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We introduce a new model consisting of globally coupled high-dimensional generalized limit-cycle
oscillators, which explicitly incorporates the role of amplitude dynamics of individual units in the collective
dynamics. In the limit ofweak coupling, ourmodel reduces to theD-dimensionalKuramoto phasemodel, akin
to a similar classic construction of the well-known Kuramoto phase model from weakly coupled two-
dimensional limit-cycle oscillators. For the practically important case ofD ¼ 3, the incoherence of themodel
is rigorously proved to be stable for negative coupling (K < 0) but unstable for positive coupling (K > 0); the
locked states are shown to exist ifK > 0; in particular, the onset of amplitude death is theoretically predicted.
ForD ≥ 2, the discrete and continuous spectra for both locked states and amplitude death are governed by two
general formulas. Our proposedD-dimensional model is physically more reasonable, because it is no longer
constrainedby fixed amplitude dynamics,whichputs the recent studies of theD-dimensionalKuramoto phase
model on a stronger footing by providing amore general framework forD-dimensional limit-cycle oscillators.
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Self-organization of collective behavior from interacting
units is ubiquitous in nature [1–4], which can be qualitatively
and quantitatively explored by employingmodels of coupled
nonlinear oscillators [5–7]. Among them, the celebrated
Kuramotomodel [8] has served as a paradigm for the study of
synchronization in wide disciplines ranging from physics to
biology to engineering [9–11]. For a better understanding of
the mechanisms of synchronization, Ritort [12] introduced a
solvable model of interacting random tops incorporating the
orientational degree of freedom, which in fact extends the
Kuramoto model with noise to three dimensions [13]. Later
on, the D-dimensional Kuramoto model has been further
proposed [14–16], where all the individual oscillators
(agents) are interpreted as D-dimensional unit vectors,
rotating on the surface of the D-dimensional sphere. Quite
recently, Chandra, Girvan, and Ott [17] systematically
examined the dynamics of the D-dimensional generalized
Kuramoto model with heterogeneous natural rotations; in
particular, they unveiled that the nature of phase transition for
the generalized Kuramoto model with an odd number of
dimensions is remarkably different from that in even dimen-
sions. Since then, there has been a burst of appealing works
devoted to the study of the D-dimensional generalized
Kuramoto model and its variants [18–25].
However, the amplitude dynamics of individual units has

not been taken into account in the above studies. This strongly
limits the applicability of the model, as the amplitude degree
of freedom generally plays a key role in determining
the collective dynamics of strongly coupled systems, with

examples including a flock of birds, a school of fish, a swarm
of flying drones or insects [26–29], etc. Phase-amplitude
models are deemed to capture commonneuroimagingmetrics
more accurately and are important to quantify anesthetized
brain states [30]. A full representation of the phase and
amplitude coordinates is of particular relevance for under-
standing the bifurcations of high-dimensional nonlinear
systems beyond the weak coupling limit [31].
To resolve this limitation, in this Letter, we propose a new

model of globally coupledD-dimensional generalized limit-
cycle oscillators, which explicitly incorporates both the
phase and amplitude dynamics of individual units. Our
model includes the D-dimensional Kuramoto phase model
as a special case in the weak coupling limit. Of particular
interest, we show that our model for the practically important
case ofD ¼ 3 is solvable in the thermodynamic limit, which
provides a new paradigmatic example of analytically trac-
table models. The high-dimensional model proposed in this
Letter is expected to better capture emergent dynamics in
diverse physical and biological systems comprised of inter-
acting units with natural magnetic moments [32–34], such as
strongly coupled magnetic particles [35–37] and micro-
fluidic mixtures of active spinners [38,39].
The model consists of a system of N globally coupled

