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Tunnel spectroscopy data for the detection of Majorana bound states (MBS) is often criticized for its
proneness to misinterpretation of genuine MBS with low-lying Andreev bound states. Here, we suggest a
protocol removing this ambiguity by extending single shot measurements to sequences performed at
varying system parameters. We demonstrate how such sampling, which we argue requires only moderate
effort for current experimental platforms, resolves the statistics of Andreev side lobes, thus providing
compelling evidence for the presence or absence of a Majorana center peak.
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Introduction.—About a decade after the first proposals
for MBS engineering in topological quantum devices [1–4],
numerous reports of experimental signatures have been
published, see, e.g., Refs. [5–10]. However, opinions
remain divided as to whether “Majoranas have been seen”
or not. Broadly speaking, experiments aimed at MBS
detection can be categorized into two groups: tunnel
spectroscopy detecting midgap resonances caused by the
assumed presence of an MBS [11–15], and experiments
going after unambiguous intrinsic properties of topological
states, from unconventional noise correlations [16–24] to
full-feathered braiding protocols [25–28]. While the second
group remains at the level of theoretical proposals, the
former are straightforwardly realizable as a part of the core
MBS experiments. However, the downside is that tunnel
spectroscopy data can be prone to misinterpretation. Among
various other candidates for midgap signatures, pairs of
conventional Andreev bound states—which in symmetry
class D [29,30] superconductor environments [31] have a
tendency to cluster around zero energy—may leave exper-
imental signatures hard to distinguish from a single MBS
[32–39]. At any rate, as witnessed by the current debate on
the “topological gap protocol” by the Microsoft Quantum
team [10,40,41], the community at large does not appear to
be ready to take tunnel spectroscopy signatures, even of
high quality, as unambiguous evidence for MBS formation.
In this Letter, we propose a relatively straightforward

upgrade from single shot tunnel spectroscopy measure-
ments to parametric sequences of measurements. Their
realization for individual samples neither requires essential
new hardware nor measurement protocols beyond what is
already available. We argue that the compounded meas-
urement data collected by statistical tunnel spectroscopy
does contain compelling evidence for or against MBS
formation. Crucially, both the presence and the absence of
an MBS will leave unique imprints, provided the required

statistical resolution has been met. A second key feature is
that disorder or device imperfections, usually considered as
unwelcome obstructions to MBS observability [42–47],
here assume the role of a resource: our approach works best
for significantly disordered systems.
To understand its principle, we need to recall a few

signatures of the spectrum of class D superconductors
[29,30,32]. In confined geometries subject to disorder or
other sources of “integrability breaking,” the Andreev
spectrum is discrete, symmetric around zero energy, and
subject to statistical level correlations. Specifically, in the
absence of topological midgap states, Andreev bound states
exhibit a slight statistical tendency to attraction to zero
energy, while they repel among themselves. Conversely, if
a topological midgap state is present, Andreev states get
pushed away from zero energy, and still repel among
themselves. These signatures find a quantitative represen-
tation in the ensemble-averaged spectral density [30,32],

hρðϵÞi ¼ 1þ c
2
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where δϵ is the average (Andreev bound state) energy
spacing and c ¼ þ1 (c ¼ −1) in the presence (absence) of
a MBS. The sinusoidal oscillations in Eq. (1) describe a
tendency of the spectrum to “crystallize” into a statistically
uniform sequence around zero, with diminishing (∼ϵ−1)
rigor. Equation (1) encodes a nonlocal fragmentation of
the Hilbert space and is obtained under the idealizing
assumption of an infinite ensemble subject to disorder
strong enough to couple a large number of levels (random
matrix limit [30,48]).
In experimental reality, there is no mathematical ensem-

ble, disorder may not be quite so strong, and the recorded
tunnel conductance data contains wave function fluctua-
tions next to spectral signatures. Further, the MBS peak, if
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present, will be broadened by spectroscopic resolutions,
temperature, and possibly other forms of environmental
coupling. However, as we are going to argue, and dem-
onstrate by numerical simulations, even relatively small
sequences of measurements performed for an engineered
ensemble of configurations at limited resolution can reveal
the principal signature of the spectral data: a statistical
oscillation of period δϵ with opposite sign, depending on
the presence or absence of Majorana states. In other
words, a positive sign signal assumes the role of a control
measurement revealing sufficient resolution for what in the
presence of a MBS must flip sign to become a negative sign
sequence. These rigidity patterns are deeply nonperturba-
tive signatures of the class D spectrum, which in the c ¼ 1
case do require a single midgap state (also known as
Majorana). On this basis, we reason that a “smoking gun”
signature is at hand. While our approach in principle applies
to arbitrary Majorana platforms, we illustrate it below for
the example of a proximitized topological insulator (TI) slab
pierced by a vortex [49–55], where Andreev states corre-
spond to Caroli–de Gennes–Matricon subgap states [56].
In addition, in Supplemental Material [57], we comment
on alternative implementations in iron-based superconduc-
tors [9,58–65], planar phase-controlled Josephson junctions
[66–69], or semiconductor hybrid nanowires [7,27,70].
Statistical spectroscopy principles.—We propose a pro-

