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Controlling thermodynamic cycles to minimize the dissipated heat is a long-standing goal in
thermodynamics, and more recently, a central challenge in stochastic thermodynamics for nanoscale
systems. Here, we introduce a theoretical and computational framework for optimizing nonequilibrium
control protocols that can transform a system between two distributions in a minimally dissipative fashion.
These protocols optimally transport a system along paths through the space of probability distributions that
minimize the dissipative cost of a transformation. Furthermore, we show that the thermodynamic metric—
determined via a linear response approach—can be directly derived from the same objective function that is
optimized in the optimal transport problem, thus providing a unified perspective on thermodynamic
geometries. We investigate this unified geometric framework in two model systems and observe that our
procedure for optimizing control protocols is robust beyond linear response.
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Understanding how to efficiently control thermodynamic
cycles is a truly foundational problem in thermodynamics.
Our modern mathematical framework for macroscopic
thermodynamics emerged from efforts to describe the
transfer of heat into work and to quantify the wasted or
excess heat dissipated to the environment [1]. As it has
become possible to probe the thermodynamics of nanoscale
systems, both experimentally and in computer simulations,
the role of thermal fluctuations has reoriented our inter-
pretation of the fundamental constraints imposed by the
second law; at small scales, fluctuation theorems precisely
quantify the relationship between entropy production and
irreversible dynamics [2–4]. Exploiting nonequilibrium
dynamics to understand equilibrium properties like free
energy differences has been realized both experimentally
and computationally via the Jarzynski equality [5,6].
However, the statistical accuracy of such calculations
requires minimizing dissipation over the nonequilibrium
ensemble of trajectories by choosing an appropriate external
driving protocol [7,8]. What is more, fundamental questions
about the design and properties of nanoscale machines from
biology to engineering require theoretical tools to carefully
interrogate dissipation in stochastic systems.
Despite the importance of measuring dissipation, it has

proved challenging to do so accurately in nanoscale systems,
with only indirect proxies available. While bounds like the
thermodynamic uncertainty relations [9,10] can be used to
aid inference, these relations do not necessarily tightly
constrain the dissipation and cannot be directly correlated
with it in general [11]. Nevertheless, recent experimental and
computational advances have reinvigorated efforts to design
optimal controllers for nanoscale systems. Optimizing
a protocol through the use of “thermodynamic geometry”
[12–16], an approach in which the dissipation is quantified

through a Riemannian path length in the space of protocols,
has proved among the most productive strategies for
this problem [8,17–19]. The metric itself is derived via a
perturbative expansion [8] and hence applies only in the limit
of driving that is sufficiently slow or when the magnitude of
the perturbation is sufficiently small.
Separately, initially spurred by developments in the

study of variational solutions to certain partial differential
equations [20–22], a distinct geometry, based on optimal
transport theory, has been connected to nonequilibrium
dissipation. In this formulation, distances are measured not
with a Riemannian metric but directly between probability
distributions by determining a minimum cost transport plan
that moves the probability mass from an initial distribution
ρA to a given target ρB. The cost defines the Wasserstein
metric, which, in the Monge formulation, is formally
defined through an optimization problem,

W2
2ðρA; ρBÞ ¼ inf

T

Z
Ω
jx − TðxÞj2ρAðxÞdx; ð1Þ

where T ranges over all valid maps or transportation plans
that send ρA to ρB. The Wasserstein metric is a lower bound
on the dissipative cost to transform ρA to ρB in a finite time,
and, importantly, provides an alternate geometric framework
for minimizing dissipation [23]. Unlike the perturbative
formulation that leads to the thermodynamic Riemannian
metric, this approach makes no approximation to quantify
the total change entropy along a dissipative transformation.
However, the constrained minimization problem (1) that one
must solve to compute the Wasserstein distance is notori-
ously challenging, both analytically and numerically [24].
Here, we introduce a theoretical and computational

framework for optimizing control protocols that realize
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geodesics in the Wasserstein metric, which we refer to
as displacement interpolations [25]. These are paths
through the space of probability distributions that minimize
the dissipative cost of the finite-time transformation.
Furthermore, we show that the thermodynamic metric
can be derived directly from the same objective function
that we optimize in the optimal transport problem, empha-
sizing that the two coincide in the limit of slow driving. Our
result provides a unified geometric framework for mini-
mizing the dissipative costs of nonequilibrium transforma-
tions. Crucially, the approach we propose is numerically
tractable without globally computing the thermodynamic
metric, a numerically costly procedure, especially when the
dimensionality of the protocol is large. We investigate this
approach to minimum dissipation control in two simple
models of nanoscale engines, and we compare control
protocols determined via both the thermodynamic metric
and the geometry of optimal transport. Remarkably, we
observe that our procedure for optimizing control protocols
is robust outside the linear response regime, which leads
to a significant improvement in protocol design over the
thermodynamic metric when the driving is fast.
Connection between the thermodynamic metric and the

