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We establish the irreversibility of renormalization group flows on a pointlike defect inserted in a d-
dimensional Lorentzian conformal field theory. We identify the impurity entropy g with the quantum
relative entropy in two equivalent ways. One involves a null deformation of the Cauchy surface, and the
other is given in terms of a local quench protocol. Positivity and monotonicity of the relative entropy imply
that g decreases monotonically along renormalization group flows, and provides a clear information-
theoretic meaning for this irreversibility.
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Introduction.—Quantum information theory has emer-
ged as a central tool for understanding quantum field
theory. While a lot of progress has been made in
Lorentz invariant systems using such methods [1–4], much
less is known for non-Lorentz invariant theories.
Investigating their dynamics is crucial, given that they
are relevant in many areas of physics, including condensed
matter and high energy physics, statistical mechanics, and
astrophysics. In this Letter we analyze a class of such
theories: a pointlike defect immersed in an arbitrary
dimensional conformal bulk (CFT). These defects can
appear in gauge theories, Kondo models, impurities in
quantum materials, etc. By using quantum information
methods we will establish the irreversibility of defect
renormalization group flows (RG) and we will provide a
distinguishability measure for defects.
The main tool we will use is the quantum relative

entropy, in particular its positivity and monotonicity
properties. Computing the relative entropy in continuum
field theories is usually problematic due to the appearance
of infinities and an important step in our proof will be to
construct a setup where the relative entropy is finite. Given
this, we will use it to define an intrinsic distinguishability
measure g for the defect, with the property that g decreases
monotonically under defect RG flows. As a result, a
consistent defect RG flow that connects UV and IR fixed
points must obey gUV > gIR.
Our Letter is an extension (to higher dimensions) of the

method we developed in [5] for proving the g-theorem in
1þ 1-dimensional bulk CFTs. In this dimensionality, the
quantity g is the entanglement entropy in the presence of

the impurity, and its decrease was established by relating it
to the relative entropy. For higher dimensional bulks,
however, additional contributions to the entanglement
entropy make it nonmonotonic [6] (see also [7]).
Instead, g has to be constructed directly from the relative
entropy, and this is what we will do.
The information-theoretic results we will obtain apply to

zero temperature real time field theories. They complement
recent progress using euclidean methods at finite temper-
ature, starting from [8]. Indeed, our analysis was strongly
motivated by [6], who conjectured that the Euclidean
sphere partition function in the presence of the defect
should give the appropriate monotonic quantity. Recently
this conjecture was proved for Euclidean circular defects by
[9]. While our approach is inherently Lorentzian and has no
clear Euclidean analog, we will nevertheless be able to
establish a connection with these works at fixed points. The
combination of Lorentzian and Euclidean results offers
then a comprehensive characterization of RG flows for
linear defects. A sample of other works on RG flows for
defects with different dimensionalities includes [10–17].
Renormalization group flows on pointlike defects.—Let

us begin with a brief summary of the setup. We consider a
d-dimensional unitary CFT, with space-time coordinates
xμ, μ ¼ 0;…; d − 1, and a pointlike defect located at xi ¼ 0

and extended along the time direction x0. We assume that at
short distances the theory is described by a conformal fixed
point, with symmetry group SOð2; 1Þ × SOðd − 1Þ ⊂
SOð2; dÞ. This is the subgroup of the full conformal group
that keeps the defect fixed. The vacuum state for this theory
is denoted by σ. We work in Minkowski signature
ð−þ � � � þÞ.
Now we introduce a relevant perturbation on the line

defect,

S ¼ SDCFT þ
Z

∞

−∞
dt λO ð1Þ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 130, 111603 (2023)