tocol where an effectively averaged spectral density hρðϵÞi
is obtained by variation of external control parameters. To
understand the principle, we note that if integrability is
broken by impurities and/or asymmetric system bounda-
ries, the variation of any system parameter will result in
new realizations of the chaotic scattering potential [71].
Similar approaches have previously been applied in semi-
conductor devices [72] and nanowires [73] for generating
effective ensemble averages of the tunneling conductance.
As concrete example,wehere formulate the approach for aTI
vortex, cf. Fig. 1(a): an s-wave superconductor is deposited
on a TI surface except for a circular region of radius R.
Through this region an integer number ν of superconducting
flux quanta Φ0 ¼ π=e is threaded (ℏ ¼ 1 throughout). For
odd parity of ν, this synthetic vortex binds a zero energy
MBS [50].
Variations in the voltage of nearby finger gates Vg

parametrically change the system Hamiltonian. Even in
the absence of “intrinsic” disorder, they break integrability
and realize an effective ensemble average, provided the
perturbation is strong enough to effectively scramble the
spectrum of vortex states, cf. Fig. 1(b). To estimate
the required voltage variations, we make the conservative
assumption that the Coulomb interaction across the vortex
is strongly screened, and that only local wave functions
right under the geometric finger gate surface are susceptible
to the perturbation. To first order in perturbation theory, this
leads to the estimate hΨjδVgjΨi ≈ δVg

R
g d

2rjΨrj2 ≈ rgδVg
for the distortion of the energy ϵ of individual states.

Here, the integral extends over the area underneath the gate,
we assume approximate statistical uniformity of the wave
function modulus, and 0 ≤ rg ≤ 1 is the fraction of the gate
area relative to that of the vortex. Variations δVg ≳ δϵ=rg
strong enough that the perturbation exceeds the level
spacing δϵ effectively define a new realization of the
spectrum, cf. Fig. 1(b).
Provided the broadening κ of Andreev states due to

disorder exceeds the level spacing δϵ, we expect level
repulsion, and in the consequence the emergence of the
spectral density in Eq. (1) upon averaging over an ensem-
ble. Presently, this ensemble average is realized by sam-
pling a large number of configurations distinguished by
changes δVgrg=δϵ ¼ Oð1Þ, and subsequently collecting the
results in a histogram.
In a concrete experiment where each level spacing is

divided into Nb bins and the number of runs is Nr, an
average number of nb ¼ Nr=Nb levels will be counted per
bin. This number is subject to statistical fluctuations
δnb ∼Oðn1=2b Þ. To obtain a reliable result, the relative
fluctuation δnb=nb must be smaller than the relative change
jρðϵÞ − ρð∞Þj=ρð∞Þ, computed according to Eq. (1). A
straightforward estimate for, say, ϵ ≈ 2δϵ leads to the
conclusion that Nr ∼ 102Nb runs are required to obtain
statistical certainty.
TI vortex.—In the following, we test the statistical

protocol for the TI vortex setup in Fig. 1(a). The single-
particle Bogoliubov–de Gennes Hamiltonian describing the
proximitized TI surface is given by [50]

HBdG ¼ ðvp · σ − μÞτz þ ReΔðrÞτx − ImΔðrÞτy; ð2Þ

where v is the surface-state velocity, μ the chemical
potential, and Pauli matrices τi (σi) act in particle-hole
(spin) space. In the London gauge, the pair potential is

FIG. 1. Statistical spectroscopy setup. Left: a vortex is defined
by a TI coated with an s-wave superconductor (SC) except for a
region of radius R which is threaded by ν magnetic flux quanta.
Electrostatic finger gates effectively change the disorder con-
figuration. Red lines indicate spatial support of a Majorana edge
mode. Right: in-gap spectrum vs gate voltage Vg obtained by
simulating the setup in (a). By varying Vg, Andreev state energy
levels change on a scale set by the level spacing δϵ. Sequences of
independent disorder realizations are separated by δVg ≈ δϵ=rg
(see main text) as marked by the vertical lines.
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ΔðrÞ ¼ jΔðrÞje−iνθ, with polar coordinates ðr; θÞ relative to
the vortex center and ΔðrÞ ¼ ΔΘðr − RÞ assumed as step
function–like. The Hamiltonian (2) satisfies particle-hole
symmetry, CHBdGC−1 ¼ −HBdG with C ¼ σyτyK and K
complex conjugation, placing it into symmetry class D.
(For completeness, we mention that in the field free case,
ν ¼ 0, we also have time reversal symmetry, T HBdGT −1 ¼
HBdG with T ¼ iσyK, implying an upgrade to class DIII.)
We add disorder to the vortex core r < R in the form of a

