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We propose and study a two-dimensional phase of shifted charge density waves (CDW), which is
constructed from an array of weakly coupled 1DCDWwires whose phases shift from onewire to the next.We
show that the fully gapped bulk CDW has topological properties, characterized by a nonzero Chern number,
that imply edge modes within the bulk gap. Remarkably, these edge modes exhibit spectral pseudoflow as a
function of position along the edge, and are thus dual to the chiral edge modes of Chern insulators with their
spectral flow inmomentum space. Furthermore,we show that theCDWedgemodes are stable against interwire
coupling. Our predictions can be tested experimentally in quasi-1D CDW compounds such as Ta2Se8I.
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An insightful way to think about quantum Hall phases is
in terms of an array of weakly coupled 1D sliding Luttinger
liquids (SLL) [1–4]. Each SLL consists of gapless excita-
tions around its Fermi points k0 � kF, where the origin in
momentum space k0, is a priori a gauge choice. When
coupling identical wires that are displaced in the x direction
and extend along the y direction, the difference δk between
their respective k0 is an observable proportional to the flux
density (i.e., perpendicular magnetic field) between them
[Fig. 1(a)]. A wire array built in this way is then akin to a
sequence of Luttinger liquids with dispersions displaced by
k0ðxÞ ¼ xδk. Weak coupling between the wires opens a
spectral gap in the bulk and the system enters a quantum
Hall phase with chiral edge modes and quantized Hall
conductivity [Figs. 1(b) and 1(c)].
In this work, we contrast this construction of a topo-

logical phase from a SLL with a construction of a 2D phase
of shifted charge density waves (CDW). The CDW
modulation in a 1D wire can be characterized by a potential
such as cosðQyyþ ϕ0Þ, where Qy is the CDW wave vector
and ϕ0 is a phase that, in the case of breaking a continuous
translation symmetry, is associated with the Goldstone
mode of the CDW. In contrast to k0 in the SLL, ϕ0 is not a
gauge freedom of the 1D system, but determines the real-
space origin of the charge density pattern. Our objective is
to study the properties of an array of weakly coupled CDW
wires whose phases are shifted as ϕ0ðxÞ ¼ Qxx [Fig. 1(d)].
Remarkably, we find a duality between the edge modes of
the coupled SLL and shifted CDW: On a ribbon geometry,
the former has edge modes with spectral flow as a function
of momentum along the edge, while the latter has edge

modes with spectral pseudoflow [5] as a function of
position [Figs. 1(e) and 1(f)]. Moreover, we show that
the CDW edge modes are substantially robust against
interwire coupling.
Our study is not purely theoretically motivated, but aims

to model the key aspects of the CDW compound Ta2Se8I.
In line with the shifted CDW picture, Ta2Se8I consists of
TaSe4 chains weakly coupled by van der Waals inter-
actions. It is known to undergo a CDW transition at
TCDW ≈ 260 K [6–13], developing a sizable gap that
experiments determined to be between 100 and
500 meV, with a small ordering wave vector that amounts
to ðQx;QzÞ ≈ ð0.054π=a; 0.098π=cÞ, where c and a are
lattice constants [12,14]. Recent studies highlighted a
multitude of Weyl nodes that are induced through spin-
orbit coupling in the low-energy electronic structure of
Ta2Se8I above TCDW and their implications for possible
axion physics in the CDW phase [11,12]. However,
experimental evidence for a 3D topological (axionic) nature
of the CDW state is lacking [14]. Here, we advocate a much
simpler model of a shifted CDW phase for Ta2Se8I, for
which spin-orbit coupling is unimportant. Our theory
makes the experimentally testable prediction of boundary
states at certain surfaces or step edges of this material.
We start by defining a minimal model on a 2D rectan-

gular lattice in the presence of a CDW modulation, H ¼
H0 þHCDW with

H0 ¼
1

2

X
r

ðtyΨ†
rþŷσzΨr þ txΨ

†
rþx̂σzΨr þ H:c:Þ; ð1Þ
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where Ψ†
r ¼ ðc†α;r; c†β;rÞ with c†σ;r creating an electron at