0031-9007=23=130(11)=111603(6) 111603-1 Published by the American Physical Society

https://orcid.org/0000-0002-3196-8941
https://orcid.org/0000-0003-2947-8705
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.111603&domain=pdf&date_stamp=2023-03-17
https://doi.org/10.1103/PhysRevLett.130.111603
https://doi.org/10.1103/PhysRevLett.130.111603
https://doi.org/10.1103/PhysRevLett.130.111603
https://doi.org/10.1103/PhysRevLett.130.111603
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


where O is a primary scalar operator of conformal
dimensionΔ, andΔ < 1 so that the perturbation is relevant.
Additional relevant interactions on the impurity can be
added without affecting our analysis. The relevant inter-
action triggers a nontrivial RG flow on the defect, while the
bulk remains conformal. (In contrast, relevant deformations
in the bulk can lead to nonmonotonic behavior on the
defect; see, e.g., [18]). We assume that at long distances the
theory flows to an IR fixed point. The vacuum state of (1) is
denoted by ρ.
A key operator for characterizing the dynamics of the

theory is the energy-momentum tensor. The impurity
generically adds delta-function localized contributions,
so that

TμνðxÞ ¼ Tμν
b ðxÞ þ δd−1ðxÞδμ0δν0θðxÞ: ð2Þ

At a fixed point, conservation and conformal invariance
imply hθi ¼ 0 and

hT00i ¼ −
d − 2

d
aT
rd

; hT0ii ¼ 0;

hTiji ¼
aT
rd

�
xixj
r2

−
2

d
δij

�
; ð3Þ

with aT a constant. Note that hTμνi ¼ 0 for d ¼ 2, and this
is made explicit by the choice of normalization for aT. On
the other hand, the one-point function is nontrivial
for d > 2.
Away from the fixed point the one-point function

receives corrections from the relevant deformation. As
discussed in [14] and reviewed below, the stress tensor
one point function is characterized in terms of a single
function hðrÞ. We will use this structure for our de-
finition of impurity entropy. At second order in pertu-
rbation theory we expect, on dimensional grounds, a
correction

ΔhTμνðrÞi ∼
1

rd
λ2r2ð1−ΔÞ; r ≪ λ−1=ð1−ΔÞ: ð4Þ

On the other hand, for large r the defect theory becomes
conformal again, and then

ΔhTμνðrÞi ∼
aIRT − aUVT

rd
; r ≫ λ−1=ð1−ΔÞ: ð5Þ

Defect entropy from quantum relative entropy.—
Motivated by previous works [5,14,19], our goal is to
use the quantum relative entropy to compare the states ρ
and σ above, in order to characterize nonperturbatively the
impurity RG flow. To this aim, consider a spherical region
of radius R centered around the defect. Its domain of
dependence V is the causal diamond jx0j þ r ≤ R. The
density matrices of the previous two states that we

introduced, reduced to this region, are written as σR and
ρR, and the relative entropy is defined as

SrelðρRjσRÞ ¼ trV ½ρRðlog ρR − log σRÞ�: ð6Þ

This is a measure of distinguishability between the two
density matrices. Note that we are comparing the theory
with and without relevant interaction; the two states act
then on the same algebra of operators, and we can compute
their relative entropy.
The relative entropy can also be interpreted as a differ-

ence of free energies. Indeed, in terms of the modular
Hamiltonian Hσ ¼ − log σR for the fixed point theory, (6)
becomes

SrelðρRjσRÞ ¼ ΔhHσi − ΔS: ð7Þ

Here the first energy term is the difference of the modular
Hamiltonian expectation values for the two states,
ΔhHσi ¼ tr½ðρ − σÞHσ�. The modular Hamiltonian for
the state σ of the conformal defect is given by [14]

Hσ ¼
Z
Σ
dd−1x ημξνTμν ð8Þ

with ημ the unit normal to the Cauchy surface Σ, and

ξν ¼ π

R
½R2 − ðx0Þ2 − ðxiÞ2;−2x0xi� ð9Þ

is the Killing vector for a conformal transformation that
keeps the sphere fixed [20]. On the other hand, the entropy
term in (6) is the difference in von Neumann entropies,

ΔS ¼ −trðρ log ρÞ þ trðσ log σÞ: ð10Þ

The relative entropy is positive and increases monoton-
ically with R. The RG flow is accessed by varying the
radius R compared to the typical RG distance scale,
λ−1=ð1−ΔÞ. Since the two states differ by the relevant
deformation (1), we expect that in the limit R → 0 they
become indistinguishable in the sense that Srel → 0. The
intuitive interpretation for monotonicity is that increasing R
allows to use more operators to distinguish the two states
and hence Srel increases.
These properties are what we need in order to establish

the irreversibility of defect RG flows. However, the main
obstacle is that the relative entropy is often divergent in
continuum QFT. To see this, consider a spatial Cauchy
surface at x0 ¼ 0. With ημ ¼ δ0μ and the one-point function
(3), we find that (8) at a fixed point diverges as
hHσi ∼ aTðR=ϵÞ, with ϵ a short distance cutoff for the
spatial integral. This leading divergence cancels out in
ΔhHσi; however, the leading perturbative correction (4)
gives
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ΔhHσi ∼ ðλ2ϵ1−2ΔÞR: ð11Þ

Then the relative entropy diverges when 1=2 ≤ Δ ≤ 1 (the
upper bound being, as before, the condition that the
interaction is relevant). We then know that this term linear
in R should be positive and (trivially) monotonically
increasing, but it does not provide an intrinsic quantity
that we can associate with fixed points. We need to access
subleading terms in the relative entropy, but we cannot just
subtract the linear term (11)—this would ruin the infor-
mation-theoretic interpretation and the monotonicity
property.
Instead, we will consider the relative entropy on a

Cauchy surface that approaches the past line cone, centered
at the defect. A bi-dimensional cut is depicted in Fig. 1,
with the almost null surface being Σ2. This generalizes the
method of [5] for the g-theorem in 1þ 1 dimensions. The
basic idea is that ΔhHσi and hence the relative entropy
depend on the choice of Cauchy surface Σ. This depend-
ence can in turn be used to eliminate the linear term (11).
The dependence on Σ is due to the fact that the two states

σ and ρ, though defined on the same algebra of operators,
have different time evolution. As in [19] we can work in a
conformal interaction picture where operators are in the
Heisenberg picture of the UV defect CFT Hamiltonian,
while ρ evolves with the interaction Hamiltonian Hint ¼
δd−1ðxÞλOðxÞ (the state σ is time independent in this
picture). Denote by UΣ the evolution operator for Hint
from t → −∞ up to the Cauchy surface Σ. Starting from the
global vacuum of the UV fixed point, σ ¼ j0ih0j, the state ρ
is obtained as ρ ¼ UΣσU

†
Σ, which exhibits explicitly the

dependence of ρ on Σ. After computing the reduced state
ρR, this results in ΔhHσi depending on Σ. Equivalently, in a
Heisenberg representation, the identification of the algebra
of operators in both theories depends on the choice of
Cauchy surface [19].

Another way to view this is via a local quench. The
relevant interaction (1) is turned on between −∞ < x0 <
−R and near x0 ≈ −R we turn it off (in some smooth way).
The global state ρ is defined by the time evolution including
the relevant interaction, while for x0 > −R both states σ
and ρ evolve with the same conformal Hamiltonian. We
then compute the relative entropy for both states in the
setup of Fig. 2. In this construction, the state ρ for the
relative entropy is naturally defined on the null Cauchy
surface Σ shown in the figure. But because after x0 ¼ −R
both ρ and σ evolve with the same Hamiltonian, we can
actually take other Cauchy surfaces in the same causal
development, and the relative entropy will not change. Both
setups are physically distinct, but the concrete calculations
leading to the cancellation of (11) are the same. We turn to
these next.
Let us approach the null limit in terms of a family of

spacelike hyperboloids of curvature a, with a → 0

ðx0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2

p
Þ2 − r2 ¼ a2; 0 ≤ r ≤ R; x0 < 0:

ð12Þ

In this case, the nonvanishing component of the Killing
vector near the defect is ξ0 ¼ 2πaþOða2Þ, which should
be contrasted with ξ0 ¼ 2πR for the constant-time surface.
Repeating the previous calculation for the change in
modular Hamiltonian for the almost null Cauchy surface
then gives a ΔhHσi that is independent of R. This constant
can be simply subtracted from the relative entropy without
altering the monotonicity property ∂RSrelðρRjσRÞ ≥ 0. It is
also possible to define a regularization scheme where the
constant is set to zero.

FIG. 1. Causal development for a sphere of radius R, with a line
defect at the center, and two Cauchy slices Σ1 (constant time) and
Σ2 (almost null). The relative entropy depends on the choice of
Cauchy surface.

FIG. 2. The relevant interaction is turned off at x0 ¼ −R, after
which the evolution operator becomes conformal. The vacuum
state at x0 ¼ −R obtained by Euclidean evolution from t → −∞
defines a reduced density matrix ρR on Σ.
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Intuitively, the choice x0 ¼ 0 (namely, Σ1 in the figure)
places the defect in a region with modular temperature
T ∼ 1=R, and this is the origin of (11). Instead, taking a
Cauchy surface that approaches the null limit gives T → ∞
near the defect. This high temperature limit eliminates the
diverging distinguishability of the two states.
In the setup of a null Cauchy surface, let us define the

difference of impurity g-functions as

SrelðρRjσRÞ ¼ − log
gðRÞ
gð0Þ : ð13Þ

At the end of the following analysis we will arrive to a
natural definition of g at fixed points [see (25) below] and
so (13) determines gðRÞ. We need to show that when
R → ∞ the relative entropy decomposes as a difference
− logðgIR=gUVÞ, where gUV and gIR are associated to the
UV and IR fixed points, respectively. The entropy con-
tribution ΔS in (7) already gives a difference between fixed
point quantities, and it remains to establish the same
for ΔhHσi.
The modular Hamiltonian can be written as an integral

over the future light cone emanating from the past tip of the
causal diamond. For convenience we set the past tip of the
double cone at the origin, and use the coordinate
λ ¼ ðx0 þ rÞ=2, that is equal to both x0 and r on the light
cone. We have

Hσ ¼
2π

R

Z
dd−2Ω

Z
R

0

dλ λd−1ðR − λÞTλλðλ;ΩÞ; ð14Þ

with Ω describing the angular coordinates over the unit
sphere and

Tλλ ¼ T00 þ x̂ix̂jTij: ð15Þ

The traceless and conserved bulk stress-tensor one point
function in the presence of the defect can be parametrized
as [14]

hT00i ¼ −hðrÞ; hT0ii ¼ 0;

hTiji ¼ −
1

d − 1
hðrÞδij þ fðrÞ

�
x̂ix̂j −

δij
d − 1

�
: ð16Þ

The conservation condition gives a differential equation
with solution

fðrÞ ¼ −
1

d − 2

1

rd−1

Z
∞

r
du ud−1h0ðuÞ: ð17Þ

At fixed points we have

hðrÞ ¼ ðd − 2ÞaT
d

1

rd
; fðrÞ ¼ aT

1

rd
: ð18Þ

The null component of the stress tensor is

hTλλi ¼
1

ðd − 1Þ ½−dhðrÞ þ ðd − 2ÞfðrÞ�: ð19Þ

Using (18) this vanishes for a conformal defect.
Let us now compute the change in the modular

Hamiltonian

ΔhHσi ¼ −
2πVolðSd−2Þ
ðd − 1ÞR

Z
R

0

dλðR − λÞ

×

�
dλd−1ΔhðλÞ þ

Z
∞

λ
du ud−1Δh0ðuÞ

�
: ð20Þ

Integrating by parts the h0ðuÞ factor, changing the order of
integration in the double integral, and performing the
integration over λ, one obtains

