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In a Hermitian system, bound states must have quantized energies, whereas free states can form a
continuum. We demonstrate how this principle fails for non-Hermitian systems, by analyzing non-Hermitian
continuous Hamiltonians with an imaginary momentum and Landau-type vector potential. The eigenstates,
which we call “continuum Landau modes” (CLMs), have Gaussian spatial envelopes and form a continuum
filling the complex energy plane. We present experimentally realizable 1D and 2D lattice models that host
CLMs; the lattice eigenstates are localized and have other features matching the continuous model. One of
these lattices can serve as a rainbow trap, whereby the response to an excitation is concentrated at a position
proportional to the frequency. Another lattice can act a wave funnel, concentrating an input excitation onto a
boundary over a wide frequency bandwidth. Unlike recent funneling schemes based on the non-Hermitian
skin effect, this requires a simple lattice design with reciprocal couplings.
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The bound states of a quantum particle in an infinite
continuous space have energies that are quantized [1,2].
This stems from a theorem that compact Hermitian
Hamiltonians have pure point spectra [3–5], and accounts
for the energy quantization in standard models such as the
harmonic oscillator and potential well [6]. The principle
also applies to Anderson localized states in random
potentials, whose eigenenergies are dense but count-
able [7,8], and to the long-wavelength regime of discrete
(e.g., tight-binding) lattices [9–14]. Free states, by contrast,
are spatially extended and form continuous spectra. It is
interesting to ask whether any physical system could
behave differently, such as having an uncountable set of
bound states. How might such a Hamiltonian be realized,
and what interesting properties might its eigenstates have?
Over the past two decades, a large body of literature

has developed around the study of non-Hermitian
Hamiltonians [15–22], catalyzed by the realization that
such Hamiltonians can be implemented on synthetic
classical wave structures such as photonic resonators and
waveguide arrays [23–27]. Non-Hermitian systems have
been found to exhibit various interesting and useful features
with no Hermitian counterparts. For instance, their spectra
can contain exceptional points corresponding to the coa-
lescence of multiple eigenstates [28–32], which can be used
to enhance optical sensing [33–35]. Another example is the
non-Hermitian skin effect, whereby a non-Hermitian latti-
ce’s eigenstates condense onto its boundaries [36–45], with
possible applications including light funneling [46] and the
stabilization of laser modes [47,48].
This raises the possibility of using non-Hermitian

systems to violate the standard distinctions between

quantized bound states and continuous free states, which
were derived under the assumption of Hermiticity [49].
Here, we investigate a non-Hermitian Hamiltonian that
has spatially localized energy eigenstates, which we call
“continuum Landau modes” (CLMs), at every complex
energy E. The Hamiltonian features a first-order imaginary
dependence on momentum, along with a Landau-type
vector potential [6]; its eigenstates, the CLMs, map to
the zero modes of a continuous family of Hermitian 2D
Dirac models [50–55]. In two dimensions (2D), the CLM’s
center position r0 varies linearly and continuously with
the complex plane coordinates of E. By contrast, previous
studies of non-Hermitian models with vector potentials
found only quantized bound states, similar to the Hermitian
case [56–58]. We moreover show that the desired
Hamiltonian arises in the long-wavelength limit of a 2D
lattice with nonuniform complex mass and nonreciprocal
hoppings [40,43–45], which can be realized experimentally
with photonic structures [59,60] or other classical wave
metamaterials [46,61–67]. If the lattice size is finite, the
CLMs become countable but retain other key properties
like the dependence between r0 and E.
One dimensional (1D) versions of the model can be

realized in lattices with nonuniform real mass and nonre-
ciprocal hoppings, with the CLM positions proportional to
ReðEÞ; or nonuniform imaginary mass and reciprocal
hoppings, with CLM positions proportional to ImðEÞ.
The first type of lattice can act as a non-Hermitian rainbow
trap [68–71], in which excitations induce intensity peaks at
positions proportional to the frequency. Compared to a
recent proposal for rainbow trapping using topological
states within a band gap [70,71], the CLM-based rainbow
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trapping scheme has the potential to operate over a wide
frequency bandwidth. The second type of 1D lattice acts
as a wave funnel [46]: the response to an excitation is
concentrated at one boundary. This is similar to the
funneling caused by the non-Hermitian skin effect [46],
but requires only the placement of on-site gain or loss
without nonreciprocal couplings, and may therefore be
easier to implement [72–75].
We begin by reviewing Landau quantization in 2D