orbital σ ∈ fα; βg and position r ¼ ðx; yÞ. x̂ and ŷ are
primitive vectors in the x and y directions, respectively,
ðσx; σy; σzÞ are Pauli matrices for orbital, and H.c. stands
for the Hermitian conjugate. We assume that the two
orbitals have hopping amplitudes with opposite signs
and they do not couple via on-site or nearest-neighbor
hopping terms if x → −x and y → −y mirror symmetries
above TCDW are imposed. This can be satisfied, e.g.,
when the orbitals are of s and dxy types, respectively.
Alternatively, we can rotate the Pauli matrices as
ðσx; σy; σzÞ → ðσz; σy; σxÞ and reinterpret them in sublattice
space. In this case, the two sublattices are assumed to be
identical due to the mirror symmetries above TCDW. For
concreteness, we consider the orbital interpretation in
the following.
The model (1) can be viewed as an array of 1D parallel

wires that are displaced in the x direction and extend along
the y direction. Accordingly, ty and tx are hopping strengths
along and between the wires, respectively [Fig. 1(d)].
Without CDW, the model is gapless with band crossings

protected by the symmetries. The energy bands read
ϵ�ðkÞ ¼ �ðtx cos kx þ ty cos kyÞ, where k ¼ ðkx; kyÞ is
the 2D momentum. The lattice constants are taken to be
unity. Wewill focus on the regime 0 ≤ tx < ty, such that the
model approximates the relevant electronic structure of
Ta2Se8I. The bands cross around two points (i.e.,
ky ¼ �π=2) along the ky axis and the Fermi surfaces take
ribbon shapes in the kx-ky plane, in agreement with those
observed in Ta2Se8I [10,15,16]. We will consider a more
realistic model for Ta2Se8I later.
The CDW modulation can be described as a spatially

periodic local potential,

HCDW ¼ V
X
r

cosðQyyþQxxþ ϕÞΨ†
rMΨr; ð2Þ

where V is the strength, the CDW vector Qy along each
wire, and the phase shift Qx in neighboring wires are
related to the wavelengths λxðyÞ as QxðyÞ ¼ 2π=λxðyÞ. We
assume a limit where the wavelengths are large integers
compared to the lattice constants λxðyÞ ≫ 1 [17]. ϕ is the
global constant phase. We focus on interorbital CDW
modulations characterized by a matrixM ∈ fσx; σyg which
open bulk gaps at low energies, as we discuss below [18].
For illustration, we takeM ¼ σx, λy ¼ 21, ty ¼ 1.5 eV, and
V ¼ 0.3 eV unless specified otherwise.
To elucidate the essential physics, we first consider the

limit of decoupled wires (tx ¼ 0). In this limit, all wires are
identical except for their x-dependent CDW phases
ϕ0ðxÞ ¼ Qxxþ ϕ. To explore the topological properties
of the system, we consider the wire at x ¼ 0 and impose
periodic boundary conditions (PBC) in the y direction.
Because of the superperiodic potential with large period λy,
the spectrum of the wire is split into 2λy bands in the
reduced Brillouin zone [Fig. 2(a)]. Remarkably, two bulk
gaps of size V emerge at E ≈�ty sinðπ=λyÞ, respectively.
The bands disperse in ky, whereas are flat in ϕ [Figs. 2(a)
and 2(b)]. Note that the spectrum is periodic in both ky and
ϕ. A topological characterization of the system can be
obtained in terms of Berry phase defined in the compact ky
and ϕ space [19]. Specifically, for each spectral gap, a
Chern number can be computed as [20]

