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Bound states in the continuum (BICs) are counterintuitive localized states with eigenvalues embedded in
the continuum of extended states. Recently, nontrivial band topology is exploited to enrich the BIC physics,
resulting in topological BICs (TBICs) with extraordinary robustness against perturbations or disorders.
Here, we propose a simple but universal mirror-stacking approach to turn nontrivial bound states of any
topological monolayer model into TBICs. Physically, the mirror-stacked bilayer Hamiltonian can be
decoupled into two independent subspaces of opposite mirror parities, each of which directly inherits the
energy spectrum information and band topology of the original monolayer. By tuning the interlayer
couplings, the topological bound state of one subspace can move into and out of the continuum of the other
subspace continuously without hybridization. As representative examples, we construct one-dimensional
first-order and two-dimensional higher-order TBICs, and demonstrate them unambiguously by acoustic
experiments. Our findings will expand the research implications of both topological materials and BICs.
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Introduction.—Bound states in the continuum (BICs),
which are spatially confined modes coexisting with a
continuous spectrum of extended states, are first proposed
by von Neumann andWigner in 1929 [1,2]. Since the initial
proposal in quantum mechanics, BICs have been unveiled
in electromagnetic [3–23], acoustic [24–31], and water
[27,32] wave systems with a variety of physical mecha-
nisms [2], such as symmetry incompatibility [5,24–26,33],
separations of coordinate variables [34–36], parameter
tuning [3,4,6,7,28,29,31,32,37], and inverse construction
[32,38–40]. Because BICs defy conventional wisdom of
confining waves, their realization in different systems will
definitely provide surprises and advances in fundamental
physics. Extensive applications have been proposed for
BICs due to their unique properties (e.g., strong localiza-
tion and tunable high-Q factor), such as in designing
narrow-band filters, biological and chemical sensors, and
low-threshold lasers [2,13,18,41–43].
On the other hand, topological materials have attracted

tremendous attention over the past decades, ranging from
condensed matter physics [44–46] to photonics [47,48],
acoustics [49,50], and so on [51]. One fundamental feature
of such fascinating phases is the bulk implication of the
symmetry-protected boundary modes. Naturally, a combi-
nation of the topological band theory and the BIC physics
triggers the concept of topological BICs (TBICs) [52–62],
which are symmetry protected and cannot be removed
except by large parametric variations. Not only does the
emergence of TBICs expand the scope of the estab-
lished bulk-boundary correspondence (given the fact that

boundary-localized states do not hybridize with the bulk
surrounding even in the absence of a band gap), but also,
more importantly, the topological nature endows the TBICs
with inherent protection and thus significantly enhances their
ability of controlling waves. To the best of our knowledge,
however, there are few studies (especially experimental ones)
on TBICs, comparing with the widely explored topological
materials and BIC physics. Particularly, the existed
TBIC models are case to case [54–58] or strongly rely on
insight [53,59]. Therefore, finding an easily generalizable
TBIC design route is of great significance beyond doubt.
In this Letter, we propose a simple but universal mirror-

stacking approach to achieve TBICs. In contrast to most of
the TBIC models [54–58] where some spatial symmetries of
protecting band topology must be preserved to keep BICs,
here the symmetries that induce the band topology and BICs
are independent with each other. As sketched in Fig. 1, we
stack a pair of identical monolayers with mirror symmetry,
each of which features a topological bound state at its
boundary [Fig. 1(a)]. The presence of the mirror symmetry
enables a classification of the states into two subspaces
according to their mirror parities. By tuning the interlayer
couplings, the topological bound states can energetically
move into and out of the bulk continuums of opposite
parities without hybridization, which gives rise to TBICs
at appropriate interlayer coupling [Fig. 1(b)]. We examine
this idea with mirror-stacked one-dimensional (1D) Su-
Schrieffer-Heeger (SSH) model and two-dimensional (2D)
quadrupole model. Experimentally, by using acoustic meta-
materials consisting of coupled cavity resonators, we
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observe the associated first-order and higher-order TBICs,
which feature zero-dimensional (0D) topological boundary
states in the 1D and 2D bulk continuums, respectively.
Tight-binding models of two concrete examples.—As