Hermitian systems. As shown in Fig. 1(a), a free non-
relativistic particle has a continuum of extended (free)
states with a quadratic energy dispersion, and when a
uniform magnetic field is applied, the spectrum collapses
into a discrete set of Landau levels [6]. For a Dirac particle
with a linear dispersion relation, a magnetic field likewise
produces a discrete spectrum [50–52,76], as shown in
Fig. 1(b). With appropriate gauge choices, the Landau
levels are spanned by normalizable eigenfunctions (bound
states) interpretable as cyclotron orbits.
Now consider the non-Hermitian 2D Hamiltonian

H ¼ sx

�
−i

∂

∂x
− By

�
þ isy

�
−i

∂

∂y
þ Bx

�
; ð1Þ

where sx;y ¼ �1 (these are scalars, not matrices). For
B ¼ 0, this kind of “non-Hermitian Dirac Hamiltonian”
has recently been analyzed in studies of non-Hermitian
band topology [77,78]; its spectrum is given by E0ðkÞ ¼
sxkx þ isyky, as shown in Fig. 1(c). The B ≠ 0 case
introduces a symmetric-gauge vector potential correspond-
ing to a uniform out-of-plane magnetic field 2Bẑ, via the
substitution −i∇ → −i∇þA. The eigenstates of H are

ψðx; yÞ ¼ C exp½−τjr − r0j2 þ iq · r�; ð2Þ

r0ðE;qÞ ¼
1

B

�
Im½E − E0ðqÞ�=sy
−Re½E − E0ðqÞ�=sx

�
; ð3Þ

where C is a normalization constant, τ ¼ −sxsyB=2,
q ¼ ðqx; qyÞ is an arbitrary real vector, and E is the
eigenenergy. If τ > 0, the wave functions are normalizable
on R2 regardless of E and q, with characteristic length
l ∼ B−1=2. The eigenenergies fill the complex plane, as
shown in Fig. 1(c). For each E, there is a continuum of
bound states centered at different r0, via Eq. (3); also, states
with the same q but different r0 are nonorthogonal. Note
that such a continuum is not a generic consequence of non-
Hermiticity; other recently studied non-Hermitian models
incorporating uniform magnetic fields exhibit the usual
quantized spectra [57,58].
We call these eigenstates CLMs because they are closely

related to zeroth Landau level (0LL) modes of massless 2D
Dirac fermions [50–55]. CLMs with a given energy E have
a one-to-one map with the 0LL modes of a given Hermitian
Dirac Hamiltonian, whose gauge is determined by E. The
full set of CLM eigenstates for H thus maps to the 0LL
modes of a family of Dirac Hamiltonians with different
gauges, and the CLMs are uncountable because the gauge
can be continuously varied. For details about this mapping,
including the role of gauge invariance, see Supplemental
Material [49].
Because of the localization of the CLMs, wave functions

resist diffraction when undergoing time evolution with H.
For instance, a Gaussian wave packet maintains its width
under time evolution (even if the width differs from that of
the CLMs); however, depending on the initial settings, the
wave packet can move and undergo amplification or decay,
as detailed in Supplemental Material [49].
CLMs can also be observed in the continuum limit of

discrete lattices. Take the 2D lattice depicted in Fig. 2(a),
whose Hamiltonian is

H ¼
X
r

½Bðy − ixÞa†rar þ txða†r−x̂ar þ H:c:Þ

þ tyða†r−ŷar − H:c:Þ�; ð4Þ

where a†r , ar are creation and annihilation operators at
r ¼ ðx; yÞ ∈ Z2 (the lattice constant is set to 1), and tx; ty ∈
R are hopping coefficients. H is non-Hermitian due to the
imaginary part of the mass and the nonreciprocity of the y
hoppings [40,43–45]. Such nonreciprocal hoppings can be
realized on experimental platforms such as circuit lattices,
fiber loops, and ring resonator lattices [46,61–67], which
have notably been used to study the non-Hermitian skin
effect [36,37,40,41,43–45]. Note, however, that this lattice
does not exhibit the skin effect [49].