ν ¼
Z

π=λy

−π=λy
dky

Z
π

−π
dϕTr½∂kyAϕ − ∂ϕAky �; ð3Þ

whereAj ¼ iΦ†
∂jΦwith j ∈ fky;ϕg is non-Abelian Berry

connection based on the multiplet of eigenstates with
energy below the gap in question Φ ¼ ðjψ1i;…; jψmiÞ.
Explicitly, we find ν ¼ −2 (þ2) for the lower (upper) gap.
These Chern numbers are independent of λy for λy ≥ 3.
The nonzero Chern numbers imply the appearance of

midgap edge modes when open boundaries are imposed in
the y direction, at least for a certain range of ϕ. To illustrate
this, in Fig. 2(c) we consider Ly ¼ 85 with open boundary
conditions (OBC), Fermi energy EF ¼ ty sinðπ=λyÞ, and

FIG. 1. Duality between the coupled SLLs (left) and shifted
CDWs (right). (a) Schematic of the coupled SLLs. It leads to a
Chern insulator. The dashed lines separate areas with unit
magnetic flux Φ0. (b) Chiral edge modes (red) with energies
in the bulk gap (black) of the Chern insulator, which exhibit
spectral flow as a function of momentum kx along the edge.
(c) Chiral edge modes in position space, which are translation
invariant along the edge. (d) Schematic of the shifted CDW. The
phases of the wires shift with the x position, as depicted by the
varying background color. (e) CDW edge modes with energies
inside the bulk CDW gap, which are dispersion-free in kx.
(f) CDW edge modes in position space, which exhibit spectral
pseudoflow as a function of x along the edge.
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calculate the local density of states (LDOS) as a function of
position y along the wire [21]. Clearly, away from the
boundary, the LDOS shows a bulk gap around EF that
varies periodically with y, which is consistent with the
experiments on Ta2Se8I [13–15]. More interestingly, inside
the gap, exponentially localized edge modes appear for a
wide range of ϕ. The energies of the edge modes at
opposite boundaries are generally different, and depend
strongly onϕ, in contrast to the bulk gap that is constant inϕ.
Crucially, in our 2D array system, the phases ϕ0ðxÞ of the

wires shift in the x direction. Theϕ0 dependence of the edge
modes thus implies a spectral pseudoflow as a function of x
along the edge. The Chern number determines the number
of pseudoflow modes within a wavelength λx along the
edge. We confirm these features numerically in Fig. 3(d).
Moreover, in the decoupled limit, the energy spectrum of the
array is flat in the reduced kx space [Fig. 3(a)]. This indicates
that the edge modes are immobile in the x direction, in stark
contrast to the chiral edge modes in Chern insulators that
carry current. Because of the shifted phases in the wires, at
each boundary, up to λx edge bands appear in kx space.
Notably, the edge modes at different bands are located at
different positions in each period λx, which again reflects the
spectral pseudoflow along the edge.
Now, we consider finite interwire coupling tx and show

that the shifted CDW phase with the features mentioned
above remain robust in the system. In Figs. 3(a)–3(c), we
plot the energy spectra for increasing tx, with PBC (OBC)
in the xðyÞ direction. We find that as tx increases, the CDW
gap ΔCDW is reduced and closed completely after a critical
strength tc. Explicitly, ΔCDW decreases almost linearly with
increasing tx [thick lines in Fig. 3(f)]. For a larger λx, the

decrease of ΔCDW by tx is slower and thus a larger tc is
observed [Fig. 3(g)]. The critical strength tc also increases
with increasing V. Notably, for λx ≳ 5, tc is comparable and
even larger than V. Because of the reduction of ΔCDW,
some edge bands are merged with the bulk continuum.
Thus, the edge modes can be observed at fewer sites along
the edge [Figs. 3(b) and 3(e)]. However, the remaining edge
modes with energies close to EF are only slightly extended
in the x direction. Therefore, for large λx and V, sizable
CDW gaps with edge modes persist up to considerable
interwire coupling in the system.
While ΔCDW are obviously reduced by tx, the energies of

edge modes remain almost dispersion-free in kx even for
considerable tx=ty as long as the edge modes persist inside
the bulk gap. In Fig. 3(f) we plot the width δEedge of the
edge band closest to EF as a function of tx. We find that
δEedge grows as a power-law function of tx. However, it is
always several orders of magnitude smaller than ΔCDW
(whose magnitude is of the same order of V). Overall, the
flatness of edge bands against kx tends to be more
pronounced for an odd and larger value of λx. These
features can be attributed to the unique property of the
spectral pseudoflow of edge modes and that, for odd (even)

