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We show that effectively cold metastable states in one-dimensional photodoped Mott insulators
described by the extended Hubbard model exhibit spin, charge, and η-spin separation. Their wave functions
in the large on-site Coulomb interaction limit can be expressed as jΨi ¼ jΨchargeijΨspinijΨη−spini, which is
analogous to the Ogata-Shiba states of the doped Hubbard model in equilibrium. Here, the η-spin represents
the type of photo-generated pseudoparticles (doublon or holon). jΨchargei is determined by spinless free
fermions, jΨspini by the isotropic Heisenberg model in the squeezed spin space, and jΨη−spini by the XXZ
model in the squeezed η-spin space. In particular, the metastable η-pairing and charge-density-wave (CDW)
states correspond to the gapless and gapful states of the XXZ model. The specific form of the wave function
allows us to accurately determine the exponents of correlation functions. The form also suggests that the
central charge of the η-pairing state is 3 and that of the CDW phase is 2, which we numerically confirm. Our
study provides analytic and intuitive insights into the correlations between active degrees of freedom in
photodoped strongly correlated systems.
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Introduction.—Doping charge carriers into strongly
correlated insulators provides a pathway to produce in-
triguing emergent phenomena such as high-Tc supercon-
ductivity [1,2]. In equilibrium, the doping concentration
can be chemically controlled. An alternative nonequili-
brium way of introducing charge carriers is photodoping,
where electrons are excited across the gap [3–7]. The
photodoping of Mott insulators creates novel pseudopar-
ticle excitations such as doublons and holons (in the single-
band case), while the equilibrium system can host only one
type of charge carrier. Such additional degrees of freedom
can lead to intriguing properties and nonthermal phases.
Important examples include photoinduced insulator-metal
transitions [8–14] and charge density waves [15–17], and
the control of magnetic [18,19] and superconducting orders
[20–27].
In systems with a large Mott gap, the lifetime of the

photodoped pseudoparticles becomes exponentially
enhanced [28–34]. In such a situation, an intraband cooling
of the photodoped pseudoparticles may occur, while their
density remains approximately constant. This results in a
metastable steady state (a pseudoequilibrium state) [20,35–
42], analogous to the case of photodoped semiconductors
[43–45], see Fig. 1(a). It has been shown that such
metastable states can host unique phases such as η pairing
[39,41], chiral superconducting phases [46], and exotic
spin or orbital orders [19,40,47]. Since different types of

FIG. 1. (a) Schematic picture of the photodoping and intra-
band cooling processes that result in a metastable state of the
large-gap Mott insulator. UHB (LHB) stands for upper (lower)
Hubbard band. (b) The wave function of the metastable state in
the limit of U → ∞ can be expressed as a direct product of the
charge wave function, the spin wave function in the squeezed
space, and the η-spin wave function in the squeezed space. The
green shaded circles in the charge wave function represent
spinless fermions, while “h” and “d” stand for holon and doublon,
respectively.
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charge carriers are present in photodoped systems, it is
crucial to understand the correlations between the active
degrees of freedom. However, the metastable states of
photodoped strongly correlated systems have been studied
mainly by numerical calculations so far [35–42,48], and
analytical or intuitive insights are limited.
Here we reveal the nature of the metastable states and the

correlations between the active degrees of freedom in
photodoped one-dimensional Mott insulators. We show
that the wave functions of the metastable states in the limit
of large on-site Coulomb interaction exhibit spin, charge
and η-spin separation, see Fig. 1(b). The η-spin represents
the type of pseudoparticle: doubly occupied site (doublon)
or empty site (holon). Our results provide a comprehensive
understanding of the character of the photoinduced meta-
stable phases in one-dimensional systems and reveal the
similarities and differences between photodoped and
chemically doped systems.
Results.—We focus on the one-dimensional extended

Hubbard model,

Ĥ ¼ −thop
X

i;σ

ðĉ†i;σ ĉiþ1;σ þ H:c:Þ þ ĤU þ ĤV; ð1Þ

and assume that electrons are excited across the Mott gap
via photoexcitation. Similar setups can be considered with
cold atoms [20]. ĤU ¼ U

P
iðn̂i↑ − 1

2
Þðn̂i↓ − 1

2
Þ is the on-

site interaction and ĤV ¼ V
P

iðn̂i − 1Þðn̂iþ1 − 1Þ is the
nearest-neighbor interaction. ĉ†iσ is the creation operator of
a fermion with spin σ at site i, n̂iσ ¼ ĉ†iσ ĉiσ , n̂i ¼ n̂i↑ þ n̂i↓,
and thop is the hopping parameter. When the Mott gap is
large enough, the recombination time of the created
doublons and holons becomes exponentially long [28–
33]. Thus, intraband relaxation due to scattering events and
coupling to the environment is expected to bring the system
into a (intraband thermalized) steady state with a fixed
number of doublons and holons, see Fig. 1(a). As pre-
viously discussed, such a quasisteady state can be described
with the effective Hamiltonian obtained by a Schrieffer-
Wolff transformation [49] from the original Hamiltonian
(1) [20,35–41,48], see also the Supplemental Material [50].
This effective Hamiltonian explicitly conserves the number
of doublons and holons. Up toOðt2hop=UÞ, it takes the form

Ĥeff ¼ ĤU þ Ĥkin þ ĤV

þ Ĥspin;ex þ Ĥdh;ex þ ĤU;shift þ Ĥ3−site; ð2Þ

where Ĥkin ¼ −thop
P

hi;ji;σ ˆ̄ni;σ̄ðĉ†i;σ ĉj;σ þ H:c:Þ ˆ̄nj;σ̄ −
thop

P
hi;ji;σ n̂i;σ̄ðĉ†i;σ ĉj;σ þ H:c:Þn̂j;σ̄ represents the hopping

of a doublon or a holon, σ̄ is the opposite spin of σ, and
ˆ̄ni;σ ¼ 1 − n̂i;σ . The other terms are proportional to Jex≡
ð4t2hop=UÞ. Ĥspin;ex ¼ Jex

P
hi;ji ŝi · ŝj is the spin exchange

term, and Ĥdh;ex ¼ −Jex
P

hi;ji½η̂xi η̂xj þ η̂yi η̂
y
j þ η̂zi η̂

z
j� is the

exchange term for doublons and holons on neighboring
sites. Here the spin operators are ŝ ¼ 1

2

P
α;β¼↑;↓ ĉ

†
ασαβĉβ

with σ denoting the Pauli matrices, and we introduced the
η-spin operators as η̂þi ¼ ð−Þiĉ†i↓ĉ†i↑, η̂−i ¼ ð−Þiĉi↑ĉi↓ and

η̂zi ¼ 1
2
ðn̂i − 1Þ [51–53]. ĤU;shift describes the shift of the

local interaction and Ĥ3−site represents three-site terms such
as correlated doublon hoppings, see Supplemental Material
[50]. In equilibrium (without doublons), the model corre-
sponds to the t-J model when Ĥ3−site is neglected [54]. In
the following, we denote the model without Ĥ3−site by
Ĥeff2. When V ¼ 0, Ĥ, Ĥeff , and Ĥeff2 host an SU(2)
symmetry of the doublon-holon sector [51,56] that corre-
sponds to the spin SU(2) symmetry via a particle-hole
(Shiba) transformation [57].
We consider an effectively cold system with arbitrary

filling, whose state is described by the ground state of the
effective Hamiltonian for a given number of doublons and
holons, i.e., we assume that the system is thermalized into
the lowest energy state for the given constraint. We show
that the corresponding wave function can be expressed as
the direct product of charge, spin, and η-spin wave
functions in the limit of Jex → 0 with V=Jex ¼ const,
similar to the Ogata-Shiba state of the doped Hubbard
model in equilibrium [58,59]. To be more specific, we set
the system size to L and the number of singly occupied sites
to Ns, so that the number of doublons and holons (the
number of η spins) is Nη ¼ L − Ns. Now we introduce the
Hilbert space

H0 ¼
�
jrijσijηi≡

�Y

r∈r
ĉ†r

�
jvacijσijηi

∶#r ¼ #σ ¼ Ns and #η ¼ Nη

�
: ð3Þ

Here r, σ, and η are sets of space, spin, and η-spin indices,
ĉ†r is a creation operator of a spinless fermion (SF), and #
indicates the number of elements. η takes the values ↑ or ↓,
which labels doublons and holons, and r ¼ frNs

;…; r1g
with L ≥ rNs

> rNs−1 > � � �> r1 ≥ 1. We identify this
Hilbert space with the original Hilbert space using the
unitary transformation Û∶H → H0 defined by

Û

��YNs

i¼1

ĉ†ri;σi

��YNη

j¼1

â†r̄j;ηj

�
jvaci

�
¼

�Y

r∈r
ĉ†r

�
jvacijσijηi:

ð4Þ

Here, r̄ ¼ fr̄Nη
; � � � r̄1g with L≥ r̄Nη

>r̄Nη−1> �� �>r̄1≥1,

r ∪ r̄ ¼ fL;L − 1;…; 1g, â†r̄;↑ ¼ ð−Þr̄ĉ†r̄↓ĉ†r̄↑ and â†r̄;↓ ¼ 1.
With this identification, jri is the basis of SF and jσi (jηi) is
the basis of the squeezed spin (η-spin) space. Note that the
η-spin configuration represents the sequence of doublons
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and holons. As shown below, the Hamiltonians ruling the σ
and η spaces are not fully symmetric due to the staggering
of the doublons.
The wave function in the limit of Jex → 0 can be

constructed by degenerate perturbation theory [59]. For
Jex ¼ V ¼ 0, the eigenstates of Ĥeff are degenerate with
respect to the configurations of the spins and η spins. This is
because Ĥkin never exchanges the positions of spins or
those of doublons and holons. Specifically, one can show
that ÛĤkinÛ

† ¼ −thop
P

hi;jiðĉ†i ĉj þ H:c:Þ ð≡Ĥ0;SFÞ. This
means that in the representation of H0 the ground state for
Jex ¼ V ¼ 0 can be described as jΨGS

SF ijΨσ;ηi, where jΨGS
SF i

is the ground state of Ĥ0;SF and jΨσ;ηi is an arbitrary spin
and η-spin wave function. The remaining degeneracy of
2Ns2Nη from spins and η-spins is lifted by the terms of
OðJexÞ. Within lowest-order degenerate perturbation
theory, the spin and η-spin wave functions are obtained
by the OðJexÞ terms projected to jΨGS

SF ijσijηi. In the
resultant projected Hamiltonian, the squeezed spin and
η-spin spaces are decoupled, and the corresponding
Hamiltonians become (SQ stands for squeezed space)

ĤðSQÞ
spin ¼ Jsex

X

i

ŝiþ1 · ŝi;

ĤðSQÞ
η−spin ¼ −JηX

X

j

ðη̂xjþ1η̂
x
j þ η̂yjþ1η̂

y
jÞ þ JηZ

X

j

η̂zjþ1η̂
z
j;

with Jsex ¼ ðx̃ − x̃0ÞJex, JηX ¼ ðỹ − ỹ0ÞJex, and JηZ ¼
−ðỹ − ỹ0ÞJex þ 4ỹV. Here x̃; x̃0; ỹ, and ỹ0 are the renorm-
alization factors determined by jΨGS

SF i. With ns ¼ Ns=L
and nη ¼ Nη=L and in the limit L → ∞ they can be
expressed as

x̃ ¼ ns −
sin2ðπnsÞ
π2ns

; x̃0 ¼ sinð2πnsÞ
2π

−
sin2ðπnsÞ
π2ns

;

ỹ ¼ nη −
sin2ðπnηÞ
π2nη

; ỹ0 ¼ sinð2πnηÞ
2π

−
sin2ðπnηÞ
π2nη

:

Here x̃ and ỹ are the contributions from the two-site terms
of OðJexÞ, while x̃0 and ỹ0 are those from the three-site

terms. Note that ĤðSQÞ
η−spin becomes the ferromagnetic

Heisenberg model (JηX ¼ −JηZ > 0) for V ¼ 0. Thus, the
wave function (in H0) takes the form

jΨi ¼ jΨGS
SF ijΨGS

σ ijΨGS
η i; ð5Þ

where jΨGS
σ i is the ground state of ĤðSQÞ

spin and jΨGS
η i is that

of ĤðSQÞ
η−spin. For more details, see the Supplemental Material

[50]. The form of jΨGS
SF i and jΨGS

σ i is independent of the
ratio of doublons and holons, and, in particular, these states
are the same as those in the equilibrium doped Hubbard
model at the doping level nholes ¼ nη [58,59]. This implies

that the effects of photodoping and chemical doping on the
spins are essentially the same, which is consistent with
previous numerical analyses [41,60,61].
Now we focus on half filling and discuss the implications

of the exact form of the wave function for the origin of the
different phases. The η-spin sector hosts the phase tran-
sition between the gapless and gapful phases of the XXZ
model, which is controlled by the ratio between Jex and V.
As seen below, these phases are characterized by the
behavior of the correlation functions of the η spins, i.e.,
χη;aðrÞ≡ hη̂aðrÞη̂að0Þi. Namely, the gapless phase corre-
sponds to the η-pairing phase, where the pair correlation
χη−pair ≡ χη;x is dominant. On the other hand, the gapful
phase corresponds to the CDW phase, where the charge
correlation χcharge ≡ χη;z is dominant. True long-range order
(LRO) is realized at V ¼ 0 for the η-pairing phase [62],
while a LRO CDW is realized at nη ¼ 1 and V > ðJex=2Þ.
Apart from these limits, we have quasi-long-range orders
(power law decay of correlations). Note that the appearance
of η-pairing in nonthermal states has been recently dis-
cussed [23,27,39,63–65] in relation with the photoinduced
superconductinglike phases [21,66–69]. Furthermore, we
emphasize that LRO is realized in the squeezed η-spin
space for the CDW phase, which is reminiscent of the string
order in the Haldane phase [70]. The phase transition

occurs at the SU(2) point of ĤðSQÞ
η−spin (JηX ¼ JηZ > 0), see

Fig. 2. For Ĥeff2 (without Ĥ3−site), Δð≡JηZ=J
η
XÞ and thus the

phase boundary is independent of the doublon/holon
concentration, which consistently explains a previous
numerical result [41]. On the other hand, for Ĥeff, the
ratio Δ depends on the filling due to the effects of the three-
site term (contribution ỹ0). In particular, the three-site term
is found to favor the η-pairing phase.
The exact form of the wave function allows us to

evaluate the asymptotic behavior of the correlation

CDW
(string)

pairing
(LRO)

CDW
(LRO)

SDW

pairing
(power law)

FIG. 2. Phase diagram of the photodoped one-dimensional
Mott insulator described by Ĥeff at half filling in the limit
Jex → 0. The phase boundary (black solid line) corresponds to an

SU(2) symmetric point of ĤðSQÞ
η−spin, i.e., V=Jex ¼ ðỹ − ỹ0Þ=2ỹ. The

horizontal dashed line indicates the phase boundary for the
system described by Ĥeff2.
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functions analytically or numerically. Here we extend the
analyses for spin correlations of the equilibrium Hubbard
model [71,72]. Since the spin correlations of the metastable
state are the same as those for the equilibrium Hubbard
model, i.e., hŝaðrÞŝað0Þi ∝ cosðπnsrÞr−3

2ðln rÞ12, we focus
on the η-spin correlation functions χη;aðrÞ. Note that despite
the apparent similarity between the squeezed spin and η
space there are crucial differences in the pairing correla-
tions. Using expression (5), the correlation functions can be
expressed as

