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Gravitational atoms produced from the superradiant extraction of rotational energy of spinning black
holes can reach energy densities significantly higher than that of dark matter, turning black holes into
powerful potential detectors for ultralight bosons. These structures are formed by coherently oscillating
bosons, which induce oscillating metric perturbations deflecting photon geodesics passing through their
interior. The deviation of nearby geodesics can be further amplified near critical bound photon orbits. We
discuss the prospect of detecting this deflection using photon ring autocorrelations with the Event Horizon
Telescope and its next-generation upgrade, which can probe a large unexplored region of the cloud mass
parameter space when compared with previous constraints.
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Introduction.—Ultralight bosons, such as axions, dark
photons, or massive tensors, are well-motivated particles
beyond the standard model. They are predictions of
fundamental theories with extra dimensions [1–4], and
are excellent dark matter candidates [5–9] with masses
above ∼10−22 eV. The lightness of such fields enhances
wavelike properties on astrophysical scales making their
phenomenology extremely rich [10].
An important example of this rich phenomenology

occurs when the boson Compton wavelength is comparable
to the gravitational radius of a rotating black hole (BH).
Then, a dense bound state can be formed via superradiant
extraction of the BH rotational energy [11–13]. Through
this process, a “boson cloud” can form outside the horizon,
giving rise to a system also known as a gravitational atom
[3,14–16]. Assuming that the BH has no external supple-
ment of angular momentum, and considering a single
unstable bound state, up to ∼Oð10Þ% of the BH mass
can be transferred to the cloud [17–19]. The local energy
density of this cloud can be orders of magnitude higher than
the one of virialized dark matter. Thus, the environment
outside rotating BHs can be used as a powerful detector for
ultralight bosons [13]; this can be achieved via BH mass
and spin measurements [17,20–29], gravitational-wave
emission [20–23,26,30–42], detection of binary BH
systems [43–49], axion-induced birefringence [50–53],
shadow evolution [54–57], and lensing due to the extended
energy distribution [58–61]. Some of these signatures
benefit from the unprecedented spatial resolution achieved
by the Event Horizon Telescope (EHT) [62–70] and are
expected to improve substantially with its next generation
upgrade (ngEHT) [71–74].

In this Letter, we introduce a new method to search for
boson clouds. We propose to use the trapping properties of
BHs, which are tightly connected with the existence of
unstable, bound null geodesics. The existence of such
geodesics is of central importance for the interpretation of
BH images [73,75–88]. For near-critical orbits, i.e., null
geodesics arbitrarily close to the bound photon orbits, the
motion is unbound, and photons can propagate to asymp-
totic observers while probing the near-horizon region.
Photons from the near-critical motion circle the BH a
number of times and can be used as an astrometry tool to
detect oscillating lensing effects induced by real ultralight
bosons.
We work in units where ℏ ¼ c ¼ 1 and adopt the metric

convention ð−;þ;þ;þÞ. Greek indices take values (0, 1, 2,
3), while spatial indices are denoted by latin letters, i.e.,
xμ ¼ ðx0; xiÞ. For clarity, we use subscripts or superscripts
V, T when referring to quantities related to a massive vector
or tensor field, respectively.
Oscillatory deflections from boson clouds.—Consider a

boson field of mass μ, a BH of mass MBH, and a
dimensionless angular momentum aJ pointing along the
z axis. When characterizing the BH-boson state, it is useful
to employ a Boyer-Lindquist coordinate system. Ultralight
bosons can bind with the BH to form a hydrogenlike
gravitational atom with discrete quantum numbers
[13,14,89] and a gravitational fine-structure constant
α≡GNMBHμ, where GN is Newton’s gravitational con-
stant. The eigenstates of the boson are characterized by an
energy ω ∼ μ [13,14]. When the angular velocity Ω of the
BH is larger than the angular phase velocity of the bosons,
i.e., ω=m < Ω, where m is the azimuthal number of the
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boson, then a bound superradiant state is possible, which
grows via extraction of rotational energy from the
BH [12,13].
Their energy-momentum tensor Tμν induces both static

and oscillating metric perturbations in the metric. For
vector fields, only the traceless part of TV

ij oscillates.
Therefore, neglecting subdominant spatial derivatives,
one finds that the oscillating part of the metric perturbation
is given by HV

ij ≈ −Tosc
ij =ð2μ2m2

plÞ, where mpl ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi

8πGN
p

is the reduced Planck mass. On the other hand, massive
tensors behave as a localized effective strain HT