FIG. 2. (a) Band structure of a CDW wire with PBC. (b) Band
structure as a function of ϕ at ky ¼ π=ð4λyÞ. There are two CDW
gaps of size V and characterized by Chern numbers�2. (c) LDOS
near the upper gap. Edge modes with energies controllable
by ϕ appear in the gap. Parameters: Ly ¼ 85, ϕ0 ¼ 0.6π,
EF ¼ ty sinðπ=λyÞ, and kBT ¼ 0.03 V in (c). FIG. 3. (a)–(c) Energy spectra for tx ¼ 0, 0.3ty, and 0.8ty,

respectively. The bulk continuum and edge discrete spectra are
indicated by gray and red color, respectively. PBC (OBC) are
imposed in the xðyÞ direction. (d),(e) LDOS for tx ¼ 0 and 0.3ty,
respectively. (f) ΔCDW (thick lines) and one edge bandwidths
δEedge (circle lines) as functions of tx. We consider λx ¼ 10

(blue), 15 (orange), and 21 (green) for illustration. (g) tc as a
function of λx for V ¼ 0.2, 0.3, and 0.5 eV, respectively. Ly ¼
421 and ϕ ¼ 0 in all panels, λx ¼ 21 and Lx ¼ 10λx in (d),(e),
and other parameters are the same as Fig. 2.
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λx, edge modes at the same energy level are separated by a
distance of λx (λx=2). The flatness of edge bands further
indicates that the edge modes are immobile, even in the
presence of hopping in the x direction.
It is important to note that the shifted CDW phase with

finite tx can be characterized by the same Chern number as
in the decoupled limit, since the two are adiabatically
connected without a gap closure. We have also verified that
the results are qualitatively the same for other forms of
interwire coupling. Small deformations of the model (1),
such as a deviation of the band crossing points and a
difference between the hopping strengths of the orbitals, do
not alter the main results [22].
Sa far, we have shown with the minimal model (1) that

the shifted CDW phase with midgap edge modes emerges
in a quasi-1D system with a small CDW vector. To better
connect the theory to experiment, we construct a realistic
model for Ta2Se8I as HTSI ¼ Hz þHxy, where the terms
describing intra- and interchain hoppings are given, respec-
tively, by

Hz ¼

0
BBBBB@

ϵα KαðkzÞ t1e−ikzc=4 t1eikzc=4

KαðkzÞ ϵα t1eikzc=4 t1e−ikzc=4

t1eikzc=4 t1e−ikzc=4 ϵβ KβðkzÞ
t1e−ikzc=4 t1eikzc=4 KβðkzÞ ϵβ

1
CCCCCA
;

Hxy ¼ 4 cos
akx
2

cos
aky
2

0
BBBBB@

0 t3α 0 0

t3α 0 0 0

0 0 0 t3β
0 0 t3β 0

1
CCCCCA
: ð4Þ

The model is written on the basis formed by the dz2-orbitals
of four Ta atoms (denoted as fψα1;ψα2;ψβ1; ψβ2g) in a unit
cell. KτðkzÞ ¼ 2Reðt2τeikzc=2Þ, τ ∈ fα; βg. The parameters
are given in the Supplemental Material [22]. We can check
that the model respects time-reversal, C4z and C2x sym-
metries in the absence of CDW. The low-energy band
structure is displayed in Fig. 4(a), in good agreement with
first-principle calculations [23]. Furthermore, considering
spin-orbit coupling, the model exhibit Weyl nodes enforced
by C4z symmetry near E ¼ 0. We note that spin-orbit coup-
ling consists of inter-chain coupling and its energy scale
(∼1 meV) is much smaller than that of CDW. Thus, to study
the physics associated with CDW, it suffices to consider one
spin species described by Eq. (4). Similar to Eq. (2), we
model the CDW modulation by a periodic local potential,
HCDW ¼ V

P
r;τ;ζð−1Þζ cosðq · rþ ϕÞψ†

τζðrÞψτζðrÞ, which
takes opposite signs for atoms indexed by ζ ¼ 1 and 2.
We choose q ¼ ðπ=18ã; π=18ã; 2π=19cÞ, ã≡ a=

ffiffiffi
2

p
and

V ¼ 0.3 eV, based on experimental observations [13–15].
More details about the model can be found in the
Supplemental Material [22].

Having the realistic model, we now demonstrate that
Ta2Se8I hosts a shifted CDW phase similar to that
discussed previously. To this end, we first calculate the
energy spectrum of decoupled wires (for Hxy ¼ 0) under
PBC in the presence of the CDW potential. As shown in
Fig. 4(b), two CDW gaps of size ∼0.2 eV appear at low
energies. Using Eq. (3), we find that the gaps are charac-
terized by Chen numbers ν ¼ �8. In Fig. 4(c) we take into
accountHxy and consider the system on a ribbon geometry
in (110) plane, with PBC (OBC) in [110] ([001]) direction.
The CDW gap is reduced to be ∼0.12 eV. Most strikingly,
inside the gap, we clearly observe edge modes (purple) with
eight spectral pseudo-flows in each period (∼36ã).
Recently, large surface gaps with clear CDW modula-

tions on the (110) surface of Ta2Se8I have been observed
[13–15]. The CDW patterns have large wavelengths
(∼17–25 nm) both along and perpendicular to the chains.
The CDW gaps (∼0.1–0.5 eV) are smaller than the energy
scale of intra-chain hopping (∼1 eV), but stronger than van
der Waals interaction (∼0.05 eV) [10,12–14]. These obser-
vations are in good agreement with the regime for our
shifted CDW phase. Thus, along the boundaries or step
edges that are perpendicular to the chains, we predict the
existence of edge modes with spectral pseudo-flow. Such
crystal terminations could be prepared with focused ion
beammanipulation [24,25]. We also expect our theory to be
implementable in other quasi-1D CDW materials [26–31]
such as TaTe4 where desired CDW patterns on specific
surfaces have been reported [32,33].
Finally, we note that the edge modes can be observed

even when the edge is not exactly perpendicular to the

FIG. 4. (a) Low-energy band structure (orange) of the model (4)
without CDW. Gray curves are first-principle calculations of
Ta2Se8I. (b) Band structure with the CDW potential. Two CDW
gaps, characterized by Chern numbers �8, appear at low
energies. (c) LDOS near the upper gap as a function of x̄ (in
units of ã) along the edge. Other parameters: V ¼ 0.3 eV,
EF ¼ 0.25 eV, kBT ¼ 0.01V, Lx ¼ 216ã and Lz ¼ 114c.
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chains (but not parallel with the CDW vector). The edge
modes may be pushed into the bulk by particular discon-
tinuous potentials at the edge. However, we expect them to
be stable as long as the edge potential is smooth (i.e., the
change over a lattice constant is much smaller than ΔCDW).
Our theory can be generalized to the case with multiple
CDW vectors, which we detail in the Supplemental
Material [22].
In summary, we have proposed a 2D topological phase of

shifted CDW with midgap edge modes. These edge modes
exhibit spectral pseudo-flow as a function of position along
the edge, thus constituting a duality compared to the chiral
edge modes of Chern insulators. We have shown that this
phase stays stable even under substantial inter-wire cou-
pling. We have constructed a realistic effective model and
applied the theory to Ta2Se8I.
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