(a)

(b)

(c)

FIG. 1. Effects of a uniform magnetic field on the spectra of
2D models. (a) For a nonrelativistic particle with quadratic
dispersion, the spectrum collapses into discrete Landau levels.
(b) For a Dirac particle, the spectrum forms an unbounded sequ-
ence of Landau levels. (c) For the non-Hermitian Hamiltonian
(1), the complex linear dispersion relation turns into a continuum
of bound states filling the complex energy plane.
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For B ¼ 0, H has discrete translational symmetry and
dispersion relation E0

k ¼ 2ðtx cos kx þ ity sin kyÞ, where

kx;y ∈ ½−π; π�. Taking jψki ¼
P

r expðik · rÞΨra
†
r j∅i,

where j∅i is the vacuum state, the slowly varying envelope
obeys HkΨr ¼ EΨr, where [49]

Hk ¼ E0
k −

�
−iμk

∂

∂x
− By

�
þ i

�
−iνk

∂

∂y
− Bx

�
; ð5Þ

μk ¼ 2tx sin kx; νk ¼ 2ty cos ky; ð6Þ
to first order in spatial derivatives. Note that the complex
masses in (4) produce the pseudovector potential [50–55].
For B=μk < 0; B=νk > 0, there exist CLMs similar to (2),
with τ replaced by τx ¼ −B=2μk, τy ¼ B=2νk, and Eq. (3)
replaced by

r0ðE;k;qÞ ¼
1

B

�−ImðE − E0
kþqÞ

ReðE − E0
kþqÞ

�
þOðjqj2Þ: ð7Þ

As Ψr is assumed to vary slowly in r, the solutions are
limited to the regime jqj ≪ 1. If the lattice is infinite, they

form a continuous set spanning all E ∈ C. For a finite
lattice, the eigenstates are finite and hence countable, and
the CLMs reduce to a band over a finite area in the E plane.
In Figs. 2(b) and 2(c), we plot the spectra for B ¼ 0.03, 0.3,
each lattice having size Lx ¼ Ly ¼ 60, open boundary
conditions, and tx ¼ ty ¼ 1. By requiring r0 to lie in the
lattice, Eq. (7) implies the bounds jReðEÞj≲ BLy=2þ 2tx
and jImðEÞj ≲ BLx=2þ 2ty. For large Lx;y, the energy
discretization is of order B.
All of the numerically obtained eigenstates are CLMs.

The color of each data point in Figs. 2(b) and 2(c) indicates
the participation ratio (PR), defined for a wave function
ψ r ¼ hrjψi as hψ jψi2=Pr jhrjψij4, with large PR (of order
N2) corresponding to extended states [79]. We find that all
eigenstates have PR consistent with the CLM predictions,
and well below N2 (for each case, the maximum PR,
attained when jμkj ¼ jνkj ¼ 1, is indicated by an arrow in
the color bar). Figure 2(d) plots each eigenstate’s energy
against the position expectation values hxi and hyi, for
B ¼ 0.3. This reveals the linear relationship between E and
r0 predicted in Eq. (7) (indicated by dashes), and the upper
and lower bounds introduced by the E0