D-dimensional vectors r⃗i ∈ RD described by

dr⃗i
dt

¼ ð1 − jr⃗ij2Þr⃗i þWir⃗i þ
K
N

XN
j¼1

ðr⃗j − r⃗iÞ; ð1Þ
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with i ¼ 1; 2;…; N, where K is the coupling strength,
and Wi is a real D ×D antisymmetric (skew-symmetric)
matrix with DðD − 1Þ=2 independent components, which
can be physically interpreted as the natural rotation of the
ith agent [40]. Each Wi is coded by the vector ω⃗i ¼
ðω1i;ω2i;…;ω½DðD−1Þ=2�iÞT drawn from a normalized dis-
tributionGðω⃗Þ. In the limit ofK → 0, Eq. (1) degenerates to
theD-dimensional Kuramotomodel [41]. ForD ¼ 2, Eq. (1)
reduces to the model addressed in Refs. [42–46], where the
single uncoupled unit (coined as the Stuart-Landau oscil-
lator) represents a canonical form near a supercritical Hopf
bifurcation [1]. ForK → 0, the first-order phase reduction to
Eq. (1) withD ¼ 2 results in the classicKuramotomodel [8];
the second-order phase-reduction approach leads to the
enlarged Kuramoto model [47,48].
Collective behavior in the model of Eq. (1) can

be conveniently described by an order parameter p⃗¼
ð1=NÞPN

i¼1 r⃗i, where p ¼ jp⃗j measures the degree of
collective synchronization. Depending on K and the spread
of ω⃗i, the model exhibits three types of steady behaviors:
incoherence, amplitude death, and locking, in which the
system evolves to statistical steady states, characterized by
a stationary distribution of oscillators in the phase space
and a constant p⃗.
Figure 1 shows numerical observations of p vs K for

the system in Eq. (1) with D ¼ 2–7 and N ¼ 5000.
The DðD − 1Þ=2 upper-triangular elements of Wi are
chosen randomly according to a normal distribution
with zero mean and the standard deviation Δ—i.e., ωji ∼
Normð0;Δ2Þ for j ¼ 1; 2;…; DðD − 1Þ=2—while the cor-
responding lower-triangular elements are set to causeWi to
be an antisymmetric matrix. With the above choices of
Wi’s, p⃗ always asymptotically reaches an equilibrium.

We find that for all oddD, the transition from incoherence to
coherence occurs discontinuously as K increases through
zero (i.e.,Kc ¼ 0). In contrast, in the even-D case, the phase
transition takes place continuously at Kc > 0. A similar
difference in the nature of the phase transition between odd
and even dimensions has been previously established in the
D-dimensional Kuramoto model by Chandra et al. [17].
However, our high-dimensional model in Eq. (1) is no
longer constrained by fixed amplitude dynamics, which
may render the emergence of richer dynamics, such as
amplitude death, as shown in the right column of Fig. 1 for
large values ofΔ. To predict the onset of emergent dynamics
observed in Figs. 1(a)–1(d), we now conduct a theoretical
analysis of the model [Eq. (1)] for D ≥ 3.
i) Stability of incoherence. For D ¼ 3, the incoherent

state refers to the fact that each oscillator rotates rigidly
around the vector ω̂i at its natural rotation rate ωi on the
sphere with a radius of

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − K

p
(K < 1), and meanwhile

p⃗ ¼ 0⃗ (i.e., p ¼ 0) holds at all times. Strictly speaking, the
incoherent solution exists only when N → ∞, for which p⃗
becomes

p⃗ ¼
Z
R3

Z
R3

r⃗Fðr⃗; ω⃗; tÞGðω⃗Þdω⃗dr⃗; ð2Þ

where Fðr⃗; ω⃗; tÞ represents a time-dependent joint density
of r⃗ and ω⃗, satisfying the continuity equation

∂F
∂t

þ ∂ðF_rÞ
∂r

þ 1

sin θ
∂ðF sin θ _θÞ

∂θ
þ ∂ðF _ϕÞ

∂ϕ
¼ 0; ð3Þ

where _r, _θ, and _ϕ can be calculated directly from Eq. (1)
via introducing the spherical coordinates r⃗ ¼ rr̂, with
r̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞT . For the incoherence,
the oscillators are uniformly distributed on the sphere with
the radius

