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We show that the simplest of existing molecules—closed-shell diatomics not interacting with one
another—host topological charges when driven by periodic far-off-resonant laser pulses. A periodically
kicked molecular rotor can be mapped onto a “crystalline” lattice in angular momentum space. This allows
us to define quasimomenta and the band structure in the Floquet representation, by analogy with the Bloch
waves of solid-state physics. Applying laser pulses spaced by 1=3 of the molecular rotational period creates
a lattice with three atoms per unit cell with staggered hopping. Within the synthetic dimension of the laser
strength, we discover Dirac cones with topological charges. These Dirac cones, topologically protected by
reflection and time-reversal symmetry, are reminiscent of (although not equivalent to) that seen in
graphene. They—and the corresponding edge states—are broadly tunable by adjusting the laser strength
and can be observed in present-day experiments by measuring molecular alignment and populations of
rotational levels. This paves the way to study controllable topological physics in gas-phase experiments
with small molecules as well as to classify dynamical molecular states by their topological invariants.
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The quantum nature of electrons in solids gives rise to a
number of fascinating phenomena, such as the quantum
Hall effect, that are ultimately related to the geometric and
topological properties of the Brillouin zone [1]. These
phenomena are characterized by topological charges—a
type of a quantum number that describes the topology of
the system. These topological phases show unique proper-
ties, such as quantized transport and the bulk-boundary
correspondence [2]. The field of topological phases has
greatly expanded since the works of Thouless [3] and
Haldane [4,5], leading to discoveries of several new phases,
such as topological insulators, Weyl semimetals, and
topological superconductors [6–8].
Unlike the translational motion of an electron in a lattice,

rotations of a molecule correspond to the non-Abelian
group SO(3). While free rotations basically correspond to
trivial paths in that manifold [9,10], in this Letter we show
that laser pulses can guide the molecule along topologically
nontrivial paths, allowing for nonzero Berry phases and
alike. In particular, we explore the similarities between the
Bloch theorem (for a system periodic in space) and the
Floquet theorem (for a system periodic in time) to show that
a molecule driven by periodic laser pulses can be mapped
onto a translationally invariant hopping model hosting
nontrivial topology. Although the ideas of topology in
molecules have been extensively exploited in the context of
conical intersections of potential energy surfaces in real
space [11,12] (including light-induced conical intersections
[13,14]), the results presented here use a novel approach
and allow us to directly bridge the ideas of symmetry-
protected phases in condensed-matter physics with the
realm of molecules.

At energies well below electronic and vibrational exci-
tations diatomic molecules essentially behave as rigid
linear rotors [15]. A two-dimensional kicked rotor is a
paradigmatic model used to study nonlinear dynamics,
dynamical localization, and quantum chaos [16,17]. Since
the original works of Casati and Chirikov [18–21], the
predictions of the theory have been verified in several
experiments, e.g., with atoms in microwave fields [22,23],
Rydberg atoms [24], atomic matter waves [25], and Bose-
Einstein condensates [26]. Topological aspects of double
kicked two-dimensional rotors have also been extensively
explored in connection to spectra resembling the Hofstadter
butterfly and the corresponding Chern numbers [27–29].
Periodically driven three-dimensional molecular rotors
have been studied theoretically with a particular focus
on resonances and Anderson localization [30–32] and edge
states [33,34]. Several phenomena, such as quantum
resonances [35], Bloch oscillations [36,37], and dynamical
localization [38–40] have already been observed in experi-
ments with molecules. Moreover, recent advances in
imaging of molecular rotational dynamics [41–43] and
control of their angular degrees of freedom [44,45] open
new possibilities to probe kicked rotor physics. While these
advances are particularly important for the understanding
of reactions and other fundamental processes in physical
chemistry [46,47], they can—as we show below—find
applications in other seemingly unrelated areas of physics,
such as the study of topological phases.
In this Letter, we demonstrate that apart from the rich

physics related to transport and localization, driving even
the simplest molecules by specifically designed periodic
laser pulses allows us to probe the nontrivial topology of
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their rotational states. This allows us to apply the vocabu-
lary and theorems developed for topological materials in
the realm of chemical physics, and to potentially engineer
topologically protected molecular states with new chemical
applications. Here, we engineer an effective topological
semimetal with linear dispersing topological edge states,
however, more involved models characterized by other
topological invariants can potentially be realized as well.
In addition to a higher degree of control achievable in
experiment, periodically kicked molecules are able to form
multiband topological systems. This paves the way to
realize non-Abelian topological phases, whose study in
solid-state settings has been quite limited so far.
In what follows, we consider the simplest case of a linear

closed-shell molecule which is periodically kicked by a far-
off-resonant, linearly polarized laser. The general idea,
however, is straightforward to extend to more complex
molecules (e.g., symmetric and asymmetric tops) and to
other kinds of fields, which might further expand the range
of realizable Hamiltonians. When the laser pulse duration is
significantly shorter than the rotational period of the
molecule [48], we can write the Hamiltonian (in units of
ℏ≡ 1) as follows [40,60]:

ĤmolðtÞ¼BL̂2− ½P1cos2ðθ̂ÞþP2cosðθ̂Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡V̂ðP1;P2Þ

X∞

q¼0

δðt−qTÞ: ð1Þ

Here, B ¼ π=τB is the molecular rotational constant with τB
the rotational period, L̂ is the angular momentum operator,
with centrifugal distortion neglected [61]. The laser pulses
are defined by their strengths, P1, P2, and the time period
between them, T. θ̂ gives the angle between the linear
polarization of both lasers and the molecular axis. Unlike
most other models taking into account either the cos2ðθ̂Þ
term (“regular” multicycle infrared pulses) or the cosðθ̂Þ
term (terahertz half- or few-cycle pulses [55,56,60,62,63]),
here we include both, which allows us to create tunable
Dirac cones, not observable with either one of the terms
[48]. For simplicity, we combined the two laser pulses in
one potential, but the same behavior can be observed for
two consecutive pulses. Both kind of pulses have been
realized independently in experiments and used for ori-
entation and alignment of molecules [41–43,64–66].
Casati et al. [17,18] have shown that a periodically

driven pendulum, and hence also a molecule, displays
two regimes: the “dynamical localization regime,” i.e.,
localization on a lattice in time (instead of a lattice in
space), and the “quantum resonance regime,” where the
pendulum delocalizes. In this Letter, in order to achieve a
banded system, we focus on the resonant regime [35,67],
i.e., T ¼ τB=N. The time-translation operator of the
Hamiltonian defined in Eq. (1) after one driving period
takes the form

Û ¼ e−πiL̂
2=N

|fflfflfflffl{zfflfflfflffl}
free rotation

eiV̂ðP1;P2Þ|fflfflfflfflffl{zfflfflfflfflffl}
kick

: ð2Þ

The ideas described below are based on the analogy between
“real” solid-state systems, which are periodic in space, and
molecules periodically kicked in time. Periodically driven
systems can be described in terms of the so-called Floquet
states, jψni, and the corresponding quasienergies, ϵn [68,69].
These can be defined through the time-translation operator of
Eq. (2) as Ûjψni ¼ eiϵn jψni, or, equivalently, through the
effectiveHamiltonian Ĥ ¼ i log Ûwith Ĥjψni ¼ ϵnjψni. At
a quantum resonance, the quasienergies formN bands ifN is
odd (for evenN the periodicity is 2N and there are 2N bands,
see Ref. [48]), which is a result of the N periodicity of the
e−πiL̂

2=N operator.
It is important to note that characterizing periodically

kicked molecules in terms of their Floquet states and
quasienergies has been previously done in a number of
works, see, e.g., Refs. [33,37]. In what follows, we go one
step further and demonstrate that at a quantum resonance one
can introduce quasimomenta of periodically driven molecu-
lar states. This makes it possible to work with “molecular
Bloch bands” and to study their topology, which provides a
direct bridge to the condensed matter systems.
In particular, we make use of the fact that for nonzero

values of angular momentum, the “hopping” matrix ele-
ments between different angular momentum “lattice sites”
converges to an approximately constant value, Hl;l0 ≈
HlþN;l0þN for l; l0 ≫ 0, with Hl;l0 ¼ hljĤjl0i, cf. Eq. (1)
[48]. This allows us to create an effective translational
invariant tight-binding model where the hopping is con-
trolled by the periodic laser pulses, see Fig. 1. Note that
while translational invariance is exact for a planar rotor, it is
only approximately achieved for 3D molecular rotors in the
limit of l; l0 ≫ 0, which, however, suffices for the purposes
of our proposal. Let us assume that l ∈ Z, then, the

FIG. 1. Illustration of the angular momentum lattice with the
spherical harmonics of the molecule and the hopping between
different lattice sites due to the periodic laser pulses, cf. Eq. (1).
For l ≫ 0, the hopping terms converge to a constant and the
lattice becomes translationally invariant. The hopping terms are
complex numbers given by the time-translation operator (see
Fig. S4 in Supplemental Material [48]).
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periodicity of the lattice allows us to define the Fourier
transform with quasimomentum k ∈ ½0; 2πÞ by

HijðkÞ|fflfflffl{zfflfflffl}
N×Nmatrix

¼
X

Δn
e−iΔn·kHijðΔnÞ; ð3Þ

with HijðΔnÞ ¼ Hi;N·Δnþj. (In practice, we need to choose
a cutoff for a finite system, see Ref. [48]. Note that this
finite-size Fourier transform is only approximate and does
not capture the physics at the boundary. However, as it turns
out, the spectrum obtained within this approximation
agrees very well with the results of exact diagonalization
and captures the behavior at a quantum resonance, i.e., the
indefinite growth of rotational energy.) Similarly, for any
function in that space we define

fiðkÞ ¼
X

Δn
e−iΔn·kfðiþ NΔnÞ: ð4Þ

Correspondingly, HðkÞψnðkÞ ¼ ϵnðkÞψnðkÞ where k plays
the role of quasimomentum of the angular momentum
lattice and ψnðkÞ ∈ CN [note that HðkÞ and other operators
are N × N matrices in k space].
Since there areN bands, theHamiltonian can bewritten as

HðkÞ ