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Vacuum quantum fluctuations near horizons are known to yield correlated emission by the Hawking
effect. We use a driven-dissipative quantum fluid of microcavity polaritons as an analog model of a
quantum field theory on a black-hole spacetime and numerically calculate correlated emission. We show
that, in addition to the Hawking effect at the sonic horizon, quantum fluctuations may result in a sizable
stationary excitation of a quasinormal mode of the field theory. Observable signatures of the excitation of
the quasinormal mode are found in the spatial density fluctuations as well as in the spectrum of Hawking
emission. This suggests an intrinsic fluctuation-driven mechanism leading to the quantum excitation of
quasinormal modes on black hole spacetimes.
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Quantum fluctuations of fields in the vicinity of the event
horizon of black holes (BHs) are predicted to cause the
emission of correlatedwaves by theHawking effect (HE) [1]:
while Hawking radiation propagates away from the
horizon to outer space, the partner radiation falls inside
the horizon. Since signaling from inside the horizon is
impossible, only the out-going Hawking radiation is observ-
able and quantum correlations with the in-falling partner
waves cannot be accessed.
The HE may also be observed in the laboratory thanks to

analog gravity setups [2,3], namely, condensed matter or
optical systems, engineered in such a way that their
collective excitations propagate on effectively curved
spacetimes [4,5]. This idea has been experimentally dem-
onstrated in a variety of platforms [6–18]: for example, a
horizon for sound waves forms in a one-dimensional
transsonic fluid where the flow velocity of the fluid exceeds
the speed of sound. Crucially, observation on both sides of
the horizon is possible with analog setups and the HE has
been detected via density correlations between Hawking
radiation and its partner [19,20] in experiments based on
both classical [21] and quantum fluids [22].
In this Letter, we make use of a specific realization of

an effective spacetime realized in a driven-dissipative
quantum fluid of exciton polaritons in a semiconductor
microcavity [11,23–25] to push forward the theoretical
study of quantum fluctuations in the vicinity of horizons. In
particular, we investigate a one-dimensional transsonic
configuration where the spatial shape of the quantum fluid
and the external potential are optimized together to maxi-
mize the strength of the HE [26]. We find that the typical
signatures of the HE are supplemented by new features in
the spatial correlation of sound waves that evidence the

coupling of propagating waves to a localized mode living
near the horizon, namely, a quasinormal mode (QNM) of
the acoustic field. On a curved spacetime with a horizon,
QNMs are decaying solutions of the Klein-Gordon equation
of the field satisfying purely in-(out-)going boundary
conditions at the horizon (at infinity) [27,28] and corre-
spond to the intrinsic oscillation modes of generic fields in
BH spacetime [29]. Typically, localized modes have a finite
lifetime due to radiative decay into waves propagating away
from the horizon, for instance gravitational waves [27,28].
While classical ringdown oscillations of a scalar field

have been observed experimentally for surface waves in a
rotating bathtub flow configuration [30] and a structured
HE spectrum has been theoretically calculated in more
complex flow geometries in conservative fluids [31], our
work establishes that QNMs of quantum fields get naturally
excited by the same quantum fluctuations that are respon-
sible for the HE. Translated back to the astrophysical
context, our results suggest a general and intrinsic fluctua-
tions-driven mechanism leading to quantum excitation of
BH spacetimes.
Effective spacetime in a polariton fluid.—Our numerical

study is based on the parameters of the system used in the
experiment [11]: we consider a 800 μm long wire (a GaAs-
based semiconductor microcavity embedding one InGaAs
quantum well) within which the polariton dynamics is
effectively one dimensional. There is an attractive defect
formed by a 1 μm long broadening of the wire halfway
along it at xd ¼ 0, cf. Fig. 1(a).
The device is excited with a continuous wave laser (the

pump) incident at a finite angle with respect to the normal
to form a continuous flow of polaritons along the wire.
The pump frequency ωp is tuned above the bare polariton
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resonance ω0 at the pump wave number kp to enforce a
regime of optical bistability between the pump strength jFpj
and the density of the fluid n [32,33], see Fig. 1(d) where we
plot the speed of excitations c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏgn=m�p

, as a proxy of
the polariton density n (g is the interaction strength and m�
is the polariton mass). The pump spot is structured in a two-
step profile: on the first step, the fluid is set above the
bistable regime (jFpj¼9 ps−1μm−1=2) on the second step
the fluid density is supported near the turning point of the
bistability loop [jFpj ¼ 1.2 ps−1 μm−1=2, see black dot on
Fig. 1(c)] over about 100 μm up until the sharp pump edge
xedge ¼ 10 μm [cf. Fig. 1(b)].
In the region x < 0, the phase θ of the fluid is locked to

that of the pump, with a velocity v ¼ ðℏ=m�Þ∂xθ in the
positive x direction. In the region x > 0, polaritons propa-
gate ballistically with an exponentially decaying density
and a finite velocity [34]. Figure 1(d) shows the fluid
velocity v in orange and the speed of excitations c in blue.
The acoustic horizon separating the upstream subsonic
(v < c) region from the downstream supersonic (v > c)
region is clearly visible at xH ¼ −3 μm.
Excitations of a homogeneous fluid obey the

k-dependent Bogoliubov dispersion relation ω ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏk2=2m�2ðℏk2=2m�2 þ 2gnÞ
p

þ vk − iγ=2, which
depends on both v and n as well as on the particle loss
rate γ. It depends on the working point along the
bistability loop and when driven, as in the upstream
region, may be slightly gapped [33]. Figure 2 shows
the dispersion in the asymptotic regions (a) up- and
(b) downstream from the horizon. The blue (orange)

curve represents positive- (negative-)norm modes of the
field, respectively [35]. In the upstream region, the pump
strength is tuned slightly above the turning point of the
bistability loop to keep the system stable on the upper

(a)

(c)

(d)

(b)

FIG. 2. Modes and correlated emission. (a),(b) Bogoliubov
dispersion relation in the asymptotic regions as seen from the
laboratory frame. (a) Subsonic fluid flow. (b) Supersonic fluid
flow. Blue line, positive-norm modes; orange line, negative-norm
modes; red dashed line, behavior of the negative-norm branch in
the highly supersonic region. Circles (filled dots), asymptotic
modes of negative (positive) group velocity. Gray dashed lines,
ωmin and ωmax; red dashed line, ωQNM; black dashed line a generic
frequency giving to the mode structure of (c). (c) Modes of the
system in the laboratory frame. Schematic of the fluid density in
the asymptotic regions (the dashed region has extra structure) and
asymptotic mode structure on either side of the horizon. (d) Nor-
malized spatial correlations gð2Þðx; x0Þ − 1. Traces: (i) antibunch-
ing; (ii) Hawking mustache; (iii) QNM and Hawking radiation;
(iv) QNM and witness mode; (v) modulation of the Hawking
mustache by QNMs.

(c) (d)

(b)

(a)

FIG. 1. Properties of the transsonic polariton fluid flow. A
steplike laser field pumps polaritons, creating a transsonic fluid
flow across an attractive obstacle. (a) Sketch of the polariton wire
with a defect at xd ¼ 0. (b) Spatial profile of the pump near the
defect. The pump intensity jFpj½ps−1 μm−1=2� drops abruptly to 0
at xedge ¼ −10 μm. (c) Optical bistability of the spatially homo-
geneous polariton fluid. (d) Spatial properties of the stationary
fluid near the defect: orange, fluid velocity v; blue, speed of
excitations c.
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branch [26]: this introduces a small gap of size ωmin
between the positive- and negative-norm modes in the
upstream region. As v < c, the Doppler shift is small and
the positive- (negative-)norm modes remain at positive
(negative) frequencies. In the downstream region of
ballistic flow, the dispersion recovers the gapless
Bogoliubov dispersion of conservative atomic conden-
sates. As v > c, the large Doppler effect pulls negative-
norm modes to positive frequencies up to ωmax.
As is typical in analog systems based on quantum fluids,

the description of collective modes in terms of an effective
metric on a curved space-time is only valid for small k
modes [35–38]. For larger wave numbers, the superluminal
form of the dispersion allows sound waves to propagate
against the supersonic fluid flow in the downstream region.
The combination of the superluminal correction of the
dispersion and the Doppler effect is, in fact, what enables
the mixing of positive- and negative-norm modes at the
horizon for frequencies within the interval ½ωmin;ωmax�.
Hawking effect.—This mode mixing at the horizon is the

HE, i.e., the conversion of quantum fluctuations in the in-
going fuin; d1in; d2ing modes propagating towards the
horizon into pairs of real excitations in the out-going
fuout; d1out; d2outg modes [cf. Fig. 2(c)] [35,36]. The
correlated nature of the emission is visible in the intensity
correlation diagram shown in Fig. 2(d), where the normal-
ized correlation function gð2Þðx; x0Þ of density fluctuations
(computed with the truncated Wigner method [39] as a
statistical average over 109 Monte Carlo realizations) is
plotted as a function of the positions x, x0. Here, besides the
trivial antibunching (i) along the x ¼ x0 diagonal stemming
from repulsive interactions, the usual signature of HE is
apparent as a 100 μm-long oblique “mustache” of relative
amplitude ≈10−3 (ii) due to correlations across the horizon
between Hawking radiation (uout) and the witness (d1out)
and partner (d2out) modes in the downstream region.
Localized correlation features.—In addition to these

typical features of the HE, the correlation plots of Fig. 2(d)
reveal new structures: (iii) a series of oblique interference
fringes developing along the x ¼ 0, x0 > 0 half line (and
symmetrically along the x0 ¼ 0, x < 0 half line), and (iv) a
similar, stronger series of oblique fringes localized along
the x ¼ 0, x0 > 0 half line (and symmetrically along the
x0 ¼ 0, x > 0 half line). These traces indicate correlations
between excitations in a mode spatially localized near the
horizon and waves propagating in either the upstream (iv)
or the downstream (iii) regions. The spacing of the fringes
yields the wave number of the propagating modes [see
Supplemental Material (SM) [40]]: jkuj ¼ 0.78ð1Þ μm−1

and jkdj ¼ 0.25ð3Þ μm−1 in the up- and downstream region,
respectively. Via the dispersion relation, ku;d correspond to
the same frequency ωQNM ∼ 0.75 ps−1 > ωmax indicated
by the red dashed line in Figs. 2(a) and 2(b), and to modes
uout and d1out that both have a positive norm. This single
frequency indicates that we observe a single mode of the

acoustic field, composed of a localized component coupled
to propagating waves on either side of the horizon.
Ringdown of the acoustic field.—The temporal dynamics

of these coupled modes are not resolved by the equal-time
correlation diagram Fig. 2(d) which displays the stationary
properties of the emission. To assess these dynamics, we
simulate the temporal evolution of the acoustic field upon
perturbation by a probe. Figure 3 shows the temporal
evolution of the spatial density profile of the fluid in
response to a generic wave packet impinging on the horizon
from the upstream x < 0 region. After the impinging wave
packet has been partially reflected (i) and transmitted (ii) by
the horizon, a long-lived oscillation persists in the region
near the horizon (iii): here, the acoustic field undergoes
ringdown oscillations at the frequency ωQNM, with a life-
time 1=γQNM ≈ 14 ps about the same as the bare polariton
lifetime 1=γ. The coupling of the localized mode with the
propagating (iv) uout and (v) d1out modes in the up- and
downstream region, respectively, is also visible in Fig. 3.
This kind of ringdown is typical of the oscillation of

QNMs of fields on curved spacetimes upon short perturba-
tions [28]. This oscillation occurs at the natural frequency of
the underlying spacetime, independently of the details of
the perturbation (as in BH merging for example [41]). This
is also the case here as the signatures of the ringdown are
robust against variations in the properties of the impinging
wave packet, e.g., its frequency ωWP (there is a resonance
when ωWP ¼ ωQNM). The real part of the frequency ωQNM

as well as the wave numbers ku;d obtained here are the same
as those extracted from features (iii) and (iv) in the
correlation diagram of Fig. 2(d), confirming that the

FIG. 3. Temporal evolution of the fluid density in response to
an incident wave packet. xH ¼ −3 μm. Fluid density variation
after excitation by a wave packet (ΔkWP ¼ 0.1 μm−1, carrier
frequency ωWP ¼ ωQNM) hitting the horizon at t ¼ 0. Traces:
(i) reflected wave, (ii) transmitted wave, (iii) state bound to the
horizon, (iv) mode propagating upstream, (v) mode propagating
downstream.
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same QNM is responsible for both the ringdown and
these features.
Physical origin of the QNM.—As can be seen in Fig. 1(c),

the fluid density displays a marked dip. This dip is located in
the inner region immediately after the horizon and is
surrounded by two regions of different fluid density, forming
an effective resonator for the Bogoliubov modes. Because of
approximate conservation of the current, the density dip is
accompanied by a narrow spike in the flow velocity v
leading to a narrow region of highly supersonic flow. This is
responsible for a large Doppler shift of the Bogoliubov
modes, which, in particular, pulls the negative-norm branch
to highly positive frequencies above ωmax [red-dotted
curve in Fig. 2(b)]. Inside the resonator, negative-norm
modes experience an effectively attractive potential [42]
that pins their wave number [green crosses in Fig. 2(b)],
creating a standing-wave-shaped localized mode of fre-
quency ωQNM. This localized negative-norm mode tunnel
couples out into the propagating positive-norm modes uout
and d1out in the asymptotic up- and downstream region,
respectively [red circle and dot in Fig. 2(b)]. This is
confirmed by a direct diagonalization of the inhomogeneous
Bogoliubov problem, as discussed in the SM.
Quantum excitation of the QNM.—This tunnel coupling

between modes of opposite norm sign leads to the para-
metric amplification of vacuum fluctuations. In our con-
figuration, the interfaces of the narrow resonator inside the
horizon have a reflection coefficient effectively larger
than unity for negative-norm waves: while this suggests
that the field amplitude inside the resonator should grow
exponentially, in our driven-dissipative fluid the instability
is suppressed by the overall decay of the Bogoliubov modes
due to the finite polariton lifetime [33], making the system
dynamically stable. Similarly to parametric amplifiers
driven below the instability threshold [43], the parametric
process is responsible for a sizable steady-state excitation
of the QNM via the spontaneous parametric emission
of paired excitations in the localized mode and in the
propagating uout and d1out modes.
While the dynamical stability of the polariton fluid

strongly depend on particle losses, the vacuum excitation
of QNMs does not. In fact, the same phenomenon can also
be observed with a conservative fluid. For example, in the
SM we propose a toy-model configuration displaying an
effective resonator near the horizon of a transsonic atomic
BEC and show that such a system can be dynamically
stable and display a QNM at ωQNM < ωmax that acquires a
steady-state population with a clear signature in the
correlation diagram of density fluctuations as well.
These results confirm that our predicted effect is generic
to fluid-based analog models. While damping is the crucial
ingredient for a steady-state quantum vacuum excitation, it
may have different origins depending on the driven-
dissipative (particle losses) or conservative nature of the
fluid (radiative decay into propagative waves on either side
of the horizon).

Spectral modulation of correlated emission.—We obtain
the spectrum of correlated emission via a two-dimensional
Fourier transform (FT) of the spatial correlations gð2Þðx; x0Þ
[44–47]. The contribution of the horizon region is sup-
pressed by restricting the FT to the subspace delineated by
the black dashed rectangle in the south-east quadrant in
Fig. 2(d), where correlations between propagating modes in
the up- and downstream regions (including the Hawking
mustache) lay. As shown in Fig. 4, the FTof real data yields
a pair of symmetric spectral lines centered in ku;d ¼ 0.
These lines follow the locus of ku;d spanned by the
dispersion of modes uout − d2out (orange line) and uout −
d1out (blue line) as a function of ω. As anticipated in
[48,49], this is the characteristic signature of the HE in k
space. While they are well separated at large ku;d, the
tongues merge at low ku;d because of the limited size of the
sampling box and the further spectral broadening due to
the finite life-time of Bogoliubov excitations. The spectral
lines are cut off at small ku;d corresponding to the ωmin gap
in the dispersion in the upstream region, and extend to large
ku;d corresponding to ωmax in the downstream region.
Most importantly, beyond ωmax, the emission spectrum