depicted in Fig. 2(a), we consider first two directly
coupled 1D SSH chains. The model Hamiltonian reads
H ¼ τ0 ⊗ h − tcτ1 ⊗ I, where h ¼ −ðt0 þ t1 cos kxÞσ1 −
t1 sin kxσ2 represents that of a single chain, I is an identity
matrix of the same order of h, −t0 and −t1 are two
dimerized intralayer couplings, −tc is the interlayer cou-
pling, and σ and τ are Pauli matrices acting on the intra- and
interlayer sublattices, respectively. The bilayer system
satisfies the mirror symmetry ½Mz;H� ¼ 0 with mirror
operator Mz ¼ τ1 ⊗ I. After a simple similarity trans-
formation M̃z ¼ S−1MzS and H̃ ¼ S−1HS, where the
transformation matrix S ¼ τ0 ⊗ I − iτ2 ⊗ I [63], the mir-
ror operator can be diagonalized into M̃z ¼ I ⊕ ð−IÞ, and
meanwhile, the bilayer Hamiltonian can be decoupled into
two independent subspaces according to their mirror
parities, i.e., H̃ ¼ heven ⊕ hodd. More details can be seen
in Supplemental Material (SM) [64]. Exactly, the
Hamiltonian components heven ¼ h − tcI and hodd ¼ hþ
tcI correspond to two monolayer SSH models of opposite
onsite energies∓tc [Fig. 2(a)]. This results in pairwise split
bulk bands according to their mirror parities [Fig. 2(b)], and
more importantly, each copy inherits the original mono-
layer band topology, which is characterized by a quantized
dipole moment in the presence of inversion symmetry. For
any nontrivial phase with t1=t0 > 1, the topological 0D

edge state can move continuously into and out of the 1D
bulk continuum of opposite parity by tuning the interlayer
coupling tc, which contributes a TBIC phase in the phase
diagram [Fig. 2(c)]. The formation of the (first-order) TBIC
can be visualized more clearly from the energy spectra of
finite-sized systems plotted for a fixed intralayer coupling
(t1=t0) but varied interlayer couplings (tc=t0) [Fig. 2(d)].
Hybridization is forbidden between the energetically degen-
erate bound and continuum states, since they belong to the
subspaces of different parties. It is worth emphasizing that
the TBIC is topologically robust against any perturbation
that respects the mirror symmetry (see SM [64]).
Our mirror-stacking approach can be extended to any

monolayer topological system, where h is replaced by the
corresponding monolayer Hamiltonian. This is exemplified
by the mirror-stacked quadrupole model [Figs. 2(e)–2(h)],
where h ¼ ðt0 þ t1 cos kxÞρ0σ1 þ t1 sin kxρ0σ2 þ ðt0 þ
t1 cos kyÞρ1σ3 þ t1 sin kyρ2σ3 [66,67], with σ and ρ being
Pauli matrices acting on the x- and y-directed sublattices,
respectively. For the case of t1=t0 > 1, the monolayer
quadrupole model exhibits nontrivial higher-order band
topology (characterized by a quantized quadrupole moment
in the presence of reflection symmetries), manifested as
symmetry-protected bound states at the sample corners.
This enables a high-order TBIC phase [Fig. 2(g)] that
features energetically degenerate 0D corner states and 2D
bulk states of opposite parities [Fig. 2(h)], once introducing
the interlayer coupling tc. Again, the presence of odd and
even mirror subspaces refrains from the hybridization
between the bound and continuum states. Note that there
are extra BIC phases in this system due to the presence of
the 1D trivial edge states, manifested as 0D corner states
embedded in 1D edge states or 1D edge states embedded in
2D bulk states (see SM [64]). The coexistence of multiscale
BICs, which could be of great interest, will be systemati-
cally explored in the future.
Acoustic realization of the 1D first-order TBICs.—The

