12–14]:

Bc1 ≡ BEW
c1 ¼ m2

W

e
≃ 1.1 × 1020 T; ð1Þ

determined by the mass mW ≃ 80.4 GeV of theW boson. It
was suggested that this instability marks the onset of
the condensation of the W bosons which can be inferred
from the classical equations of motion of the electroweak
model [13–18]. The condensate solution corresponds to a
crystalline order of parallel vortexlike structures that
shares geometric similarity with the lattice of Abrikosov
vortices of a conventional type-II superconductor: for
realistically heavy Higgs masses, mH > mZ, the vortices
in the W condensate arrange themselves into a hexagonal
lattice [15,19,20]. This exotic vacuum state should possess
unusual anisotropic superconducting [9] and superfluid [21]
properties [22]. The W condensation may also develop in
the cores of electroweak strings [24–27].
The electroweak vacuum is suggested to experience the

second transition at an even higher magnetic field:

Bc2 ≡ BEW
c2 ¼ m2

H

e
≃ 2.7 × 1020 T; ð2Þ

determined by the Higgs mass mH ¼ 125.1 GeV.
Above Bc2, the electroweak symmetry should be re-
stored [18,28,29]. In this phase, the vortex lattice evapo-
rates leaving some traces in this new phase [30,31]. The
magnetic fields of the relevant 1020 T scale might have
been created at the cosmological electroweak phase
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transition in the first moments of the early Universe [32,33].
Such enormous fields were suggested to exist even in the
modern Universe in the vicinity of the magnetized black
holes [34,35].
Our Letter aims to establish, using the first-principle

lattice simulations, the phase structure of the vacuum
subjected to magnetic fields of the electroweak strength.
Despite the “weak” name, such fields are among the most
powerful magnetic fields that were rarely discussed in the
context of the standard model of particles.
The discussions of the effect of magnetic fields on the

vacuum structure reveal certain controversies in the liter-
ature. The transition to the inhomogeneous superconducting
phase of the electroweak (EW) vacuum proceeds via the
instability of the vacuum at the first critical field (1) because
at B > Bc1, the ground state W mass becomes a purely
imaginary quantity, m2

WðBÞ ¼ m2
W − jeBj. At the classical

level, the formation of the periodic vortex lattice in the
background magnetic field has been established in the EW
model [36]. However, this classical-level scenario, together
with the arguments based on loop computations [12], has
been questioned in Ref. [37] where it was shown that
quantum corrections could add a radiative term to the
classical W mass in such a way that the mass does not
vanish at the critical field B ¼ Bc1. Consequently, it was
concluded that no thermodynamic instability should occur in
the electroweak sector. Earlier numerical simulations of the
electroweak model in the background magnetic field did not
reveal the presence of thevortex-dominated phase around the
finite-temperature electroweak crossover [38] which could
be explained by a destructive role of thermal fluctuations.
A similar no-go theorem was suggested to forbid the

superconducting transition in QCD vacuum [39]. The insta-
bility in QCD should proceed via the spontaneous ρ-meson
condensation similarly to the magnetic-field induced con-
densation of the W bosons in the EW model [9]. The fact
that the ρ-meson mass does not vanish at any magnetic field
was later supported by the effective model calculations [40]
as well as the first-principle numerical simulations [41].
However, despite the absence of the thermodynamic singu-
larity at finite magnetic field B, it was argued that the large-
B superconducting phase can still emerge via a smooth
crossover transition implying that the transition to the new
phase occurs at nonvanishing ρ-meson mass in the absence
of a thermodynamic singularity [42]. The latter scenario has
a speculative nature that requires confirmation from a first-
principle simulation. To this end, the electroweak model
provides us with an exciting playground, given the sim-
ilarity of the superconducting mechanisms in both systems.
We consider the bosonic sector of the electroweak model

with the Lagrangian

LEW ¼ −
1

2
TrðWμνWμνÞ − 1

4
YμνYμν

þ ðDμϕÞ†ðDμϕÞ − VðϕÞ; ð3Þ

where the field strengths of, respectively, the SU(2) gauge
field Wa

μ and Uð1ÞY hypercharge gauge field Yμ are

Wa
μν ¼ ∂μWa

ν − ∂νWa
μ þ igεabcWb

μWc
ν; ð4Þ

Yμν ¼ ∂μYν − ∂νYμ: ð5Þ

These vector fields interact with the complex scalar Higgs
doublet ϕ≡ ðϕ1;ϕ2ÞT via the covariant derivative:

Dμ ¼ ∂μ þ
i
2
gWa

μσ
a þ i

2
g0Yμ; ð6Þ

where σa (a ¼ 1, 2, 3) are the Pauli matrices. The ratio of the
U(1) and SUð2Þ gauge couplings, g0=g ¼ tan θW , defines the
electroweak mixing (Weinberg) angle θW fixed in experi-
ments [43]: sin2 θW ≡ 1 −m2

W=m
2
Z ¼ 0.22290ð30Þ.

The last term in the Lagrangian (3) is the potential
VðϕÞ ¼ λðϕ†ϕ − v2=2Þ2 of the Higgs field doublet ϕ,
where λ is the dimensionless self-coupling of the Higgs
field and the only dimensionful parameter v sets the
vacuum expectation value of the Higgs field.
In the broken phase, the Higgs field acquires the mass

mH ¼ ffiffiffiffiffi
2λ

p
v. The theory possesses the massless photon,

Aμ ¼ W3
μ sin θW þ Yμ cos θW; ð7Þ

and three massive gauge bosons which include the electri-
cally (off-diagonal) charged W bosons W�

μ ¼ W1
μ � iW2

μ,
and the neutral (diagonal) Z boson:

Zμ ¼ W3
μ cos θW − Yμ sin θW; ð8Þ

with the masses mW ¼ gv=2 and mZ ¼ mW= cos θW .
We consider the electroweak vacuum in the background

of the hypermagnetic field BY ¼ ∇ × Y corresponding to
the hypergauge field Yμ ¼ ðY0;YÞ. In the broken phase, the
two fields are related to each other:

g0BY ¼ eB ½broken phase�; ð9Þ

as it follows from the definition of the elementary elec-
tric charge, e ¼ g sin θW ¼ g0 cos θW ¼ gg0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
,

Eqs. (7) and (8), as well as from the fact that in the broken
phase, the Z boson is a massive particle which carries no
global flux. In the symmetry-restored phase, where the
magnetic field B cannot be defined, the hypermagnetic field
BY plays a role of a genuine field.
Using the first-principle Monte Carlo techniques, we

simulate the lattice version of the EW model (3). The
standard lattice discretization of the model, the known
particularities of the lattice (hyper)magnetic field, the
technicalities related to the choice of lattice parameters
close to continuum limit, and the lattice form of the
physical observables discussed in the Letter are described

PHYSICAL REVIEW LETTERS 130, 111802 (2023)

111802-2



in Supplemental Material [44], Secs. A, B, C, and D,
respectively. Important subtleties of definitions of fields
and particle contents in the standard electroweak model and
their lattice realizations are reviewed in Ref. [66].
In Fig. 1(a) we show the (normalized) vacuum expect-

ation values of the Higgs field squared hjϕj2i and the action
of the model—the EW Lagrangian (3) integrated over the
whole spacetime—as the functions of the background
(hyper)magnetic field g0BY . These observables point out
to the existence of three phases separated by two pseudo-
critical magnetic fields:

g0BY;c1 ≡ eBc1 ¼ 0.68ð5Þm2
W; ð10Þ

g0BY;c2 ≡ eBc2 ¼ 0.99ð2Þm2
H; ð11Þ

identified as the (pairwise coinciding) inflection points of
the Higgs condensate and the action, supporting the gauge-
invariant nature of the transitions.
The first critical field (10) turns out to be about 30%

weaker than value (1) predicted by the classical theoretical
analysis that does not take into account quantum fluctua-
tions. However, the second critical field (11) agrees
precisely with the theoretical value (2).
The classical picture predicts that the magnetic field

affects the Higgs condensate as follows [12–19,28,29]:
(i) In the broken phase (B < Bc1), the Higgs condensate
does not depend on the magnetic field B. (ii) When B
exceeds the first critical value B ¼ Bc1, the vacuum
develops a raising W condensate which gradually inhibits
the Higgs condensate. (iii) Finally, as the field reaches the
second critical value, B ¼ Bc2, the Higgs condensate

should vanish, and the electroweak theory should be
restored.
All these properties are spectacularly confirmed in