optimal transport problem.—We consider the problem of
transforming an initial equilibrium distribution ρA ¼ ρð·; 0Þ
into a target distribution ρB ¼ ρð·; tfÞ with a nonequili-
brium driving protocol λ of duration tf. At sufficiently long
times, we assume that the system relaxes to an equilibrium
distribution ρ0ðxÞ ¼ e−βUðx;λÞ=ZðλÞ, where U denotes the
potential energy of the system. The results we derive below
apply to systems that evolve according to overdamped
Langevin dynamics, though we see that the methods
we develop also apply to open quantum systems [26].
While we do not consider underdamped Langevin dynam-
ics here, minimizing dissipation in these systems is an
active area of inquiry [27,28].
We consider first a system with coordinates x ∈ Ω ⊂ Rd

subject to the following overdamped Langevin equation,

_x ¼ −∇Uðx; λðtÞÞ þ
ffiffiffiffiffiffiffiffiffiffi
2β−1

q
ηðtÞ; ð2Þ

where η is a Gaussian random variable with hηðtÞi ¼ 0 and
hηiðtÞηjðt0Þi ¼ δðt − t0Þδij. The external protocol λ changes
as a function of time, which drives the system away from
equilibrium. As a result, the time-dependent distribution
ρðx; tÞ of states may be non-Boltzmann, but it does satisfy a
Fokker-Planck equation,

∂tρþ∇ · ðvρÞ ¼ 0; ð3Þ

where the local velocity is

vðx; tÞ ¼ −∇UðxðtÞ; λðtÞÞ − β−1∇ log ρðx; tÞ: ð4Þ

Nonconservative forces can be incorporated into this
framework and only change the expression for the local
velocity [23]. The total entropy production can be written in
terms of the heat flow to the environment using the stochastic
thermodynamics convention for the heat flow [29,30],

βQ ¼ −
Z

βðtÞ∇UðxðtÞ; λðtÞÞ∘dxðtÞ; ð5Þ

and the Gibbs entropy of the system. Combining these terms,
we obtain a quadratic form for the total entropy production
along a nonequilibrium transformation [23,31,32],

ΔΣtot ¼
Z

tf

0

βðtÞ
Z
Ω
vTðx; tÞvðx; tÞρðx; tÞdxdt: ð6Þ

Hence, to minimize the dissipation associated with a trans-
formation from the thermodynamic state specified by λð0Þ to
a state in which the control parameters are fixed at λðtfÞ,
we must identify a minimizer λ�ðtÞ of Eq. (6), noting that
local velocity and the density both depend on λ. Formally,
we solve

λ� ¼ argmin
λ∶½0;tf �→Rk ρð·;0Þ¼ρA; ρð·;tfÞ¼ρB

ΔΣtot½λ�: ð7Þ

This minimization problem has a geometric interpretation:
the minimum of Eq. (6) over all ðv; ρÞ satisfying Eqs. (3)
and (4) with the boundary conditions that ρð·; 0Þ ¼ ρA and
ρð·; tfÞ ¼ ρB are exactly the Benamou-Brenier formulation
of the Wasserstein optimal transport distance [22,33]. In the
present work, we optimize not over velocity fields and
densities but rather protocol λ which, when sufficiently
flexible, provides substantial control over the distribution.
While this constraint means that we may not saturate the
optimal transport distance in general, the examples we
consider here are ones in which the protocol provides
complete control over the distribution. Furthermore, we
believe that a protocol optimization framework is more
physically practical than a setting in which the requisite
velocity fields to minimize Eq. (6) are inaccessible to
any external controller. Minimizing Eq. (6) provides an
alternative formulation of the Wasserstein optimal transport
problem defined in Eq. (1), as explained in the Supplemental
Material [32]. The connection between optimal transport
and dissipation is well known in the partial differential
equations literature [34] and was subsequently connected
to stochastic thermodynamics by Aurell and co-workers
[23,31]; recently this connection was discussed in Ref. [35]
to provide a framework for general thermodynamic speed
limits (cf. Refs. [12,14,23]).
Computing the minimizer λ� analytically is generically

challenging because of the nonlinear dependence of the
distribution on the protocol. Within a linear response
approximation, the form of the distribution simplifies
considerably, and the quadratic functional can be written
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as an explicit function of λ; we now demonstrate that
carrying out the minimization of Eq. (6) with respect to λ
recovers the Riemannian thermodynamic metric. Following
the dynamical linear response framework of Zwanzig [36]
(see also Ref. [37]), we assume that λ changes slowly
relative to the rate of relaxation of the system. We expand
the instantaneous density around the equilibrium density
with the control parameters fixed:

ρðx; tÞ ¼ ρ0ðx; λðtÞÞ þ ϵρ1ðx; λðtÞÞ þOðϵ2Þ: ð8Þ

At first order in ϵ we obtain

ρ1ðx; tÞ ¼ βρ0ðx; tÞ
Z

∞

0

δΘðxλðsÞ; tÞ · _λðtÞds; ð9Þ

where δΘðx; sÞ denotes the deviation of the generalized
forces from their average, ∂λUðx; λðtÞÞ − ∂λFðλðtÞÞ. The
only part of the quadratic functional that depends on λ is the
work; to leading order in ϵ an explicit computation [32]
shows that the protocol-dependent dissipation is

L½λ� ¼
Z

tf

0

_λTðtÞζðλðtÞÞ_λðtÞdt; ð10Þ

with

ζðλðtÞÞ ¼ β

Z
∞

0

hδΘðsÞδΘTð0ÞiλðtÞds: ð11Þ

Minimizing the expression (10) yields a geodesic with
respect to the positive definite symmetric form ζ; these
geodesics in protocol space are minimum dissipation
protocols within the linear response approximation [12,17].
The W2-optimal local velocity associated with the thermo-
dynamic geodesic is explicitly given by the negative,
temperature scaled spatial gradient of the perturbative
correction ϵρ1, simply plugging Eq. (8) into Eq. (4).
Computational approach.—We consider two general

paradigms for determining protocols that minimize
Eq. (6). The first involves specifying a set of intermediate
distributions and learning a protocol λ�ðtÞ that drives the
system along a Wasserstein geodesic between these inter-
mediate distributions. Alternatively, we specify a protocol
λðtÞ and determine an optimal speed function ϕ�ðtÞ such
that the system driven under λðϕ�ðtÞÞ minimizes Eq. (6).
The first paradigm ensures that an engine reaches the
desired intermediate distribution even when the driving is
fast relative to the relaxation time of the system. The latter
approach constrains the protocol but is less computation-
ally and experimentally demanding.
To drive the system through prespecified intermediate

distributions (see Fig. 1), we use gradient-based optimiza-
tion to learn protocols λ�ðtÞ. Given an initial distribution ρA
and a final distribution ρB, we compute a Wasserstein
geodesic that interpolates these two distributions. This path

through the space of probability distributions is known as a
displacement interpolation [33,34]. Computing this geo-
desic exactly is computationally demanding for arbitrary ρA
and ρB, so, for a general system, one must instead estimate
a displacement interpolation using computational optimal
transport algorithms, such as the Sinkhorn algorithm [24].
We anticipate that this approximate calculation of the
Wasserstein geodesic will be tractable even for relatively
high-dimensional systems [38]. In the present work, we do
not directly contend with this approximation; for the two
minimal models considered here, we can compute the
Wasserstein geodesics exactly.
Determining a displacement interpolation ρ�ðtÞ does not

directly yield a protocol that drives the system through the
set of probability distributions that constitute the geodesic.
While it would be possible to identify λ� from ρ� in the
quasistatic limit, when the system is driven far from
equilibrium, we must optimize the protocol so that the
empirical distribution remains close to ρ�ðtÞ. We represent
λ� using a neural network and carry out our optimization
using automatic differentiation. The gradient information is
stored throughout the dynamical evolution of the system,
and gradients are explicitly backpropagated through the
trajectory. Automatic differentiation is a natural way to
optimize λ� for the nonequilibrium systems considered
here, as it enables dynamical information to be implicitly
incorporated into a learned protocol. We note that for large
protocol durations, it is impractical to differentiate through-
out the entire trajectory; instead, we carry out our opti-
mization over short-time intervals.
Optimizing a nanoscale Brownian engine.—We con-

sider a minimal model for a nanoscale Brownian engine,
consisting of a Brownian particle in a harmonic potential.

FIG. 1. Brownian engine driven according to a Stirling cycle
through target intermediate Gaussian distributions with mean
μ ¼ 0 and variance σ2ss. Variance of the target distributions on the
Wasserstein geodesics (in red) along each stage are computed
exactly between corresponding end points. In the fast-driving
regime (τ ¼ 10), observed variance of trajectories under λ�
closely approximate target variance.
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The temperature T of the heat bath and the strength of the
harmonic potential k are controlled to mimic a Stirling
cycle [39]. The model is depicted schematically in the inset
of Fig. 2(a). In our implementation, each stage of the engine
cycle has a fixed duration of τ=4. Given Th and Tc, the
maximum and minimum allowed temperature of the bath,
and kh and kl, the maximum and minimum allowed
strength of the harmonic potential, we can exactly specify
the equilibrium distributions at the end points of each step
of the Stirling cycle, which are Gaussian with μ ¼ 0 and
σ2 ¼ T=k. Because the distributions are Gaussian, we can
exactly determine a displacement interpolation ρ� between
the end points of each stage.
We carry out this optimization for a range of protocol

durations τ, the shortest of which are far from the linear
response regime and the longest of which are essentially
quasistatic. For each τ we consider, we optimize the

protocol λ� separately. We compare our results with optimal
protocols determined using the linear response approxi-
mation [40], which we denote λLR. Here, λLR also drives the
engine along a Stirling cycle and has the same Th, Tc, kh,
and kl as λ�. Importantly, we observe that, in the fast-
driving regime, the Brownian engine driven under λ� is
significantly less dissipative than the Brownian engine
driven under λLR, as shown in Fig. 2. As the engine
undergoes isothermal compression—the most dissipative
step—the Brownian engine under λLR significantly deviates
from the displacement interpolation. However, under λ�,
the Brownian engine is able to closely realize this geodesic,
resulting in a consistently lower dissipation profile. Finally,
for λ� we further analyze the relationship between W2

2=τ
and the dissipation for this step and observe that as W2

2=τ
increases, the dissipation increases (Fig. 3), as expected
from Eq. (6).
Remarkably, we see that the Brownian engine driven

under λ� enables us to realize protocols that have a higher
efficiency η compared to protocols driven by the linear
response protocol λLR (see Fig 3, inset). In fact, the optimal
transport protocols approach the Carnot efficiency even for
fast driving. In this regime, the linear response protocol λLR
does not maximally expand the engine, thus limiting the
work done by it. Because we learn a distinct λ� for each τ,
the Brownian engine does expand nearly maximally,
resulting in greater work extraction. Crucially, the system
also remains near the displacement interpolants, ensuring
minimal dissipation and thus a higher efficiency.
Minimum dissipation control of a model superconduct-

ing qubit.—To show that our computational framework

FIG. 2. The dissipation profiles for two nanoscale engines
plotted across different protocol durations τ. (a) For a nanoscale
Brownian engine (see inset), the dissipation for the optimal
protocol λ� (dark blue circle) is lower than the dissipation for
protocols computed according to a linear response approximation
λLR for different smoothness parameters d [40]. (b) For a
superconducting qubit (see inset), the optimal protocol λðϕ�Þ
(dark blue circle) is less dissipative than a protocol computed
using a linear response approximation λðϕLRÞ (green triangle)
[19] or a base sinusoidal protocol λðtÞ (red square).

FIG. 3. The dissipation plotted against W2
2=τ (the squared

Wasserstein distance normalized by protocol duration) for the
isothermal compression of a Brownian engine across different τ.
An increasing dissipative cost is incurred as W2

2=τ increases,
consistent with Eq. (6). Inset: the efficiencies of the Brownian
engine plotted against the protocol duration τ for a learned
optimal protocol λ� and protocols determined from a linear
approximation [40]. Even for fast drivings, the Brownian engine
driven by λ� (dark blue circle) can achieve near Carnot efficiency
and has a higher efficiency in comparison to the Brownian engine
driven by λLR.
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also applies to Markovian quantum dynamics, we inves-
tigate a model of a superconducting qubit engine. We note
that for discrete state Markov processes, extending the
Benamou-Brenier formulation exactly requires a distinct
metric [41]; however, we optimize W1 and demonstrate
numerically that this lower bound to heat (cf. Ref. [26],
Theorem 2) also yields a powerful variational principle for
optimal control problems. In this model [Fig. 2(b), inset],
we modulate the temperature T of the environment and the
level splitting of the qubit V as a function of time. We
optimize protocols (i) using a prespecified protocol and
varying the speed at which the protocol is traversed and
(ii) by setting target intermediate distributions and opti-
mizing VðtÞ and TðtÞ.
For (i), we used a sinusoidal protocol λðtÞ, as specified in