Gaussian correlated random potential VðrÞτz with zero
mean and variance hVðrÞVðr0Þi ¼ γ2δðr − r0Þ. The corre-
sponding scattering mean free path computed in Born
approximation is given by l ¼ v=κ ¼ ðv=γÞ2R [57].
Comparison with the bound-state spacing of the clean
vortex, δϵ ≃ v=R≡ Ecl, shows that the threshold to strong
disorder mixing, δϵ ∼ κ, is reached when l ∼ R, i.e., when
the quasiparticle motion crosses over from ballistic to
diffusive. For stronger disorder, the characteristic level
spacing shrinks to δϵ ≃ ðl=RÞðv=RÞ≡ ETh, i.e., from the
inverse of the ballistic time of flight, Ecl, to the inverse of
the diffusion time across the vortex, ETh, see Supplemental
Material [57] for details.
Our statistical approach to MBS spectroscopy works for

disorder beyond the ballistic-diffusive threshold. To illus-
trate this point, Fig. 2 shows data histograms obtained from
Nr ¼ 5 × 104 disorder realizations and for disorder
strengths ranging from an almost perfectly ballistic regime
l ¼ 25R to a diffusive one with l ¼ 0.1R. The columns on
the left (right) are for a vortex with (without) MBS, realized
here by setting ν ¼ 1 (ν ¼ 2). In the ballistic regime, we
observe weakly broadened states with spacings varying
strongly at scales ∼Ecl. Upon crossing into the diffusive
regime, they start to overlap, along with a tendency toward
a more uniform spacing—the level crystallization sympto-
matic for quantum chaotic spectra.
Real experiments have access to the cumulative con-

tribution of all levels, here indicated in gray, where we
observe the gradual approach to the profile in Eq. (1), as
well as to the distribution of individual levels, cf. the green-
orange-cyan histograms for the lowest three positive energy
levels. For disorder deep in the diffusive regime, we expect
the statistics of these levels to be described by the principles
of random matrix theory [30,48]. Specifically, for class D
one expects the probability distribution for the lowest lying
level in the case with (without) MBS to be given by PðϵÞ ∝
ϵ2 expð−ϵ=2Þ ½PðϵÞ ∝ expð−ϵ2=2Þ� [29,30,57]. Figure 2
shows that these distributions, indicated as red curves,
are clearly realized by the disordered vortex in the strong
disorder regime. However, the most important conclusion is
that the presence or absence of a MBS is clearly resolved
via the statistics of the cumulative histogram, provided the
focus of attention is shifted to the side bands, and the
disorder is sufficient to induce interlevel correlations.
Experimental reality.—The analysis above assumed

arbitrary energy resolution, and averaging over a large
number Oð105Þ of realizations. What happens under less

ideal conditions? In an experiment, the potential VðrÞ
describing impurities or scattering off device irregularities
is fixed and different realizations of the spectrum are
generated by variation of externally adjustable parameters.
In the TI vortex, the magnetic field strength is likewise
fixed, which leaves gate electrodes as the next best choice
for generating a parameter set. To generate Nr ∼ 102Nb
samples required for Nb bins per level spacing (see above
estimate), one may need to work with f finger gates and the
resulting f-dimensional parameter space. As the gate
voltages are meant to mimic “disorder,” it is best to use
an asymmetric geometric design as indicated in Fig. 1.
Electrodes with large electrode-to-vortex area ratio rg will
generate optimal sensitivity of energy levels, ∼rgVg.
The simulations discussed in the following were per-

formed for Nb ¼ 10 bins, requiring Nr ¼ Oð103Þ runs. We
worked with f ¼ 3 electrodes [57], and varying each of

FIG. 2. Histogram for the positive energy levels of the TI
vortex, with energies in units of Ecl ¼ v=R. Panels (a)–(d) [(e)–
(h)] show numerical results in the presence (absence) of a MBS
with increasing disorder strength as obtained by diagonalizing
HBdG for Nr ¼ 5 × 104 disorder realizations. Green, orange, and
cyan colors refer to the three lowest levels, all others are
represented by the gray background. For weak disorder, l ≫
R [panels (a),(e)], the averaged spectral peaks lie isolated, they
begin to overlap when l ∼ R [panels (b),(c) and (f),(g)], and
finally combine to a continuum described by Eq. (1) at l < R
[panels (d),(h)]. The statistics of the lowest level is accurately
described by the spacing distribution PðϵÞ (red curves) discussed
in the text.
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their voltages over a range δVg ∼ δϵ=rg generated the
parameter space for up to Nr ≈ 104 statistically indepen-
dent samples [74]. Finally, we account for the broadening
of individual levels due to temperature or environmental
coupling by introducing a Lorentzian line width,
δðϵÞ ↦ ðΓ=πÞ=ðϵ2 þ Γ2Þ, with Γ ¼ 0.05Ecl. Here, Γ≲ δϵ
is required to resolve the oscillatory pattern of the target
spectral density, i.e., our method requires the resolvability
of individual states [75].
Given this setup, the minimal goal is a statistically sound