ΔhHσi ¼ π
VolðSd−2Þ

R

�Z
R

0

dλ λdΔhðλÞ

þ R2

Z
∞

R
dλ λd−2ΔhðλÞ

�
: ð21Þ

At large R, the integral is dominated by the large λ behavior
(18), which gives

lim
R→∞

ΔhHσi ¼ −
2πðd − 2Þ

d
VolðSd−2ÞðaIRT − aUVT Þ: ð22Þ

This is a difference of fixed point quantities.
We conclude that at large R, the relative entropy on the

Cauchy surface that approaches the past or future lightcone
for the sphere of radius R indeed becomes a difference of
fixed point quantities,

lim
R→∞

SrelðρRjσRÞ ¼
2πðd − 2Þ

d
VolðSd−2ÞðaUVT − aIRT Þ

þ lim
R→∞

½SðσRÞ − SðρRÞ�: ð23Þ

This defines the difference of defect g-entropies

lim
R→∞

SrelðρRjσRÞ ¼ − log
gIR
gUV

ð24Þ

with gUV ¼ gðR ¼ 0Þ, gIR ¼ gðR → ∞Þ.
Given (24), we can identify a fixed point quantity

log g from the first and third terms (second and forth
terms) in (23),

log g ¼ 2πðd − 2Þ
d

VolðSd−2ÞaT þ SðσÞ − SbulkðσÞ; ð25Þ

where the conformal bulk contributions to the entanglement
entropy have been subtracted (they cancel out in the relative
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entropy). The running g-function gðRÞ is then determined
in terms of the relative entropy (13) and the fixed point
value (25).
Entropic g-theorem.—Having demonstrated that at large

R the relative entropy splits as a difference of fixed-point
intrinsic quantities, we are ready to establish the irreversi-
bility of defect RG flows.
First, positivity of the relative entropy implies that

log gUV − log gIR > 0: ð26Þ

Furthermore, the relative entropy at finite R provides a
natural definition for a running g-function, given above in
(13). Monotonicity of the relative entropy, S0relðRÞ ≥ 0 then
implies the monotonic decrease

g0ðRÞ ≤ 0: ð27Þ

Equations (23)–(27) are the main results of the Letter. They
establish the entropic g-theorem in general space-time
dimension, and the irreversibility has a clear interpretation
in terms of the increase in distinguishability as measured by
the relative entropy.
To end, let us compare our results with those obtained in

Euclidean field theory. We note that our proposal (25)
agrees with the Euclidean sphere partition function com-
puted in [6,21]. Therefore, the fixed point statement (26)
agrees with the recent proof in [9]. The Euclidean treat-
ment, however, is more analogous to our calculation of the
expectation value of the modular Hamiltonian at x0 ¼ 0. As
we have seen, this requires subtracting a term linear in R,
and the interpretation as a relative entropy is lost.
Conclusions.—In this Letter we have established the

irreversibility of RG flows on defects embedded in d-
dimensional Lorentzian CFTs. We achieved this in terms of
the quantum relative entropy for the reduced vacuum
density matrices with and without the relevant deforma-
tions. We argued that for a Cauchy surface that approaches
the past lightcone of a sphere of radius R, the relative
entropy is free of UV divergences and leads to a notion of
impurity g-function at fixed points. Positivity of relative
entropy implies log gUV > log gIR, and its monotonicity
allows us to construct an interpolating function gðRÞ with
g0ðRÞ < 0 and gð0Þ ¼ gUV; gð∞Þ ¼ gIR. From this infor-
mation-theoretic perspective, the irreversibility is due to the
increase in distinguishability between the two states.
At fixed points, we have shown that the quantity g

obtained from the relative entropy agrees with a regularized
version of the defect free energy on the sphere [6]. Our
result log gUV > log gIR is then equivalent to [9].
Physically, however, the information-theoretic methods
we have employed do not have a clear Euclidean counter-
part. It would be interesting to explore their connection
further, perhaps by developing a sum rule for pointlike
defects (see Ref. [14]) that could be compared to the

gradient formula of [8,9]. Finally, a main direction of future
work is to extend the present methods to defects of other
dimensionalities. This is under current investigation.
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