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A quasilinear plasma transport theory that incorporates Fokker-Planck dynamical friction (drag) and
pitch angle scattering is self-consistently derived from first principles for an isolated, marginally unstable
mode resonating with an energetic minority species. It is found that drag fundamentally changes the
structure of the wave-particle resonance, breaking its symmetry and leading to the shifting and splitting of
resonance lines. In contrast, scattering broadens the resonance in a symmetric fashion. Comparison with
fully nonlinear simulations shows that the proposed quasilinear system preserves the exact instability
saturation amplitude and the corresponding particle redistribution of the fully nonlinear theory. Even in
situations in which drag leads to a relatively small resonance shift, it still underpins major changes in the
redistribution of resonant particles. This novel influence of drag is equally important in plasmas and
gravitational systems. In fusion plasmas, the effects are especially pronounced for fast-ion-driven
instabilities in tokamaks with low aspect ratio or negative triangularity, as evidenced by past observations.
The same theory directly maps to the resonant dynamics of the rotating galactic bar and massive bodies in
its orbit, providing new techniques for analyzing galactic dynamics.
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Introduction.—Resonances are channels for nonadiabatic
energy exchange between particles and waves in kinetic
systems. In linear theory, resonant interactions occur when a
specific synchronization condition is satisfied exactly. In
reality, however, this condition is smeared out due to effects
such as finite mode amplitude, turbulence, and collisions. In
plasmas, the effect of resonance broadening has been
historically investigated in strong turbulence [1–5] and
quasilinear [6–11] approaches, with important implica-
tions to the dynamics of plasma echoes [12] and Alfvén
waves [13]. Previously unexplored aspects, but similarly
important for influencing the resonant particle relaxation,
are mechanisms responsible for the shifting and splitting of
discrete resonances.
The competition between convective (dynamical fric-

tion, also known as drag) and diffusive (scattering) colli-
sions plays a key role in determining the dynamical
behavior of wave-particle resonant systems [14]. For
instance, it is crucial to explaining the observation of
Alfvén eigenmode frequency chirping in tokamaks [15].
Although global nonresonant effects of drag are well
known [16], the influence of drag on the structure of
narrow resonant layers has not previously been determined.
In this Letter, we explore kinetic instabilities close to

their threshold to analytically show that coherent Fokker-
Planck drag breaks the symmetry of the resonances with
respect to their original location. This occurs not only by
shifting and splitting them, but also by altering the relative
strength of regions in the vicinity of a resonance. The
skewed dependence of the resonance due to drag is, in turn,

responsible for significant modifications to the particle
distribution function. Moreover, it is demonstrated that the
fully nonlinear collisional kinetic system naturally reduces
to the form of a quasilinear (QL) theory in the limit of
marginal stability and when stochastic processes dominate
the relaxation.
An important application of these findings in fusion

plasmas is the forecasting of deleterious fast ion transport
by Alfvén eigenmodes (AE). Fully nonlinear simulations
are numerically costly and, therefore, it is of practical
interest to develop reduced models, such as quasilinear
theory, capable of reproducing essential features of more
complete descriptions [17,18]. The drag-induced modifi-
cations of the instability saturation level, resonance
function, and fast ion redistribution are anticipated to
be more significant in tokamaks with low aspect ratio or
negative triangularity, as evidenced by past observations
of a greater propensity for dynamical Alfvén eigenmode
behavior in these configurations [19–23], consistent with
theoretical predictions [24–26].
A deep connection exists between kinetic processes in

plasmas and those present in self-gravitating systems, as both
are well described by mean field theories governed by long-
range, inverse square laws. In fact, the respective distribu-
tions obey the same evolution equation in phase space, giving
rise to analogous phenomena such as Landau damping and
resonant relaxation in both plasmas [27–29] and self-
gravitating systems [30–33]. Consequently, understanding
the structure of collisional wave-particle resonances is
equally relevant to kinetic plasma instabilities and galactic
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dynamics, for instance, in determining the torque applied to
the rotating galactic bar by orbiting heavy bodies [34].
Self-consistent transport theory with dynamical friction

and scattering.—Krook or scattering collisions are known to
lead to an antisymmetric modification of the particle
distribution around a resonance [9]. As will be demon-
strated, drag introduces a distinct, asymmetric response.
Hence, we investigate the 1D nonlinear dynamics of an
electrostatic wave resonating with a hot minority species,
i.e., the canonical bump-on-tail problem, in the presence of
both scattering and drag. The generalization to more
complicated geometries and to waves of any polarization
can be achieved with the methods in Refs. [9,35]. The wave
field is represented as Eðx; tÞ ¼ Re½ÊðtÞeiðkx−ωtÞ�, with
complex amplitude ÊðtÞ. The hot minority species is
described via a distribution function fðx; v; tÞ with an initial
discrete resonance at kvres ¼ ω. For resonances narrow with
respect to the velocity scale of the distribution, it is sufficient
to evaluate the Fokker-Planck coefficients at the resonance
center, and the kinetic equation becomes [14,35]

∂f
∂t

þ v
∂f
∂x

þ 1

k
Re

�
ω2
be

iðkx−ωtÞ
�
∂f
∂v

¼ C½f − F0�; ð1Þ

where

C½g� ¼ ν3

k2
∂
2g
∂v2

þ α2

k
∂g
∂v

: ð2Þ

Here, F0ðvÞ is the equilibrium distribution function, which
is assumed to have an approximately constant positive slope
in the vicinity of the resonance. The rate of mode drive at
t ¼ 0 in the absence of damping is proportional to this slope:
γL;0 ¼ ð2π2q2ω=mk2Þ∂F0=∂v, while the mode damping
rate due to interaction with the background thermal plasma
is given by a constant γd. The nonlinear bounce frequency

for deeply trapped resonant particles, ωbðtÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qkÊðtÞ=m

q
,

is a convenient measure of the mode amplitude.
The coefficients ν and α are the effective scattering

and drag collision frequencies, respectively, which are
enhanced with respect to the 90° pitch angle scattering
rate and the inverse slowing down time [7,12,25,36] (see
Ref. [37] for heuristic arguments). Because of the narrow-
ness of the resonances, the resonant particle dynamics can
be strongly controlled by collisions even if their nonreso-
nant dynamics hardly feel their effect.
Because of spatial periodicity, the distribution

can be assumed of the form fðx; v; tÞ ¼ f0ðv; tÞþP∞
l¼1 ½flðv; tÞeilðkx−ωtÞ þ c:c:�. In the collisional regime,

an asymptotic expansion exists in orders of the small
parameter jω2

bj=ν2 ≪ 1. Rewriting Eq. (1) in orders of
such a small parameter naturally implies the ordering
jf00ð0Þj ≫ jf01ð1Þj ≫ jf00ð2Þj; jf02ð2Þj [39]. The prime denotes
the derivative with respect to v, while the superscript

denotes the order in the wave amplitude (proportional to
jω2

bj=ν2). Note that f0ð0Þ corresponds to the equilibrium
distribution F0. This ordering of the perturbation theory is
satisfied for the entire time evolution of the system so long
as (i) steady asymptotic solutions exist [guaranteed when
α=ν < 0.96 and ν > νcrit ≈ 2.05ðγL;0 − γdÞ [14] ] and (ii) the
system is sufficiently close to marginal stability, i.e.,
γL;0 − γd ≪ γL;0. When conditions (i) and (ii) are not
satisfied, the mode may grow to an amplitude that violates
the jω2

bj ≪ ν2 assumption. From Eq. (1), the fl satisfy

∂fl
∂t

þ ilðkv − ωÞfl þ
ðω2

bf
0
l−1 þ ω2�

b f0lþ1Þ
2k

¼ C½fl�: ð3Þ

In general, the solution of Eq. (3) is an integral over the
time history of the system that involves delays in the
argument of ωbðtÞ. However, when stochastic collisions
dominate the system’s dynamics, the system’s memory
is poorly retained, and the dynamics instead become
essentially local in time [38,40]. This occurs when
ν ≫ γL;0 − γd. The constraints on these parameters become
more restrictive as the ratio of drag to scattering is
increased [37]. Then, to first order in jω2