χη;aðrÞ ¼
Xrþ1

m¼2

Q̄r
SFðmÞχðSQÞη;a ðm − 1Þ: ð6Þ

Here Q̄r
SFðmÞ ¼ h ˆ̄n0 ˆ̄nrδð

P
r
l¼0

ˆ̄nl −mÞiSF, which is deter-
mined by jΨGS

SF i, is the probability that the sys-

tem has m doublons or holons in ½0; r�. χðSQÞη;a ðmÞ ¼
hη̂aðmÞη̂að0Þiη−spin;squeezed is the correlation function in
the squeezed η-spin space. Numerically, Q̄r

SFðmÞ and

χðSQÞη;a ðmÞ can be efficiently evaluated in the thermodynamic
limit. We use the expression for the Fourier components
and perform an inverse Fourier transform to obtain Q̄r

SFðmÞ
[50,72], while the infinite time-evolving block decimation
(iTEBD) [73] for the XXZ model can be used to calculate

χðSQÞη;a ðmÞ. Moreover, we can also gain analytic insights
using the knowledge of the asymptotic behavior of the
correlation functions of the XXZ model [74–76] and the
moments of Q̄r

SFðmÞ up to the second one [71]. The former
can be expressed with α≡ 1 − ð1=πÞ arccosðΔÞ, which is a
control parameter of the Tomonaga-Luttinger liquid, and
the latter indicate that most of the weight of Q̄r

SFðmÞ is at
rnη. From these facts, if the asymptotic form of χðSQÞη ðmÞ is
ð−ÞmfðmÞ with fðmÞ being a smooth function, one can
prove that

Xrþ1

m¼2

Q̄r
SFðmÞð−ÞmfðmÞ≃

�Xrþ1

m¼2

Q̄r
SFðmÞð−Þm

�
fðhmiÞ: ð7Þ

Here hmi ¼ nηrþ 1. If χðSQÞη ðmÞ ≃ fðmÞ, the equation
without ð−Þm is satisfied. See Supplemental Material for
the detailed meaning of the equality ≃ and the derivation.
Since we have fPrþ1

m¼2 Q̄
r
SFðmÞð−Þmg ∝ cosðπnηrÞ=r12

[71,77] and
Prþ1

m¼2 Q̄
r
SFðmÞ ¼ n2η (in leading order in r),

one can obtain the asymptotic form of the correlation
functions. Equation (7) shows that the decay of η-spin
correlations in real space originates from that in the
squeezed space and the contribution from the intercalated
singly occupied sites. The latter is determined by jΨGS

SF i,
and has a different impact depending on whether the
correlation functions in the squeezed space are staggered
or not. In particular, the pairing correlation is not affected
by the SF background, while the charge correlations can be
affected like the spin correlations.

The asymptotic forms obtained analytically for χcharge
and χη−pair are summarized in Figs. 3(a) and 3(b). The
magnitude relation of the exponents of these correlation

functions changes at the SU(2) point of ĤðSQÞ
η−spin. Note that

this SU(2) symmetry is an emergent symmetry in the
squeezed space, which is absent in the original
Hamiltonian. For 0 < nη < 1, χcharge shows an exponent
of 1=2 in the CDW phase due to the contribution from the
SF part, although it shows LRO in the squeezed space. On
the other hand, the analytic argument based on Eq. (7) does
not allow us to make exact statements for the components
decaying faster than Oðln r=r2Þ. To analyze this point,
we numerically evaluate the correlation functions, see
Figs. 3(c) and 3(d). First, our results verify the conjecture

χη−pairðrÞ ≃ n2ηχ
ðSQÞ
η;x ðrnηÞ and its applicability even in the

CDW regime, where χη−pairðrÞ decays exponentially, see
Fig. 3(c). Second, Fig. 3(d) shows that Eq. (7) is practi-
cally applicable even when the leading and the subleading
terms of χcharge decay faster than Oðln r=r2Þ, i.e.,

χchargeðrÞ ≃ C1r−2 þ C2r−
1
2
−1
α cosðπnηrÞ.

The expression (5) also provides valuable insights into
the physical nature of the metastable phases. One important
quantity that characterizes one-dimensional systems is the

FIG. 3. (a), (b) Asymptotic behavior analytically obtained for
(a) χcharge and (b) χη−pair. The dashed line atΔ ¼ 1

2
in (a) marks the

boundary between different asymptotic expressions. The thick
green line corresponds to the SDW, the thick blue line to the
CDWwith LRO, and the thick red line to the η-pairing phase with
LRO. (c), (d) Numerically evaluated correlation functions for
(c) the η-pairing phase and (d) the CDW phase using Eq. (6) and
the iTEBD results for the XXZ model (blue circles). The corres-
ponding points are indicated with crosses in panels (a),(b). We

also show the correlations estimated by the conjecture χη−pair ≃
n2ηχ

ðSQÞ
η ðrnηÞ as well as the fit with C1r−2 þ C2r−

1
2
−1
α cosðπnηrÞ.
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central charge (c), which counts to the number of gapless
degrees of freedom [74]. In equilibrium, the doped
Hubbard model exhibits c ¼ 2, because of the massless
modes both in the spin and charge sectors [78,79]. On the
other hand, the exact form of the wave function (5) suggests
that the metastable state possesses 3 degrees of freedom.
The wave functions of the charge and spin sectors are those
of gapless states (i.e., doped free fermions and the isotropic
Heisenberg model), while that of the η-spin sector corre-
sponds to the gapless state or the gapful state of the η-XXZ
model for the η-pairing state and the CDW state, res-
pectively. Thus, one naturally expects that c ¼ 3 in the
η-pairing state and c ¼ 2 in the CDW state. To confirm this,
we perform iTEBD simulations on the effective model
Ĥeff2 for various cutoff dimension (D) and extract c from
the relation [80]

SE ¼ c
6
lnðξDÞ þ s0: ð8Þ

Here SE is the entanglement entropy, s0 is a constant, and
ξD is the correlation length evaluated from the second-
largest eigenvalue of the transfer matrix, see Supplemental
Material. In Fig. 4, we show the central charge for Ĥeff2
with Jex ¼ 0.4, which is extracted using Eq. (8) and a linear
fit to the iTEBD results [see the inset of Fig. 4]. The results
indeed confirm the above expectation. We emphasize that
the emergence of a c ¼ 3 state in the Hubbard model is
hardly expected in equilibrium and reflects the metastable
nature of the state.
Conclusion.—We showed that the additional degrees of

freedom activated by photodoping lead to peculiar types of
quantum liquids absent in equilibrium. In particular, we
revealed the intriguing structure of the correlations between
active degrees of freedom in photodoped one-dimensional

strongly correlated systems, i.e., the spin-charge-η-spin
separation. Our results open a new avenue for studying
metastable states in one-dimensional systems and raise
interesting questions. First, in contrast to the equilibrium
Hubbard model, the weak coupling regime is not well
defined, and the relation between the lattice model and
the corresponding conformal field theory is not clear.
Construction of the field theory for the metastable states
is an important future task. Second, we provide a rigorous
basis for the future development of a bosonization approach
[81,82]. With such an approach, one can better understand
the spectral features of the photodoped systems and the
implications of the spin-charge-η-spin separation for
dynamical properties. Third, various concepts developed
for one-dimensional systems in equilibrium can be
extended to understand the physics of metastable states.
For example, extending the spin incoherent Luttinger
liquids [83] may be helpful for understanding effectively
cold, but not ultracold systems.
Last but not least, our analytical and intuitive insights

provide a useful reference for the study of photodopedMott
insulators in higher dimensions, where the separation of
spin, charge, and η spin is not expected, but a crossover
from high-dimensional to one-dimensional behavior can
occur in anisotropic systems.
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