tight-binding models in Fig. 2 can be implemented with
acoustic cavity-tube structures. Figure 3(a) shows our acous-
tic realization of the mirror-stacked bilayer SSH model,
where each unit cell consists of four identical air cavities
coupled with narrow tubes. Physically, the cavity resonators
mimic atomic orbitals and the narrow tubes introduce
hoppings between them [68–72]. The structure (see details
in SM [64]) provides effectively the onsite energy
∼7.15 kHz, the intralayer couplings t0 ≈ 0.12 kHz and
t1 ≈ 0.52 kHz, and the interlayer coupling tc≈0.25 kHz.
The successful acoustic emulation of the tight-bindingmodel
can be seen in Fig. 3(b) (left panel), where the simulated
band structure captures precisely the tight-binding one. As
expected, the numerical frequency spectrum for a finite-sized
sample [Fig. 3(b), right panel] exhibits clearly the coexistence
of topological edge states and bulk states, as guided by the
horizontal dashed lines at the midgap frequencies f1 ≈
6.87 kHz and f2 ≈ 7.42 kHz. The presence of the TBICs
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FIG. 1. Mirror-stacking approach for constructing TBICs.
(a) Top: schematic of a monolayer system with a topological
bound state at its boundary. Bottom: the associated energy
spectrum, which illustrates a nontrivial boundary state (dark)
spectrally isolated from the bulk continuum (gray). (b) Top:
mirror-stacked bilayer system that supports two different TBICs.
Bottom: bilayer energy spectrum divided into two independent
subspaces according to their mirror parities. At appropriate
interlayer coupling, the boundary states can energetically coexist
with the bulk ones of opposite parities. Throughout this Letter, we
use red and blue to characterize the even (þ) and odd (−) parities
of the states, respectively.
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can be directly visualized from the pressure patterns in
Fig. 3(c): at f1 the edge-localized state of even parity coexists
with the degenerate bulk state of odd parity, while at f2 the
bulk state of even parity coexists with the edge-localized state
of odd parity.
The first-order TBICs were identified by acoustic experi-

ments. Figure 4(a) shows our experimental sample printed
precisely by photosensitive resin material with a wall

thickness of 1.8 mm. On each resonator, small holes were
perforated for inserting the sound source and probe, which
were sealed when not in use. Both the input and output
signals were recorded and frequency resolved with a
multianalyzer system (B&K Type 3560C). To measure
the bulk band structure, we placed two pointlike broadband
sources in the middle of the sample and scanned the
acoustic response over the sample. Specifically, following
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FIG. 2. Model examples for constructing 1D first-order and 2D higher-order TBICs. (a) Unit cell of the directly coupled 1D SSH
model and its effective decomposition (assuming that t0, t1, tc > 0). (b) Bilayer band structure (color solid lines) exemplified with
specific intralayer and interlayer hoppings, together with its monolayer counterpart (black dashed lines) for comparison. (c) Phase
diagram derived for the 1D system. (d) Energy spectra for the finite-sized systems with a fixed intralayer hopping but different interlayer
hoppings. It shows that 0D edge states can coexist with 1D bulk states of opposite parity. (e)–(h) Similar to (a),(d), respectively, but for
the directly coupled 2D quadrupole model, which demonstrates the presence of the higher-order TBICs (featuring 0D corner-localized
states embedded in 2D bulk states). Note that each band in (f) is twofold degenerate.
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FIG. 3. Acoustic emulations of the mirror-stacked bilayer SSH model. (a) Unit cell consisting of air cavities (white) and narrow tubes
(cyan). (b) Left: band structure (circles) simulated for the cavity-tube structure, matching well that of the tight-binding model (lines).
Right: energy spectra simulated for a finite system of 10 unit cells, where the states are distinguished by inspecting their parities and field
patterns. (c) Pressure distributions of the coexisting bulk and edge states at the TBIC frequencies f1 and f2.
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the pressure distributions in Fig. 3(c), we selectively excited
the states of even and odd subspaces by in-phase and
antiphase excitations, respectively. Figure 4(b) presents the
Fourier spectra performed for themeasured time-space sound
signals (see SM [64]). The data for both excitations exhibit
excellent agreements with the theoretical band structures. To
further identify the selectively excited mirror-symmetric and
mirror-antisymmetric states, we extracted the normalized
wave functions jpðxÞi and calculated the expectation values
of the mirror operator, i.e., Mz ¼ hpjMzjpi, for both
excitations. The results are presented in Fig. 4(b). As
expected, Mz approaches þ1 (−1) in the case of in-phase
(antiphase) excitation, which points to the mirror-symmetric
(mirror-antisymmetric) state of eigenvalue þ1 (−1).
To directly visualize the symmetry-protected TBICs, we