bj=ν2, one can
disregard the time derivative in Eq. (3), yielding

fð1Þ1 ¼−
F0
0ω

2
bðtÞ

2kν

Z
∞

0

dse−ið
kv−ω
ν Þs−iα2s2

2ν2
−s3

3 : ð4Þ

Using the reality rule fð1Þ−1 ¼ fð1Þ�1 , Eq. (3) can be written
to second order in jω2

bj=ν2:

∂fð2Þ0

∂t
þ 1

2k
ðω2

b½f01ð1Þ�� þ ω2�
b f01

ð1ÞÞ ¼ C½fð2Þ0 �: ð5Þ

Substitution of Eq. (4) into Eq. (5) shows that
only the spatially averaged distribution fðv;tÞ≡ðk=2πÞ×R 2π=k
0 fðx;v;tÞdx¼F0ðvÞþfð2Þ0 ðv;tÞ explicitly appears in
the wave-particle power exchange to second order in
jω2

bj=ν2. Since ∂F0=∂t ¼ 0 and jF0
0j ≫ jf00ð2Þj, one

then obtains from Eq. (5) that the resonant particle
response is regulated by a QL diffusion-advection transport
equation:

∂fðv;tÞ
∂t

−
∂

∂v

�
π

2k3
jω2

bj2RðvÞ∂f
∂v

�
¼C½f−F0�; ð6Þ

with the resonance function given by

RðvÞ ¼ k
πν

Z
∞

0

ds cos

�ðkv − ωÞ
ν

sþ α2

ν2
s2

2

�
e−s

3=3: ð7Þ

RðvÞ gives the velocity-dependent strength of the resonant
wave-particle interaction. In the absence of collisions,
RðvÞ ¼ δðv − ω=kÞ would describe an exact, unbroadened
resonance. For all values of α=ν, the property
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R
∞
−∞ RðvÞdv ¼ 1 is exactly satisfied. The complete set of
equations describing the QL system is then given by
Eqs. (6) and (7), coupled with the amplitude evolution
equation

djω2
bðtÞj2
dt

¼ 2½γLðtÞ − γd�jω2
bðtÞj2; ð8Þ

where

γLðtÞ ¼
2π2q2ω
mk2

Z
∞

−∞
dvRðvÞ ∂fðv; tÞ

∂v
: ð9Þ

A first-principles derivation of Eqs. (8) and (9) is shown in
Supplemental Material [37].
Remarkably, a QL transport theory has emerged sponta-

neously from the nonlinear one under the assumption that
stochasticity dominates over the relaxation timescale
ðν ≫ γL;0 − γdÞ, even in the presence of coherent dragwhich
acts to preserve phase space correlations. Furthermore, the
QL system was obtained for an isolated, discrete resonance
without invoking any overlapping condition.
Shift of the resonance function due to symmetry

breaking.—Plotting the resonance functionRðvÞ for differ-
ent values of α=ν, as done in Fig. 1(a), demonstrates that
drag shifts the location of the strongest wave-particle
interaction in phase space. Moreover, drag acts to increase
the strength of the interaction downstream of the resonance
and diminish it upstream. Although the quantitative
changes in the resonance function due to drag are seem-
ingly small, this fundamental change in the character of the
wave-particle resonance has substantial consequences for
how the energetic particles are redistributed. This shift is
not analogous to a simple Doppler shift but rather the result
of asymmetry present in the collisional dynamics due to
drag, which has a preferred direction. Without drag, RðvÞ
is perfectly symmetric about kv − ω ¼ 0.
The shift of the resonance function implies a previously

unrecognized collisional modification to the resonance
condition, which can be obtained by calculating the location
of the peak of RðvÞ, leading to

R
∞
0 sin ðs½ðkv − ωÞ=ν�peakþ

α2s2=2ν2Þs expð−s3=3Þds ¼ 0. Noting that only small s
contributes due to the strongly decaying cubic exponen-
tial, the drag-modified resonance condition becomes
ðkv − ωÞpeak ≈ −31=3Γð4=3Þα2=2ν, which is accurate to
within 1.5% for α=ν < 1. Shifted resonance lines, captured
here using drag in a considerably reduced theory, are also
known to exist in the strong turbulence framework [49]
as a result of turbulence modification of ensemble average
orbits.
Particle relaxation.—The derived QL system also repro-

duces key features of the complete nonlinear system,
namely, the perturbed distribution function (δf≡f−F0)
and wave saturation amplitude. When stochasticity regu-
lates the timescale for the mode growth, Eq. (6) can be

further simplified to ðν3=kÞδf0 þ α2δf ¼ −ðπjω2
bj2=2k2Þ×

RðvÞF0
0, which can be solved for by direct integration:

δfðv; tÞ ¼ jω2
bðtÞj2F0

0

2kν3

�
c

�
α

ν

�

−
Z

∞

0

dse−s
3=3

α4=ν4 þ s2

�
α2

ν2
cos

�ðkv − ωÞs
ν

þ α2

ν2
s2

2

�

þ s sin

�ðkv − ωÞs
ν

þ α2

ν2
s2

2

���
: ð10Þ

The integration constant cðα=νÞ is determined by enforc-
ing particle conservation:

R
vmax
−vmax

δfdv ¼ 0. The velocity
structure of δf does not evolve in time, as all time
dependence is contained in the overall factor jω2

bðtÞj2.
The relaxed distribution is plotted in Fig. 1(b) for several
values of α=ν < 1. Remarkably, a small quantitative
asymmetry in the collisional dynamics due to drag can
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FIG. 1. (a) Resonance function [Eq. (7)], (b) saturated distri-
bution modification with respect to the initial equilibrium
distribution, δf ¼ f − F0 [Eq. (10)], and (c) time evolution of
the mode amplitude (proportional to jω2

bj). In (a) and (b), solid
curves represent analytic expressions, while dashed curves are
simulation results from the nonlinear Vlasov code BOT using
ν=ðγL;0 − γdÞ ¼ 20 and γd=γL;0 ¼ 0.99. Colored curves in (c) are
simulation results. The inset plots the saturation level from these
simulations against the analytic prediction.
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have a large qualitative effect on the saturated distribution,
even though the corresponding changes in the resonance
function are less dramatic. When no drag is present
(α ¼ 0), δf is antisymmetric with constant plateaus outside
of a narrow transition region near the peak of the resonance.
As the ratio of drag to scattering is increased, the plateau
upstream of the resonance ðkv > ωÞ instead decays in
velocity space at a rate proportional to α2=ν2. Particle
conservation shifts the entire distribution downward once
the symmetry is broken, eliminating nearly all of the
downstream particle redistribution, even for very small
amounts of drag. The drag-induced modifications to δf
were compared against simulations performed with the
nonlinear 1D Vlasov code BOT, which solves the plasma
kinetic equation [Eq. (1)] directly [24,50]. The dashed
black curves in Fig. 1(b) show the simulation results for
each value of α=ν, demonstrating excellent agreement.
Instability saturation level.—Drag has a destabilizing

effect on the underlying instability, leading the wave to
saturate at a larger amplitude with increasing α=ν. An
analytically tractable example is the first-order correction to
the saturation amplitude due to drag. Substituting Eq. (10)
into Eq. (9), to lowest order in α2=ν2, one finds (the details
of the derivation are given in Supplemental Material [37])