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − K

p
for each ω⃗, and then the corresponding

density is F0 ¼ ½δðr − aÞ=4π� with a2 ¼ 1 − K.
To analyze the linear stability of incoherence, we

introduce a small perturbation to the incoherent solution
as F ¼ F0 þ εestξðr; θ;ϕ; ω⃗Þ (0 < ε ≪ 1) [49]. Then the
perturbed order parameter is

p⃗ ¼ εest
Z
R3

Z
R3

r⃗ξGðω⃗Þdω⃗dr⃗ ≜ εesthξ⃗i: ð4Þ

Inserting the perturbed density into Eq. (3), we derive that

sξþ ∂½ð1 − K − r2Þrξ�
∂r

þ ωϕ
∂ξ

∂θ
−

ωθ

sin θ
∂ξ

∂ϕ

¼ Kδðr − aÞ
2πa

hξ⃗i · r̂ − Kδ0ðr − aÞ
4π

hξ⃗i · r̂; ð5Þ

where ωθ ¼ ω⃗ · θ̂, with θ̂¼ðcosθcosϕ;cosθsinϕ;−sinθÞT ,
and ωϕ ¼ ω⃗ · ϕ̂, with ϕ̂ ¼ ð− sinϕ; cosϕ; 0ÞT , and

FIG. 1. The magnitude p of p⃗ vs K for the system in
Eq. (1) with N ¼ 5000 for D ¼ 2–7. Each element of ω⃗i ¼
ðω1i;ω2i;…;ω½DðD−1Þ=2�iÞT is sampled randomly according to
Normð0;Δ2Þ. A small value of Δ ¼ 0.5 is used in the left
column, while comparatively large values of Δ are employed in
the right column.
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δ0ðr − aÞ ¼ dδðr − aÞ=dr. The solution of ξ for Eq. (5) has
the following form:

ξ ¼ Kδðr − aÞ
2πa

A⃗ · r̂ −
Kδ0ðr − aÞ

4π
B⃗ · r̂; ð6Þ

with A⃗ ¼ ðsI −WÞ−1hξ⃗i and B⃗ ¼ ½ðsþ 2a2ÞI −W�−1hξ⃗i.
Substituting ξ from Eq. (6) into Eq. (4), the dispersion
relation for s is obtained as [41]

det

�
I −

2K
3

JðsÞ − K
3
Jðsþ 2a2Þ

�
¼ 0; ð7Þ

where JðsÞ ¼ RR3ðsI −WÞ−1Gðω⃗Þdω⃗. If Eq. (7) has one
root with a positive real part, the incoherent state is unstable.
Assuming that the rotation directions of individual

oscillators are isotropically distributed on the unit sphere,
and independent of the distribution of the rotation magni-
tudes gðωÞ, one can write Gðω⃗Þ ¼ gðωÞUðω̂Þ, where
Uðω̂Þ ¼ ð1=4πÞ. With the above form of Gðω⃗Þ, we calcu-
late that [41]

JðsÞ ¼
�
1

3s
þ 2s

3

Z þ∞

0

gðωÞ
s2 þ ω2

dω

�
I ≜ hðsÞI: ð8Þ

The dispersion relation in Eq. (7) finally reduces to

1 −
2K
3

hðsÞ − K
3
hðsþ 2a2Þ ¼ 0: ð9Þ

For K → 0, s → 0, the behavior of s in Eq. (9) forK around
zero is represented by s ¼ 2

9
K [41]. Thus, we can ascertain

that the incoherent state will be stable for K < 0 and
unstable forK > 0, which is valid independent of gðωÞ. For
D ¼ 3, we have proved that the incoherence loses its
stability at Kc ¼ 0, which is exactly the same as that of
the 3D Kuramoto model [17], in turn confirming that our
model [Eq. (1)] reduces to the D-dimensional Kuramoto
model in the limit K → 0.
ii) Stability of locking and amplitude death. Locked

states correspond to fixed points of Eq. (1), for which p⃗ is a
constant vector with p > 0. In contrast, amplitude death
refers to the coupling-induced stabilization of r⃗i ¼ 0⃗, for
which p ¼ 0. Theoretically, the stability of locked states
and amplitude death can be analyzed at the same time.
For N → ∞, in the locked state, the position r⃗i of the ith
oscillator is determined by its natural rotation Wi.
Therefore, r⃗ is regarded as a function of W instead of
the subscript i, which obeys

dr⃗F
dt

¼ ð1 − K − jr⃗Fj2Þr⃗F þWr⃗F þ Kp⃗F ¼ 0; ð10Þ

with the subscript F indicating that the oscillator is
at a fixed point. The order parameter is then written

by p⃗F ¼ RRDðD−1Þ=2 r⃗FGðω⃗Þdω⃗, whose magnitude pF

satisfies [41]