distinction between the cases c ¼ �1 in Eq. (1). Figure 3
illustrates how the two cases are distinguished through a
phase shift in the oscillatory spectral density at finite
energy. In either case, a midgap peak is present (caused
by a broadened MBS for c ¼ þ1, or a statistical accumu-
lation of Andreev states for c ¼ −1). While these two peaks
are difficult to distinguish, our method focuses on the
spectrum away from the center. We note that in either case,
the average spectral density contains a sequence of extrema
at ϵ ∼ ½ð2nþ 1Þ=4�δϵ. The difference is that this sequence
starts with a maximum (for c ¼ 1) or a minimum (for
c ¼ −1). A more refined signature is obtained by sub-
tracting a constant background and fitting the remaining
oscillatory signal for the first, say, five extrema to Eq. (1),
using δϵ as single fit parameter.
Figure 3 shows data processed in this way for increasing

number of runs Nr, either with (left column) and without
(right) MBS. The quality of the data may be assessed, e.g.,
by calculating the sum of squared distances between the

extrema of the fit function and the data. For too low sample
number, e.g., for Nr ¼ 60, no unambiguous pattern of
extrema is identifiable. At Nr ¼ 600 samples, side lobes
begin to emerge, but a reliable assignment of extrema is still
difficult to ascertain. However, forNr ¼ 6000, the extremal
energies are evenly spaced, and the squared distance fit
accurately determines the correct sign of c. Additional
information on system parameters, such as knowledge of
the effective broadening Γ, may be exploited to develop
more informed fitting protocols for the ensemble averaged
data. However, we found that such refinements lead only to
minor improvements of the results.
Let us briefly comment on the experimental feasibility of

the TI vortex setup. Generally speaking the vortex area
should be chosen small enough that its quantized levels
can be resolved, and large enough that neighboring levels
are coupled by disorder and gate variations. With δϵ ≈
ETh ¼ vl=R2, and given typical values v ≈ 5 × 105 m=s,
l ≈ 20 nm [76], with spectral resolution Γ ≈ 30 μeV, one
needs to have R≲ 3 μm. Choosing R ¼ 300 nm and finger
gates of width ≈50 nm, we have l=R ≈ 0.1. For these
values, individual levels can be distinguished and a few
finger gate electrodes could be placed over the vortex
core. We are thus confident that the requirements for our
proposal to work are met by existing setups.
Conclusions.—We have proposed a novel scheme for the

detection of MBS in existing device structures which
combines tunnel spectroscopy with elements of statistics.
The focus of attention is here shifted from the center peak
ubiquitous in spectroscopic data—which is notorious for
its misinterpretability—to the pattern of side bands. The
unavoidable presence of effective disorder becomes a
resource in that it induces correlations between levels
which, upon averaging over different parametric realiza-
tions, lead to the effectively crystalline structure in Eq. (1).
The latter originates in a combination of statistics and
topology which is unambiguously linked to the presence or
absence of a MBS, even if the latter cannot be clearly
identified in isolation. Another advantage of the approach is
that it includes its own validation: if neither the positive,
c ¼ 1, nor the negative, c ¼ −1, signal can be resolved, the
method has not been implemented with sufficient accuracy.
The principal conditions for it to work are resolvability of
individual levels (where one may argue that this condition
must be met anyway for the MBS to become a useful
resource), sufficient statistics provided by at least Oð103Þ
runs, and effective disorder strong enough to cause level
correlation. (If the “native” disorder is too weak, one may
contemplate lowering the level spacing by increasing the
vortex size for diagnostic purposes.) These criteria are
realistic for the vortex platform, and we are confident that
the same holds for other realizations, such as planar
Josephson junctions, leaving sufficient freedom for the
placement of gate electrodes. We conclude that this
approach has the potential to settle the issue of MBS

FIG. 3. Histogram as in Fig. 2 but for a single realization of
VðrÞ with l ¼ 0.1R, using an increasing number of Nr samples
with (left column) and without (right) MBS. The first five
extrema are indicated by dashed vertical lines. The green (orange)
curves are fits to Eq. (1) for c ¼ 1 (c ¼ −1) within the dark blue
regions, i.e., with the δ peak removed, using δϵ as single fit
parameter. Inferior fits are shown as dashed curves.
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existence with available measurement protocols and
hardware.
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