γLðtÞ≃ γL;0

�
1−

jω2
bðtÞj2
2ν4

�
Γ
�
1

3

��
3

2

�
1=3 1

3
−
π

2

α2

ν2

��
: ð11Þ

At saturation, i.e., when γLðtÞ ¼ γd, then the mode ampli-
tude Ê is given by

jωb;satj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qkÊsat

m

s
≃
�

2ð1 − γd=γL;0Þ
Γð1

3
Þð3

2
Þ1=3 1

3
− π

2
α2

ν2

�
1=4

ν; ð12Þ

which is the same as calculated directly from nonlinear
theory (Ref. [38]). In the absence of drag, the saturation in
Eq. (12) recovers the level calculated in Ref. [35]. While
not possible to express in terms of elementary functions, it
can nonetheless be proven analytically that the QL satu-
ration level also reproduces the fully nonlinear one when-
ever a steady state solution exists.
Figure 1(c) shows the time evolution of the mode

amplitude in fully nonlinear simulations. The saturation
levels are in excellent agreement with the unapproximated
analytic expression [37] and demonstrate that even mod-
erate amounts of drag can appreciably increase the satu-
rated mode amplitude. For example, α=ν ¼ 0.6 yields a
40% increase in the saturated amplitude relative to if drag
were neglected. Consequently, this increase in mode
amplitude enhances the resonant particle transport, as
shown in Fig. 1(b). As α=ν is increased from 0.6 to 0.8,
the magnitude of δf nearly doubles.
Resonance splitting due to large drag.—It is also

interesting to consider the structure of the resonance when

drag dominates over scattering, corresponding to instabilities
whichwill eventually reach a strongly nonlinear regime, with
the potential for substantial transport. Although for α=ν >
0.96 no steady state solution is allowed within the near-
threshold perturbation theory [14], all of the derivations to
this point nonetheless remain valid during the early growth
phase, up until the mode amplitude exceeds the assumed
jω2

bj=ν2 ≪ 1 ordering.
For α ≫ ν, a pronounced splitting of the resonance

function occurs, as shown in Fig. 2(a). Simultaneously,
the resonance function broadens beyond its original width,
proportional to ν, instead becoming proportional to α. It can
be shown from Eq. (7) that, for kv < ω in the limit of
ðkv − ωÞ2 ≫ α2 ≫ ν2 ≫ γ2, the resonance function has the
following asymptotic behavior:

RðvÞ ¼ 1

α

ffiffiffi
2

π

r
exp

�
1

3

�
ν

α

kv − ω

α

�
3
�
cos

�ðkv − ωÞ2
2α2

−
π

4

�
:

ð13Þ

Hence, the resonance function’s extrema are given by
ðkv − ωÞcrit ¼ −α

ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1=4

p
for n ≥ 0. In particular,

n ¼ 0 gives the central shift in the resonance function,
showing that it becomes proportional to α when drag
dominates instead of α2 when scattering dominates.
Strictly speaking, similar extrema are present even when
α ≪ ν; however, they are substantially smaller than the
primary peak.
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FIG. 2. (a) Resonance function [Eq. (7)] and (b) saturated
distribution modification with respect to the initial equilibrium
distribution, δf ¼ f − F0. The dashed curves in (b) were pro-
duced at tγL;0 ¼ 300 from nonlinear BOT simulations with
ν=ðγL;0 − γdÞ ¼ 20, γd=γL;0 ¼ 0.99, and initial condition
ωb=γL;0 ¼ 10−8, while the solid curves represent Eq. (10).
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The splitting of the resonance function is a novel
quasilinear effect not previously identified in plasmas.
This behavior implies that for sufficiently large drag there
can be multiple regions of phase space where particles are
efficiently interacting with the wave, even for the idealized
case of a monochromatic wave with a uniform background.
During the early growth phase in the drag-dominated

regime, δf has identical asymptotic behavior as the
resonance function: δfðvÞ ∝ −RðvÞ, inheriting the same
pattern of decaying oscillations. Strong agreement is found
between the analytic δf calculated with Eq. (10) and
nonlinear BOT simulations with α ≫ ν, as shown in
Fig. 2(b) for the cases with clear splitting. Consequently,
large amounts of drag act to extend the downstream region
of phase space where significant transport occurs.
Relevance to fusion plasmas.—The effects of drag