the Supplemental Material [32]. We compare three different
protocols λðtÞ, λðϕLRðtÞÞ, and λðϕ�ðtÞÞ, where ϕ� was
determined by minimizing the lengthW2 along the protocol
and ϕLR was determined in Ref. [19]. We observe that for the
qubit engine driven under λðϕ�ðtÞÞ, the dissipation is lower
compared to the engine driven by both λðtÞ and λðϕLRðtÞÞ
for fast driving, as shown in Fig. 2(b). We find that the work
obtained using λðϕLRðtÞÞ is higher than that of λðϕ�ðtÞÞ,
resulting in the efficiency under λðϕLRðtÞÞ being marginally
better than that of λðϕ�ðtÞÞ. Of course, the expression that we
optimize [Eq. (6)] only includes dissipation as an objective,
so there is no guarantee of higher efficiency.
For (ii), we optimize a protocol λ� to drive the qubit

engine through prespecified intermediate distributions
ρ�ðtÞ. We considered the distributions that the system
relaxed to at t ¼ 0, τ=4, τ=2, and 3τ=4 in the quasistatic
limit under the sinusoidal protocol, and specified ρ� to be
the displacement interpolation of these distributions. We
computed these geodesics exactly using the density matrix.
As with the Brownian heat engine, we used automatic
differentiation to learn a protocol λ�ðtÞ. The optimal
protocol λ�ðtÞ is less dissipative than all other protocols,
and the corresponding steady state distribution ρ̂ðtÞ closely
realizes ρ�. Ultimately, the results observed in the two
systems considered demonstrate the utility of the unified
geometric framework and the computational approach
introduced here in learning minimally dissipative protocols
for nonequilibrium control.
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[33] G. Peyré and M. Cuturi, Computational optimal transport:
With applications to data science, Found. Trends Mach.
Learn. 11, 355 (2019).

[34] C. Villani, Optimal Transport: Old and New, Grundlehren
Der Mathematischen Wissenschaften No. 338 (Springer,
Berlin, 2009).

[35] M. Nakazato and S. Ito, Geometrical aspects of entropy
production in stochastic thermodynamics based on
Wasserstein distance, Phys. Rev. Res. 3, 043093 (2021).

[36] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford
University Press, New York, 2001).

[37] G. A. Pavliotis, Stochastic Processes and Applications:
Diffusion Processes, the Fokker-Planck and Langevin
Equations, Texts in Applied Mathematics Vol. 60 (Springer,
New York, 2014).

[38] J. Altschuler, J. Niles-Weed, and P. Rigollet, Near-linear
time approximation algorithms for optimal transport via
Sinkhorn iteration, in Advances in Neural Information
Processing Systems, edited by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett (Curran Associates, Inc., 2017), Vol. 30.

[39] V. Blickle and C. Bechinger, Realization of a micro-
metre-sized stochastic heat engine, Nat. Phys. 8, 143
(2012).

[40] K. Brandner, K. Saito, and U. Seifert, Thermodynamics of
Micro- and Nano-Systems Driven by Periodic Temperature
Variations, Phys. Rev. X 5, 031019 (2015).

[41] J. Maas, Gradient flows of the entropy for finite Markov
chains, J. Funct. Anal. 261, 2250 (2011).

PHYSICAL REVIEW LETTERS 130, 107101 (2023)

107101-6

https://doi.org/10.1002/fld.264
https://doi.org/10.1002/fld.264
https://doi.org/10.1007/s10955-012-0478-x
https://doi.org/10.1007/s10955-012-0478-x
https://doi.org/10.1006/aima.1997.1634
https://doi.org/10.1103/PhysRevX.13.011013
https://doi.org/10.1103/PhysRevLett.128.070604
https://doi.org/10.1088/1742-5468/2014/05/P05013
https://doi.org/10.1088/1742-5468/2014/05/P05013
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1103/PhysRevLett.106.250601
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.107101
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.107101
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.107101
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.107101
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.107101
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.107101
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.107101
https://doi.org/10.1561/2200000073
https://doi.org/10.1561/2200000073
https://doi.org/10.1103/PhysRevResearch.3.043093
https://doi.org/10.1038/nphys2163
https://doi.org/10.1038/nphys2163
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1016/j.jfa.2011.06.009