shows an additional peak at 0.78ð3Þ μm−1, 0.25ð3Þ μm−1

in the ku;d plane. Within the uncertainty due to the
numerical grid size in Fig. 4, these coordinates correspond
to the wave numbers extracted previously for the ringdown
at frequency ωQNM. This nontrivial structure of the spec-
trum is at the origin of the additional fringes next to the
Hawking mustache indicated as feature (v) in Fig. 2(d).
So this peak highlights a sizable additional contribution to

FIG. 4. Hawking emission spectrum. Two-dimensional FT of
gð2Þðx; x0Þ within the black rectangle in the up-downstream
region in Fig. 2(d). Orange line, analytical locus of
uout-d2out correlations; Blue line, analytical locus of uout-d1out
correlations. Green dotted line, waven umber cutoff ku¼
0.03ð3Þ μm−1 and kd ¼ 0.01ð3Þ μm−1 [due to the low-frequency
gap in upstream dispersion, cf. Fig. 2(a)]; Red dotted line, wave
numbers of the propagating component of the QNM ku ¼
0.78ð3Þ μm−1 and kd ¼ 0.25ð3Þ μm−1.
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the uout-d1out correlations that are normally quite weak and
indicates the spectral modulation of the HE by the
quantum-fluctuation-driven excitation of the QNM. A
similar peak is visible in the HE spectrum in conservative
fluids as well (see SM), although the peak there is located at
a frequency ωQNM < ωmax. This indicates that the effective
resonator acts as a frequency filter for the Hawking
spectrum, i.e., a gray-body factor.
Conclusions.—In this Letter, we have made use of an

effectively curved spacetime realized in a polariton fluid to
theoretically show that vacuum quantum fluctuations near a
sonic horizon do not only yield the correlated emission of
propagating waves by the Hawking effect but also cause a
stationary quantum excitation of a quasinormal mode of the
acoustic field. Specific features of this process are visible
both in the correlation diagram of density fluctuations and
in the spectrum of the Hawking emission. Since our
calculations are performed with experimental parameters
and give a strong signal, the effects are amenable to
experimental observation with state-of-the-art technology.
Although the microscopic origin of the decaying QNM
mode may differ in driven-dissipative and conservative
quantum fluids, similar signatures of the vacuum excitation
of the QNM are visible in both cases. This suggests that our
conclusions are valid for generic quantum fluids.
But the generality of the vacuum excitation of QNMs

goes even beyond analog models. Indeed, it originates in
basic processes of quantum field theory in effectively
curved spacetimes whose equivalence with Klein-Gordon
fields on black-hole spacetimes is well established [4,5].
For example, resonance peaks in the Hawking spectrum of
astrophysical black holes appear via gray-body factors [50]
and are associated with unstable orbits [51]. In the quantum
fluid configuration studied here, the resonator is located
inside the horizon. This is possible because of the specific
superluminal dispersion of the fluid. However, this needs
not be the case in general—similar physics can be observed
with resonators outside the horizon. In astrophysical black
holes, the localized component of the QNM is supported in
the region between the light ring and the horizon and its
amplitude naturally damps via radiative decay into propa-
gating waves. This suggests that our conclusions directly
extend to the gravitational context, so that all quantum
fields in curved spacetimes would exhibit the effects
predicted in this work. As such, the enhanced quantum
fluctuations of the field in the localized component of
QNMs raise questions on the role of their associated
entropy [52–54] and on the intrinsic fluctuations of
black-hole spacetimes.
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