Fig. 1(a), where the fluctuations of scalar excitations over
the condensate are removed by the normalization [76].
The observed dependence of the Higgs expectation value

on magnetic field, shown in Fig. 1(a), can be described by
an impressively simple piecewise-linear formula predicted
by the theory [18,21,77,78]:

hϕ2irðBÞ
hϕ2irð0Þ

¼

8><
>:

1; B<Bc1;
Bc2−B
Bc2−Bc1

; Bc1<B<Bc2;

0; B>Bc2;

ð12Þ

which fits our data everywhere except for small regions
around the (pseudo)critical points B ¼ Bc1 and B ¼ Bc2.
The structure of the classical solution around Bc1 implies

that the first phase transition should be of the second
order [17,21]. In this case, the susceptibility of the Higgs
field should possess a local maximum at the (pseudo)
critical point. We do not see any peaks in the susceptibility
across neither Bc1 nor Bc2, Fig. 1(b). Thus, these transitions
are smooth crossovers.
The W condensates are shown in Fig. 2. In an excellent

qualitative agreement with the theory (the right inset), the
squared W2⊥ condensate raises linearly in the intermediate
phase. The observed slope of the linear part,
∂jW⊥j2=∂ðeBÞ ≃ 2.9, is about 30% larger than the slope
predicted by the classical solution, ∂jW⊥j2=∂ðeBÞ ≃ 2.1
[21]. This deviation indicates the important role of the
quantum fluctuations responsible also for the 30% shift of
the first critical field Bc1. In the restored phase at B > Bc2,

FIG. 1. (a) Normalized value hϕ2in ¼ ϕ2
rðBYÞ=ϕ2

rð0Þ of the additively renormalized, volume-averaged, ϕ2 ≡ ð1=VÞ R ϕ†ϕ, squared
Higgs condensate ϕ2

rðBYÞ ¼ hϕ2ðBYÞi − hϕ2ð∞Þi (blue) and the likewise normalized action hSin (green). The insets show the density
plots of the Z12 fluxes in the cross sections normal to the magnetic field axis in typical configurations (more details are provided in the
description of Fig. 3). (b) The susceptibility of the Higgs field squared vs the hypermagnetic field BY . The right inset shows the fit of the
Higgs condensate shown in (a) by the piecewise function (12). The left inset illustrates a typical 3D configuration in the inhomogeneous
phase in the (hyper)magnetic field background g0BY ¼ eB ¼ 1.1m2

W (the total number of vortices is 24). The equipotential surfaces of
the W condensate (the Higgs condensate) are shown in blue and red (green). These quantities, which take their maximal values at the
centers of the corresponding structures, are shown in complimentary regions. We used a cooling procedure to improve visibility of this
3D picture. The vertical red lines denote the transitions.
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the W condensate flattens, possibly indicating the presence
of the condensate of “zero-field twists” which are sug-
gested to be the remnants of the vortex lattice [30] visible
close to B ¼ Bc2 [31]. The W susceptibility (the left inset)
exhibits close similarity with the susceptibility of the Higgs
field shown in Fig. 1(b).
To confront our theoretical expectation with the first

principle simulations, we visualize in Fig. 3 the structure of
the electroweak fields in the cross-section perpendicular to

the magnetic field axis (we take B in the z direction).
We show analytical results in the classical theory in
Figs. 3(a)–3(d) and visualize the numerical data obtained
in lattice simulations in Figs. 3(e)–3(m). The numerical
results were obtained by taking an average over a few
dozen successive field configurations generated in the
background of the (hyper)magnetic field g0BY ≡ eB ≃
1.1m2

W which corresponds to the intermediate phase in
between two critical fields Bc1 < B < Bc2.
According to the theoretical expectations [15,18,19], the

ground state of the intermediate phase corresponds to a
spatially inhomogeneous structure made of the W con-
densate with nonvanishing transverse components Wx and
Wy. The inhomogeneities are produced by vortices that
are embedded in the condensate. The vortices should
arrange themselves into a hexagonal pattern in the plane
perpendicular to the magnetic field. The transverse

component of the W condensate, W⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jWxj2 þ jWyj2

q
,

should vanish in the core of each vortex, Fig. 3(a).
Instead of the hexagonal pattern of the classical solution,