derived in this Letter are most prominent when drag
approaches or exceeds scattering within a narrow reso-
nance. A heuristic scaling useful for guiding intuition is
given by α=ν ∼ E1=2

res n
1=6
e =T3=4

e ω1=6 [38]. Quantitatively, α=ν
can be numerically calculated with rigor in fusion plasmas
using a kinetic equilibrium reconstruction, solving for
the eigenmode structure with a magnetohydrodynamics
(MHD) code, following realistic orbits, and averaging over
resonant surfaces. This method is outlined in Supplemental
Material [37] and was previously applied to NSTX, DIII-D,
and ITER [15,25,26], including the effect of enhanced
diffusion due to microturbulence [41,42].
An increase in α=ν due to the reduction of turbulence has

been previously identified as a reliable indicator of the
onset of chirping behavior for Alfvénic modes [15],
which is ubiquitous in spherical tokamaks but rarely
observed in conventional tokamaks. Turbulence is typically
lower in spherical tokamaks such as NSTX due to favorable
curvature and enhanced rotation shear [43], allowing α ∼ ν.
Similar findings exist on other devices. Calculations by
Lilley, Breizman, and Sharapov found that α=ν ¼ 0.6–5 at
the toroidicity-induced Alfvén eigenmode (TAE) resonance
for beam-heated MAST plasmas [14]. This had the prac-
tical consequence of explaining why those discharges often
feature bursting TAEs, in contrast to radio-frequency-
heated discharges with larger scattering rates. In addition,
Lesur et al. analyzed a case of chirping in JT-60U by fitting
the observed frequency sweeping to a theoretical model,
enabling the extraction of the collisional coefficients,
finding α=ν in the range of 0.2–0.7—consistent with
measured plasma parameters [51]. Furthermore, simula-
tions of an International Tokamak Physics Activity (ITPA)
tokamak benchmark case and the W7-X stellarator using a
global hybrid MHD-kinetic code performed by Slaby et al.
concluded that including realistic amounts of drag in the
Fokker-Planck collision operator affected both the AE
saturation level and its long-term nonlinear behavior
[52]. Lastly, negative triangularity experiments on DIII-
D observed a greater tendency for chirping than in matched

positive triangularity discharges [23]. Van Zeeland et al.
attributed this difference to the lower level of turbulent
scattering in negative triangularity, increasing α=ν and
making nonsteady behavior more likely according to
theory. The relative propensity for chirping in several
distinct scenarios empirically supports the relevance of
drag to wave-particle dynamics in fusion plasmas, espe-
cially tokamaks with low aspect ratio or negative
triangularity.
Connection to galactic dynamics.—Beyond fusion plas-

mas, the methods presented in this Letter are directly
applicable to the resonant gravitational interaction of the
rotating galactic bar and heavy bodies in its orbit such as
black holes, massive astrophysical compact halo objects,
and stars in a tepid disk [53]. As recently demonstrated by
Hamilton et al. [34], the collisional bump-on-tail problem in
plasmas (studied in this Letter) can be made isomorphic to
this application. In this formalism, the role of the AE is
played by the rigidly rotating galactic bar, the resonant fast
ions are replaced by the orbiting bodies, and the electrostatic
potential is replaced by a gravitational one. Diffusive
scattering occurs due to stochastic potential fluctuations,
while heavy bodies experience drag when passing through a
background of lighter masses. The resonant interaction
exerts a torque on the bar and leaves a collisionally
dependent imprint on the spatial distribution of surrounding
bodies in the galaxy, which in tandem with observations can
be used to constrain theoretical models of dark matter.
Specifically, the collisions experienced by orbiting heavy
compact objects are dominated by drag when their mass
ratio to the background particles is sufficiently large [54,55].
Hence, the novel influence of drag on wave-particle
interactions derived in this Letter is relevant for an accurate
description of the resonant galactic bar–heavy body system
in the presence of collisions.
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Nucl. Fusion 58, 082016 (2018).
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