divided the sample into the edge and bulk regions and
measured their site-resolved local responses to different
excitations (see SM [64]). Figure 4(c) presents the average
intensity spectra of the two regions. Clearly, the edge
spectrum of the in-phase (antiphase) excitation demon-
strates a prominent peak at f1 ≈ 6.90 kHz (f2 ≈ 7.45 kHz),

very close to that of the predicted topological edge state
with even (odd) parity, i.e., f1≈6.87 kHz (f2 ≈ 7.42 kHz).
As a hallmark of the TBIC, each peak falls into the
frequency window of the bulk band of opposite parity.
From the acoustic response, a quality factor of ∼46 can be
estimated for our acoustic TBIC, which is comparable to
that reported for an acoustic BIC formed by symmetry
protection mechanism [25]. Apparently, it can be further
enhanced in a system consisting of low-loss media. To
further confirm the localized nature of the topological
bound states at the TBIC frequencies f1 and f2, we present
the spatial distributions of the sound intensity at these
frequencies [Fig. 4(d)]. It shows clearly that at f1 the in-
phase excitation ignites an edge-localized state (of even
parity), while the antiphase excitation induces an extended
bulk state (of odd parity). The situation is reversed at f2.
The coexistence of the even (odd) edge state and the odd
(even) bulk state at f1 (f2) identifies the presence of the
TBIC in the mirror-stacked bilayer SSH model. Finally, we
also measured the transmission responses to both excita-
tions (see SM [64]), and provided another independent but
complete evidence for the symmetry-protected TBICs.
Acoustic realization of the 2D higher-order TBICs.—

Figure 5(a) shows our experimental sample for the
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Right: mirror expectation value spectra extracted from the
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excitations. The dashed lines highlight two TBIC frequencies f1
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FIG. 5. Observation of the higher-order TBICs in the mirror-
stacked bilayer quadrupole model. (a) Experimental sample. It is
divided into the bulk (purple), edge (yellow), and corner (green)
regions for extracting the data in (c). (b) Energy spectra simulated
for the finite-sized system, where f1 and f2 denote two TBIC
frequencies. (c) Average intensity spectra measured for the bulk,
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mirror-stacked bilayer quadrupole model. It consists of
5 × 5 unit cells, associated with 200 air cavities in total.
Figure 5(b) provides the eigenfrequency spectra simulated
for the finite-sized sample. It shows clearly the coexistence
of the spectrally isolated corner states and the continuum
bulk states of the opposite parity, as a numerical manifes-
tation of the TBICs. To experimentally identify the higher-
order band topology in both the even and odd subspaces,
we divided the sample into the bulk, edge, and corner
regions, and measured their site-resolved local responses to
the in-phase and antiphase excitations. Figure 5(c) presents
the average intensity spectra for the three representative
spatial regions, where the peaks unveil the well-excited
even (top panel) and odd (bottom panel) states of the
corresponding spatial domains. In particular, the in-phase
(antiphase) corner spectrum shows a predominant peak at
f1 ≈ 4.22 kHz (f2 ≈ 4.39 kHz), which falls inside the
frequency window of the odd (even) bulk band, as a
spectrum hallmark for the presence of the higher-order
TBIC. To further characterize the higher-order TBICs, we
present the spatial intensity distributions at the frequencies
f1 and f2 [Fig. 5(d)]. It shows unambiguously that at f1 the
in-phase excitation ignites a corner-localized bound state
while the antiphase excitation induces an extended bulk
state. Similar phenomena can be observed at f2, but with
bulk and corner states responded to the in-phase and
antiphase excitations, respectively.
Conclusions.—We have theoretically proposed and

experimentally demonstrated a simple mirror-stacking
approach for constructing symmetry-protected TBICs.
Interestingly, the bilayer Hamiltonian can be decomposed
into two mirror subspaces of opposite parities, each of
which simply inherits the band topology and the energy
spectrum information (up to a shifted onsite energy) of the
original monolayer. This enables a direct prediction for the
presence of TBICs. Besides, our mechanism for achieving
BICs can apply to an arbitrary monolayer model with
bound states, even regardless of their topological essence
and spatial locations (see SM [64]). Both advantages
benefit from the independence of the symmetries that
protect the band topology and BICs. Moreover, our find-
ings can be easily extended to other classical wave systems,
which pave the way for further studies on the symmetry-
protected TBICs and associated promising applications.
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