kþq term (dotted
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FIG. 2. Continuum Landau modes (CLMs) in a 2D lattice. (a) Schematic of a square lattice with reciprocal hoppings along x (gray
lines), nonreciprocal hoppings along y (black arrows), and on-site mass mx;y ¼ Bðy − ixÞ (size and darkness of the circles indicate the
real and imaginary parts). (b),(c) Complex energy spectra for finite lattices with (b) B ¼ 0.03 and (c) B ¼ 0.3. The color of each dot
corresponds to the participation ratio (PR) of the eigenstate; a more localized state has lower PR. The arrows on the color bar indicate the
highest PR for the CLM ansatz, for each B. The dashed boxes are the bounds on CLM eigenenergies derived from Eq. (7). (d) Plot of
ReðEÞ versus hyi (left panel) and ImðEÞ versus hxi (right panel) for B ¼ 0.3. The black dashes and gray dotted lines, respectively,
indicate the theoretical central trend line (corresponding to E0

kþq → 0) and bounding lines derived from Eq. (7). (e),(f) Wave function
amplitude jψrj for the eigenstates marked by yellow stars in (b) and (c), respectively. Hollow and filled circles, respectively, indicate the
variation with x and y, along lines passing through the center of each Gaussian; solid curves show the CLM predictions. Insets show the
distribution in the 2D plane. In (b)–(f), we use tx ¼ ty ¼ 1 and a lattice size of 60 × 60, with open boundary conditions.

PHYSICAL REVIEW LETTERS 130, 103602 (2023)

103602-3



lines). Figures 2(e) and 2(f) compare the spatial amplitude
jψrj for two arbitrarily chosen numerical eigenstates to the
CLM solutions, which are in good agreement.
CLMs can also be realized in 1D lattices, which are

simpler to implement experimentally. We study two kinds
of lattices, which have different behaviors.
The first 1D lattice, shown in Fig. 3(a), has a real mass

gradient and nonreciprocal hoppings. Its Hamiltonian is

H ¼
X
j

½Bðj − j0Þa†jaj þ ta†jaj−1 − ta†j−1aj�; ð8Þ

where B; t ∈ R. For a finite lattice with 1 ≤ j ≤ N, we take
j0 ¼ 1

2
ðN þ 1Þ. The nonreciprocal nearest neighbor

hoppings�t ∈ R are indicated by solid and dashed arrows.
For B ¼ 0, the spectrum E0

k ¼ 2it sin k (where k ∈ ½−π; π�)

is purely imaginary, lacking a point gap, and the lattice does
not exhibit the non-Hermitian skin effect [43,44]. For
B ≠ 0, the effective Hamiltonian can be derived via the
same procedures as in Eqs. (4)–(6):

Hk ¼ E0
k þ Bxþ 2t cos k

∂

∂x
: ð9Þ

This has CLM solutions [49] for B=ðt cos kÞ < 0 (i.e., k in
half of the Brillouin zone). As in the 2D model, E takes any
value in C, but for finite N the eigenvalues reduce to a band
as shown in Fig. 3(b), bounded by jReðEÞj ≲ BN=2 and
jImðEÞj ≲ 2t. The bandwidth Δ½ReðEÞ� ∼ BN is the detun-
ing between the two end sites. The CLM center positions
are x0 ¼ ReðEÞ=B (independent of k, since E0

k is imagi-
nary), consistent with the colors in Fig. 3(b).
Systems that have eigenstates localized at positions

proportional to frequency can serve as “rainbow traps”
[68–71], with potential applications in wave buffering
and frequency demultiplexing. To demonstrate this, we
apply a spatially incoherent monochromatic excitation
FðtÞ ¼ e−iwt · ½eiθ1 ;…; eiθN �T , where each θj is a random
initial phase. We then use the Green’s function to calculate
the steady-state response [49,80]. As shown in Fig. 3(c), the
response has a sharp amplitude peak positioned propor-
tional to the excitation frequency. Previously studied rain-
bow traps have been based on Hermitian systems, and
operate on different principles. The present scheme relies
on the properties of the CLMs; when a comparable non-
Hermitian lattice lacking CLMs is excited, the intensity
peaks are distributed in different positions along the
lattice with no evident relationship with frequency (see
Supplemental Material [49]). The bandwidth ΔE ∼ BN can
be increased via the mass gradient B or lattice size N.
Another 1D lattice supporting CLMs, depicted in