Kp2
F ¼

Z
RDðD−1Þ=2

ðjr⃗Fj2 − 1þ KÞjr⃗Fj2Gðω⃗Þdω⃗; ð11Þ

which holds for all D ≥ 2. For D ¼ 3,Wr⃗F ¼ ω⃗ × r⃗F, and
Eq. (10) can be solved to obtain [41]

r⃗F ¼ K
ðμ2 þ ω2Þ ðμp⃗F þ νω⃗þ ω⃗ × p⃗FÞ; ð12Þ

with μ ¼ jr⃗Fj2 − 1þ K and ν ¼ ðp⃗F · ω⃗Þ=μ, where μ
and ν obey ðμþ 1 − KÞðμ2 þ ω2Þ ¼ K2ðp2

F þ ν2Þ. From
Eq. (12), r⃗F always exists for D ¼ 3 once if K > 0, in
contrast toD ¼ 2, for which the locked state exists only for
sufficiently large K [43–45].
To determine the stability of locked states in the infinite-

N limit, one has to consider both the discrete and the
continuous spectra of the linearized system of Eq. (10)
around r⃗F. For D ≥ 2 and N → ∞, we find the continuous
and the discrete spectra given by [41]

det ðsI −MÞ ¼ 0 ð13Þ

and

det

�
I − K

Z
RDðD−1Þ=2

ðsI −MÞ−1Gðω⃗Þdω⃗
�

¼ 0; ð14Þ

where M ¼ W − 2r⃗Fr⃗TF þ ð1 − jr⃗Fj2 − KÞI. The locked
solutions are stable if both Eqs. (13) and (14) have only
roots s with ReðsÞ < 0.
By setting r⃗F ¼ 0⃗, Eqs. (14) and (13) yield the discrete

and the continuous spectra governing the stability of
amplitude death for N → ∞, which can also be obtained
by performing a stability analysis of Eq. (1) around r⃗i ¼ 0⃗
[41]. The continuous spectrum can be proved to be stable if
K > 1 for all D ≥ 2 [50], whereas its discrete spectrum
cannot be worked out explicitly for a general Gðω⃗Þ. Here,
we analytically solve the stability of amplitude death for all
D ≥ 2, in contrast to the earlier works (Refs. [45,46]) that
were confined to D ¼ 2.
For D ¼ 3, by writing Gðω⃗Þ ¼ gðωÞUðω̂Þ, the discrete

spectrum for amplitude death further reduces to [41]

hðs − 1þ KÞ ¼ 1

K
; ð15Þ

with the function h defined as in Eq. (8). Amplitude death is
stable if Eq. (15) has only roots with negative real parts
for K > 1.
For example, for D ¼ 3, if each element of ω⃗i is picked

randomly according to ωji ∼ Normð0;Δ2Þ for j ¼ 1, 2, 3,
the distribution of the natural rotations can be written as
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Gðω⃗Þ ¼ gðwÞUðω̂Þ, where the distribution of the rotation
directions is isotropic and the distribution of the magni-
tudes is described by gðωÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffið2=πÞp ðω2=Δ3Þe−ω2=ð2Δ2Þ

[51]. By setting s ¼ 0 in Eq. (15), we obtain the boundary
of the stable amplitude death region governed by [41]

1

3ðK − 1Þþ
2ðK − 1Þ

3

Z þ∞

0

gðωÞ
ðK − 1Þ2þω2

dω¼ 1

K
; ð16Þ

which is represented by the red curve in Fig. 2(a) depict-
ing the phase diagram of the system in the ðK;ΔÞ parameter
space for D ¼ 3. Note that the theoretical prediction by
Eq. (16) is rather accurate and well confirmed by the
simulation results. For comparison, Fig. 2(b) depicts the
phase diagram for D ¼ 2 with wi ∼ Normð0;Δ2Þ. For
D ≥ 4, the phase diagrams, qualitatively similar to
Figs. 2(a) and 2(b) for odd and even dimensions, have
been corroborated numerically.
For K > 0, aside from the coherent fixed-point solutions