Fig. 3(a), our lattice simulations reveal a less regular
structure, Fig. 3(g). However, similarly to the classical
solution, the lattice field W⊥ exhibits a semiclassical
behavior characterized by coherent geometrical structures
[79]. We associate these structures with the inhomogeneous
W condensate. The condensate exhibits a set of separate
deep minima which point to the presence of the vortex

FIG. 2. Expectation value of the W condensate vs the (hyper)
magnetic field g0BY ¼ eB. The right inset is the theoretical result
based on the classical solution for the transverse W condensate
squared [21] around the first transition. The left inset shows the
susceptibility of the transverse W condensate.

(a)

(g) (h) (i) (k) (l) (m)

(b) (c) (d) (e) (f)

FIG. 3. Density plots of various quantities in the cross-sections normal to the axis of the (hyper)magnetic field. Theoretical results
(a)–(d) are given for the classical solution of Ref. [21] at B ¼ 1.01Bc. The numerical results of the first-principle simulations, (e)–(m),
are given for a typical lattice configuration in the background of the (hyper)magnetic field g0BY ≡ eB ≃ 1.1m2

W ≃ 1.6eBc1 (the magnetic

number k ¼ 12 for our lattices). (a) and (g): transverse W condensate W⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jWxj2 þ jWyj2

q
; (b) and (h): transverse Z condensate

Z⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jZxj2 þ jZyj2

q
; (c) and (i) local excess of the Higgs expectation value over the condensate, ΔϕðxÞ ¼ ϕðxÞ − hϕi; (d) and (k):

local excess of the magnetic field value over the background, ΔBðxÞ ¼ BðxÞ − Bext; (e) and (l): longitudinal W and Z condensates,
Wk ¼ jWzj and Zk ¼ jZzj, respectively (theoretically,Wk ¼ Zk ¼ 0 at the classical level); (f): the Z flux; (m) the neutral Higgs currents
JZ⊥. The red (blue) colors correspond to maxima (minima); absolute values are given for complex quantities. The same regions are
circumvented by the red and green dashed lines (separately for the analytical solution and simulated configuration) to guide the eye.
Each simulated picture is obtained by averaging data over a part of the Markov chain (last 5000 configurations). Averaging over the
entire ensemble leads to blurring of the vortex structure.
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cores in agreement with the theoretical classical picture,
Fig. 3(a). Modulo occasional overlaps, the total number of
vortices at chosen magnetic number k ¼ 12 appears to be
equal to 24, which corresponds to the number 2k of the
elementary fluxes of hypermagnetic field, as expected.
Contrary to the expectations based on the classical theory,

Fig. 3(a), the vortices do not form the crystalline phase in
the vacuum, Fig. 3(g). While some traces of the crystalline
vortex order are seen, the quantum fluctuations disorder the
classical hexagonal structure so that the vortices form a
disordered solid or, possibly, a liquid. The formation of the
vortex liquid phase is not unexpected, though, as it has been
proposed, in a similar non-Abelian context, in Ref. [80].
According to the classical picture, the transverse Z

condensate Z⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jZxj2 þ jZyj2

q
forms a regular honey-

comb structure, Fig. 3(b). This neutral condensate vanishes
in the center of each vortex and a honeycomblike manifold
in between the vortices. The regions with nonzero Z
condensate are thin pipelike shells surrounding the vortex
cores. Strikingly, these classical structures, disordered by
quantum fluctuations, are also seen in our lattice configu-
rations, Fig. 3(h): the thin shells of the Z condensate
surround the cores of vortices.
The classical EW theory predicts that in the cores of

vortices, the Higgs condensate should get enhanced [21],
Fig. 3(c), while the magnetic field should be locally
suppressed due to the antiscreening effect [14], Fig. 3(d).
These properties, which defy our intuition based on the
Abrikosov picture of type-II superconductors, are con-
firmed by the results of our numerical simulations shown in
Figs. 3(i) and 3(k), respectively. A 3D picture of the Higgs
andW condensates and the magnetic field lines of a typical
configuration is shown in the inset of Fig. 1(b).
We also noticed that jWxj ≃ jWyj holds high precision in