Fig. 3(d), has reciprocal hoppings along with a gradient
in the on-site gain or loss. The Hamiltonian is

H ¼
X
j

½iBðj − j0Þa†jaj þ tða†jaj−1 þ a†j−1ajÞ�: ð10Þ

For B ¼ 0, this is Hermitian and the spectrum is
E0
k ¼ 2t cos k. For B ≠ 0, we obtain

Hk ¼ E0
k þ iBxþ i2t sin k

∂

∂x
: ð11Þ

There areCLMsolutions [49] forB=ðt sin kÞ < 0. Figure 3(e)
shows the spectrum for a finite lattice, which is bounded by
jReðEÞj≲ 2t and jImðEÞj≲ BN=2. As the CLMs are cen-
tered at x0 ¼ ImðEÞ=B, the modes with highest relative gain
occur at a boundary. Under a spatially incoherent excitation,
the steady-state response is concentrated at the boundary, as
shown in Fig. 3(f).We emphasize that this is not simply due to
the boundary site having the highest relative gain, since the
funneling effect occurs over a bandwidth of Δ½ReðEÞ� ∼ 4t,
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FIG. 3. Rainbow trapping and wave funneling in 1D lattices.
(a) 1D lattice with nonreciprocal nearest neighbor hoppings of t
(solid arrows) and −t (dashed arrows). Each site j has real mass
mj ¼ Bðj − j0Þ, where j ∈ ½1; N� and j0 ¼ ðN þ 1Þ=2. (b) Com-
plex energy spectrum for the lattice in (a) with N ¼ 2000, t ¼ 1,
and B ¼ 0.01. The color of each dot indicates the eigenstate’s
position expectation value hxi. The dashed box shows the CLM
energy bounds described in the text. (c) Site-dependent ampli-
tudes under steady state excitation at frequency ω for the lattice in
(b), with an additional per-site damping term Δm ¼ 1.9i to avoid
blowup. On each site, the excitation has uniform amplitude but a
random phase drawn uniformly from ½0; 2πÞ. The two dashes
show the working band ½−BN=2; BN=2�. The peak position
found to be proportional to ω. (d) 1D lattice with reciprocal
nearest neighbor hopping t, and on-site mass mj ¼ iBðj − j0Þ.
(e) Complex energy spectrum for the lattice in (d) with
N ¼ 2000, t ¼ 1, and B ¼ 0.01. (f) Site-dependent amplitudes
under the same excitation as in (c), using the lattice in (e) with
additional per-site damping Δm ¼ 9.9i. Dashes show the work-
ing band ½−2t; 2t�. Funneling toward the large-j boundary is
observed. In (c) and (f), the coupling of the excitation to each site
is κ ¼ 0.2.
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rather than the narrow linewidth of an isolated resonance.
Similar funneling behavior has been associated with the non-
Hermitian skin effect [36,37,40,41,43–46], but the present
lattice does not exhibit the skin effect [49]. This way
of implementing awave funnel requires neither nonreciprocal
hoppings nor complicated lattice symmetries. In
Supplemental Material, we show that a similar lattice lacking
CLMs does not induce funneling [49].
In conclusion, we have shown that a non-Hermitian

Hamiltonian can host an uncountably infinite set of bound
states, violating the intuition that bound states should be
quantized. The bound states possess Gaussian envelopes and
are related to zeroth Landau level modes [50–55]. We have
shown how to implement these eigenstates in 1D and 2D
lattices that are experimentally accessible via classical
metamaterial platforms [46,61–67]. In 1D lattices, the linear
relationship between position and energy allows for non-
Hermitian rainbow trapping and light funneling function-
alities. In future work, it would be interesting to determine
the general conditions under which nonquantized bound
states can arise, and to explore other ways to violate the
distinction between bound and free states. Continuous
families of bound states might emerge among other non-
Hermitian systems unrelated to zeroth Landau level modes,
with properties different from those studied here.
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