(locked states and amplitude death)—Eq. (1) may also have
oscillatory time-dependent solutions—i.e., the system
could display rhythmic states [20], characterized by an
unsteady motion of p. For example, Figs. 3(a) and 3(b)
show two numerical observations of a time-dependent
evolution of p for Eq. (1) with D ¼ 3, where ω⃗i values
are sampled according to Gðω⃗Þ ¼ δðω − ω0ÞUðω̂Þ.
Figure 3(c) further depicts p vs K. Again, the incoherent
state is observed only for K < 0, and becomes unstable for
K > 0, which is in accordance with the theoretical pre-
diction of the incoherence. Interestingly, as K is gradually
increased from zero, rhythmic states appear and persist for
a large interval of K > 0, where the periodic dynamics of p
emerges through the similarly periodic oscillations in the
magnitudes of r⃗i ’s. After the rhythmic state turning to
unstable, the system transits to locked states and amplitude
death. For Gðω⃗Þ ¼ δðω − ω0ÞUðω̂Þ considered above [i.e.,
gðωÞ ¼ δðω − ω0Þ], the stable coupling interval for ampli-
tude death is derived as [41]

ω2
0 þ 3−ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 − 3

p
3

<K <
ω2
0 þ 3þω0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 − 3

p
3

ð17Þ

for ω0 >
ffiffiffi
3

p
. For D ¼ 3, amplitude death is fundamentally

induced by the orientational disorder for a large fixed
rotation magnitude, which is distinctly different from the
case of D ¼ 2, where amplitude death arises owing to a
sufficiently large spread of the natural frequencies [43–45].
In fact, amplitude death is impossible to be stabilized for
the case of D ¼ 3 in the absence of orientational disorder
[41]. For a global view, Fig. 3(d) portrays the phase
diagram of the system in the ðK;ω0Þ plane. Clearly, the
system in Eq. (1) can experience both steady behaviors and
rhythmic states if ω⃗i is sampled according to Gðω⃗Þ ¼
δðω − ω0ÞUðω̂Þ [52].
To conclude, we have introduced and studied a new

model of globally coupled D-dimensional generalized
limit-cycle oscillators with amplitude dynamics. Under
the weak coupling limit K → 0, our model reduces to
theD-dimensional Kuramoto phase model, which is akin to
a similar classic construction of the seminal Kuramoto
phase model from weakly coupled two-dimensional limit-
cycle oscillators [47,48]. In this sense, our work puts the
recent studies regarding the D-dimensional Kuramoto
model [17–25] on a stronger footing by providing a much
more general framework to consider the previous results,
owing to no longer being constrained by fixed amplitude
dynamics. Thus, our model may find strong potential for
actual applications in a wider range of physical, biological,
and technological systems involving quenched random
rotation axes and frequencies, such as leading to a deeper

FIG. 2. Phase diagram for the system in Eq. (1) with DðD −
1Þ=2 elements of Wi distributed according to Normð0;Δ2Þ for
(a) D ¼ 3 and (b) D ¼ 2. The black and red curves denote
the boundaries of incoherence (IC) and amplitude death deter-
mined theoretically, whereas the open circles are the simulation
results of the amplitude death boundary by integrating Eq. (1)
with N ¼ 5000. FIG. 3. Results for the system in Eq. (1) with D ¼ 3, where ω⃗i

values are now sampled according to Gðω⃗Þ ¼ δðω − ω0ÞUðω̂Þ.
(a) pðtÞ for K ¼ 1.2. (b) pðtÞ for K ¼ 1.36. (c) p vs K; ω0 ¼ 2 is
fixed. (d) Phase diagram in the parameter space of ðK;ω0Þ. The
red curve represents the theoretical prediction for the stable
coupling interval of amplitude death given by Eq. (17), which is
well confirmed by the numerical results marked by the open
circles. The blue curve denotes the unsteady-locking boundary
determined numerically.
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understanding of the collective motion in three-dimensional
swarming systems with helical trajectories [13], the spa-
tiotemporal alignment of beating cilia [53], the ferromag-
netic resonance in biomagnetism [54], etc. It should be
highlighted that the emergence of rhythmic states in the
model in Eq. (1) strongly depends on the distributionGðω⃗Þ,
whose underlying principles as well as the necessary or
sufficient conditions on the distribution Gðω⃗Þ that lead to
rhythmic states for D ≥ 3 deserve a detailed study, which
would be the scope of future work. Further, there also lies
the possibility of various extensions of our model, such as
including the role of noise, external forces, network-based
coupling, etc., which may open up a prosperously new area
of research and will have great impacts in the field of
nonlinear (collective) dynamics and complex systems.
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