numerical simulations. The unexpected outcome of our
simulations is the presence of the large longitudinal
condensate Wk ≃W⊥, Fig. 3(e) which closely mimics
the transverse condensate, Fig. 3(g). This observation
disagrees with the classical theory that predicts Wk ¼ 0

in the ground state. On the contrary, the condensate of the z
component of the neutral Z boson is vanishing in agree-
ment with the classical picture: we observe only small
quantum fluctuations in this quantity, Fig. 3(l).
Numerically, the Z12 flux provides us with the most

transparent view of the vortex content of field configura-
tions, Fig. 3(f). The peaks in the Z flux point out to the
positions of the vortex cores also seen as the deeps in theW
condensate, Fig. 3(e), the spikes in the Higgs condensate,
Fig. 3(g), and, much less clear, as the minima in the
magnetic field, Fig. 3(h). The associated neutral currents JZ

of the Higgs field, Fig. 3(m), defined as a variation of the
matter part of the action with respect to the Z field,
circumvents the vortices.
In the inset of Fig. 1(a), we show the evolution of the Z

flux density in the transverse plane of the gradually

increasing (hyper)magnetic field. The vortices start to form
as soon as the magnetic field crosses the first pseudocritical
value, B ¼ Bc1. The vortex structures are barely seen. The
fuzziness of vortex positions appears due to the weakness
of the condensates right above the critical point. This
property makes the weak classical structure vulnerable to
the disorder caused by ultraviolet fluctuations and phonons
in the vortex lattice that lead to the drifting of the vortex
cores. The vortices may form a liquid close to the first
critical field Bc1.
In the middle of the superconducting phase, the vortex

liquid partially solidifies into a disordered solid. The
physical motion of the vortices leads to enhanced local
fluctuations of all physical quantities that experience
extrema at or around vortex cores. In particular, the vortex
motion enhances fluctuations of the Higgs condensate,
thus leading to the elevated values of the Higgs and W
susceptibilities in the inhomogeneous phase that we already
observed in Figs. 1(b) and 2, respectively.
Close to the second critical field, B ¼ Bc2, the vortex

solid starts to melt. Finally, the vortices disappear entirely
as the vacuum crosses into the third phase at B > Bc2,
where the electroweak symmetry gets restored.
Conclusions.—Using first-principle numerical simula-

tions, we establish the three-phase structure of the electro-
weak sector of the vacuum in the background of the strong
magnetic field at zero temperature. In agreement with the
theoretical analysis [12–19,28,29], we find that the vacuum
experiences two successive transitions. Contrary to the
expectations, these transitions are smooth crossovers.
As the magnetic field reaches the first pseudocritical

value (10), the vacuum turns into the intermediate inho-
mogeneous phase, characterized by the presence of clas-
sically large W and Z condensates. Then, at the second
pseudocritical field (11), the inhomogeneities disappear,
and the electroweak symmetry gets restored. The formation
of the disordered vortex solid and its evaporation with
increasing magnetic field is shown in the Supplementary
Video. The inhomogeneous phase is populated by vortices
that locally have an almost classical field structure, mostly
in agreement with Refs. [17,21]. The classical hexagonal
order of the vortex phase is, however, not realized due to
strong quantum fluctuations: we find the evidence that in
the middle of the inhomogeneous phase, the vortices appear
to form a disordered vortex solid which melts, closer to
both pseudocritical magnetic fields, into a vortex liquid.
Summarizing, we have shown in first-principle cal-

culations that the electroweak sector of the vacuum
experiences two consecutive crossover transitions in
strengthening magnetic field background. At intermediate
fields in between these crossovers, we observe the appear-
ance of large, inhomogeneous structures consistent with
theoretically expected [13–18] a classical picture of the
formation of W and Z condensates pierced by vortices that
forms a disordered solid or a liquid rather than expected
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solid. The presence of classically significant W and Z
condensates points to the fascinating possibility that in the
strong magnetic field, the vacuum becomes an electromag-
netic superconductor enriched by a neutral superfluid
component that supports dissipationless transport along
magnetic field lines [9,21]. In the present time, such
conditions can be realized in the vicinity of the magnetized
black holes [34,35].
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