μν propor-
tional to its field value and a dimensionless coupling
constant αh characterizing the strength of the interaction
between the massive tensor and photons [90,91]. We
introduce dimensionless parameters ϵV ≡ ðΨV

0 =mplÞ2=2
and ϵT ≡ αhΨT

0=mpl to characterize the perturbative strain
amplitude generated from a vector and a tensor cloud,
respectively, where ΨV

0 and ΨT
0 are their corresponding

maximal field value. See the Supplemental Material [98]
for details.
Considering metric perturbations Hμν ≡ ϵhμν expanded

around a Kerr background gKμν, we have gμν ≃ gKμν þ ϵhμν,
where ϵ ≪ 1 controls the amplitude of the perturbations.
The photon geodesics in this perturbed metric can be
similarly expanded, xμ ≃ xμð0Þ þ ϵxμð1Þ, where xμð1Þ satisfies

d2xμð1Þ
dλ2

¼ −2ΓKμ
αβ

dxαð0Þ
dλ

dxβð1Þ
dλ

− Γð1Þμ
αβ

dxαð0Þ
dλ

dxβð0Þ
dλ

: ð1Þ

Here, xμð0Þ and ΓKμ
αβ are the unperturbed null geodesics and

the connection of the Kerr background, respectively, and λ

is an affine parameter. Γð1Þμ
αβ is the perturbed connection

generated from bosonic clouds.
We use a backward ray tracing code on a Kerr back-

ground, KGEO [108], to compute xμð0Þ from a faraway
camera toward the BH employing the integral method
[109–112]. We consider an faraway observer at an incli-
nation angle θo ¼ 17° from the black hole with dimension-
less spin aJ ¼ 0.94, consistent with the EHT observations
of M87⋆ [62]. We calculate the geodesics starting at
different pixels on the observer plane and keep only those
that hit the BH equatorial plane at least two times. The
initial (λ ¼ 0) components of photon geodesics are fixed to
be rðλ ¼ 0Þ ¼ 103rg; tðλ ¼ 0Þ ¼ 0, without loss of gener-
ality, where rg ≡GNMBH is the gravitational radius. The
plasma medium effects, such as absorption and scattering
effects, are neglected since the accretion flow is considered
to be optically thin.
An example of a near-critical unperturbed geodesic xið0Þ

is shown in the top panel of Fig. 1 using a white line that,
due to strong lensing effects, crosses the gray equatorial
plane of the Kerr BH several times. We also show samples
of the perturbed spatial photon geodesics xið0Þ þ ϵTxið1Þ for

eight evenly spaced initial phases to account for the full
oscillation behavior of the cloud. As expected, deviations
start to be apparent after entering the photon ring orbit.
The deviation xμð1Þ is shown in the bottom panel of Fig. 1

for a massive tensor and vector cloud in the ground state
with α ¼ 0.2. To avoid (unphysical) singularities at the
poles, we show xμð1Þ using Cartesian Kerr-Schild coordi-

nates ðt; x; y; zÞ, in units of the gravitational radius rg. The
evolution of xμð1Þ as a function of the affine parameter can be
divided in two stages. The first stage (bottom-left panel) is
dominated by perturbative deviations from cloud-induced
metric fluctuations far away from the BH. In the second
stage, when the orbit is close to the photon ring, deviations
are exponentially amplified, as seen on the bottom right
panel of Fig. 1.
The second term on the right-hand side of Eq. (1)

dominates during the first stage, which is especially
important for photons propagating at the typical radial
scale of the cloud, i.e., rg=α2, where our Newtonian
approximation for the cloud profile, as discussed in the
Supplemental Material [98], is reasonable. The oscillation
of the boson fields leave imprints on xμð1Þ, with the

FIG. 1. Examples of photon geodesics connecting a faraway
observer from a Kerr BH surrounded by a bosonic cloud, that
execute multiple orbits intersecting the equatorial plane (gray
plane in top panel). Top panel: white line shows the unperturbed
geodesic, while different colors show perturbed geodesics xið0Þ þ
ϵTxið1Þ at different oscillation phases of bosons. Bottom panel:

deviation of the geodesics in Kerr-Schild coordinates in terms of
the affine parameter λ. The dashed vertical line corresponds to
the point where the unperturbed orbit xμð0Þ first crosses the

equatorial plane.

PHYSICAL REVIEW LETTERS 130, 111401 (2023)

111401-2



frequency of the oscillations for vector clouds being twice
the one of the tensor cloud case. The exponential growth of
xμð1Þ starts when xμð0Þ enters a nearly bound orbit where the

first term in Eq. (1) becomes important. This growth is
caused by the instability of the photon ring orbit [75–
82,87,111]. More precisely, a face-on observer would see a
deviation increase by a factor of ∼20 between two
sequential crossings of the BH equatorial plane.
Astrometry with photon ring autocorrelations.—The

next question concerns the observability of such an effect.
One sensitive and realistic probe is to use photon ring
autocorrelations as proposed in Ref. [88], which is an
especially useful observable for BHs observed nearly face
on, such as M87⋆ and SgrA⋆.
The strong gravity region outside Kerr BHs is responsible

for the existence of bound null geodesics and for near-
critical trajectories where photons propagate around the BH
multiple times before reaching a narrow ring region on the
observer plane. These strongly lensed photons form the
photon ring with a locally enhanced intensity [85–87]. One
way to observe the strongly lensed photons,without the need
of significant improvements of the current spatial resolution,
is to exploit the time variability of the emission from the
accretion flow, for example. Indeed, intensity fluctuations
due to the flow’s turbulent naturewere observed by the EHT
[70,113]. For each emission point, there are multiple geo-
desics connecting it to the observer’s image plane that differ
by the number k of half orbits around the BH. In the image
plane, we can use polar coordinates ðρ;φÞ, where ρ is the
radial distance from the BH andφ is the polar angle. Photons
with common origin but different k reach the photon ring
separated in time t and angle φ, rendering the two-point
intensity fluctuation correlation [88]

CðT;ΦÞ≡ hΔIðt;φÞΔIðtþ T;φþΦÞi ð2Þ
to have peaks at T ≈ Nτ0;Φ ≈ Nδ0 for a background Kerr
BH, whereΔI is the intensity fluctuation after an integration
in the radial direction on the photon ring, N ≡ k − k0 is the
difference between a photon pair executing k and k0 half
orbits, and fτ0; δ0g are the critical parameters characterizing
the time delay and azimuthal lapse of the bound photon
orbits, respectively [111]. This is a universal prediction
dependent only on the space-time near the photon shell,
especially for optically and geometrically thin emission
flows [114].
In the presence of boson clouds, small oscillations

around the unperturbed geodesics grow exponentially close
to the photon ring orbit, leading to a periodic shift in the
peak positions, T ≈ Nτ0 þ ΔTN and Φ ≈ Nδ0 þ ΔΦN . For
photons emitted from a geometrically thin disk at the
equatorial plane, the deviations can be calculated using

ΔTN=ϵ ¼ xtð1ÞðλNÞ − xtð1Þðλ0Þ;
ΔΦN=ϵ ¼ xϕð1ÞðλNÞ − xϕð1Þðλ0Þ; ð3Þ

where λN represents the affine parameter at which the
perturbed geodesics crosses the equatorial plane, i.e.,
zð0Þ þ ϵzð1Þ ¼ 0, for the N þ 1 times. Since xμ1 grows
exponentially after λ0, one can safely neglect xμð1Þðλ0Þ in

Eq. (3). Notice that one can get an equivalent gauge-
invariant description of the geodesics deflection and shifts
on the image plane using the deviation of the conserved
quantities in the Kerr space-time instead.
The fundamental resolution of the autocorrelation is

limited by the intrinsic correlation length of the source,
which can be inferred from general relativistic magneto-
hydrodynamic simulations [88]. Taking lϕ ≈ 4.3° and lt ≈
3rg as correlation lengths for ϕ and t, respectively [88],
ΔTN=lt is typically smaller than ΔΦN=lϕ. We thus focus
on ΔΦN , fitting it to be ΔΦN ¼ ΦN

0 cos ðωtþ δÞ for N ¼ 1

and 2, where ΦN
0 is the amplitude and δ is the relative

oscillation phase. The phase δ is always well fit by the sum
of 2φ and a small deviation, representing anm ¼ 2mode of
metric perturbation and a small inclination angle.
The spatially varying ΦN

0 , as shown in the Supplemental
Material [98], would require weighting the intensity fluc-
tuation spectrum as a function of the photon ring region,
which is beyond the scope of this study. We will instead
estimate the detectability of the signal using a specific point
on the critical curve with the largest amplitude φ ≈ 0.7π,
which is also the point with the most significant intensity
contributed by the lensed photon [57]. We show ΦN

0 at this
point as a function of α for the ground-state tensor and
vector cloud in Fig. 2. As expected, ΦN2

0 is typically larger
due to the exponential sequential growth. For complete-
ness, we also consider the higher vector field mode (2122)
(this notation is explained in the Supplemental Material
[98]), which has a smaller maximum value for ΦN

0 when
compared to the ground-state mode due to the sin2 θ
suppression for geodesics reaching a nearly face-on
observer.

10×Φ0
N1 [°]

Φ0
N2 [°]

Tensor (1022)

Vector (1011)

Vector (2122)

0.1 0.5 1

20

40

FIG. 2. Oscillation amplitude Φ0 of the azimuthal lapse at φ ≈
0.7π on the critical curve at different values of α with aJ ¼ 0.94,
θo ¼ 17°, and ϵ ¼ 10−3.
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Prospective constraints.—In a realistic setup, the finite
spatial resolution of EHT or ngEHT leads to a Gaussian
smearing of the correlation peak in the ðT;ΦÞ plane. For
ngEHT, assuming an ∼10μ as spatial resolution [120,121],
the 1σ width of the Gaussian packet in the Φ direction is
around 10° for both M87⋆ and SgrA⋆. On the other hand, in
the presence of a boson cloud, there will be periodic
oscillations of the central position of the Gaussian packet,
causing a broadening of its width that becomes especially
evident when the oscillation amplitudeΦN

0 is comparable or
larger than the “original” width without oscillations. Thus,
if a correlation peak predicted assuming a vacuum Kerr BH
is observed, one can impose the conservative limit that
2ΦN

0 < 10°. Notice that such a conservative estimate does
not exploit the full oscillatory features. Once a detection of
a correlation peak has been made, one can also check
whether an oscillation in the center of the Gaussian packet
provides a better description than a stationary peak, which
can potentially give a sensitivity beyond the one limited
by the Gaussian smearing. With less than 1 order-of-
magnitude-longer observation times or a slightly improved
spatial resolution, one could, in principle, resolve the
intrinsic correlation of the plasma with lϕ ≈ 4.3°. We thus
use this limit as an optimistic criterion for our prospective
constraints.
The oscillation amplitude ΦN

0 shown in Fig. 2 is propor-
tional to ϵT or ϵV, which in turn is related to the total mass in
the cloud as discussed in the Supplemental Material [98].
The results are summarized in Fig. 3, where the dashed
lines show the optimistic limit based on the intrinsic
correlation length, while the bands show conservative
constraints that could be obtained immediately after a
detection of the corresponding autocorrelation peak.
Here we take αh ¼ 1 for massive tensors and limit the α
range for the vector mode (1011) to be below 0.5, which is
the limit imposed by assuming that the ground-state cloud
formed due to superradiance.
For comparison, we also show constraints taken from

Ref. [61] based on joining EHT observations of M87�’s
photon ring size with measurements of the BH mass-to-
distance ratio obtained from stellar (or gas) dynamics.
Those constraints correspond to the red region labeled “star
motionþ ring size.” Furthermore, there is a theoretical
bound on the maximum mass a cloud can reach from
extracting BH rotation energy through superradiance [19],
assuming that there is no angular momentum supplement to
the BH, which could be breached due to a potential
accretion process [17,122].
The photon ring autocorrelations with the N ¼ 1 subring

could already go far beyond previous limits for a tensor
cloud, while a detection of the N ¼ 2 subring can probe
both vector and tensor clouds sensitively. In the
Supplemental Material, we show similar results for differ-
ent BH spins [98]. In general, we find qualitatively similar
results for smaller spins, but with smaller oscillations due to

the fact that the photon ring radius gets larger for
smaller spins. However, even for aJ ¼ 0.5, the N ¼ 2
subring can always constrain interesting regions of the
parameter space.
Discussion.—Metric perturbations induced by superra-

diant clouds lead to oscillatory deflections of photon
geodesics. Because of strong gravitational effects, search-
ing for this effect benefits from two aspects compared to
previous astrometry searches for ultralight bosonic dark
matter [90,95,96,123–129]: (i) Superradiant clouds can
reach large field values outside a BH, and (ii) any deviation
of the vacuum geodesics grows exponentially close to the
photon ring orbit. Importantly, this method relies solely on
observations of the photon ring. With longer integration
times, the EHT could already detect the N ¼ 1 subring
[88], while the expected improvements in baseline cover-
age, spatial resolution, dynamic ranges, and multifrequency
observations of the ngEHT could help shorten the integra-
tion time.

FIG. 3. Prospects for constraints on the mass of a vector cloud
or a tensor cloud with αh ¼ 1 and a BH dimensionless spin
aJ ¼ 0.94. The red region comes from constraints from stellar
motion jointly with ring size measurements using the current
EHT with 10% error bars [61], and the green region is the
theoretical bound on the maximum superradiant extraction for the
considered modes [19]. The constraint bands show limits ranging
from a conservative criterium based on ngEHT’s spatial reso-
lution to an optimistic criterion based on the intrinsic azimuthal
correlation length of the accretion flow.
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Another observable that we did not consider is the time
delay that can be seen in Fig. 1, which is also the dominant
observation channel for a scalar cloud. The prospects to
detect such a time delay are less interesting due to the
limited time resolution of the photon ring autocorrelation.
However, in the presence of an emission source with
shorter time correlation lengths, such as a hot spot [130–
135] or a nearby pulsar [136–140], echoes from those
sources could be used as astrometry with a dramatically
enhanced time resolution similar to pulsar timing array
searches.
Our discussion can also be applied to other profiles of

ultralight bosons, such as a soliton core dark matter, whose
typical field value is ΨDM ≈ 1.4 × 1011 GeV (ϵV ∼ 10−15

and ϵT ∼ 10−7αh) and radius rc ≃ 40 pc for μ ¼ 10−21 eV
[141]. Using a flat background approximation, the propa-
gation of light in the soliton core leads to a spatial deviation
∼ϵrc ≃ 10αhrg before entering the photon ring orbit of
SgrA⋆. Considering the amplification process in the photon
ring, we estimate to be able to constrain αh to be less than
10−4 using the N ¼ 1 subring and an order-of-magnitude
better for N ¼ 2. These bounds are comparable with
those obtained with pulsar timing arrays or planetary
motion [90].
Finally, we should note that the oscillating cloud will

also cause emission of gravitational waves (GWs).
Assuming M87⋆ and α that maximizes the constraints in
Fig. 3, the half-life [142] of the cloud due to GW emission
will typically be of order ∼104 years [22,26], which could
potentially be significantly longer if the fields self-interact
[30,143–146]. This also opens the potential to joint
detections with LISA, which could detect GWs emitted
by boson clouds for μ≳ 10−19 eV [13].
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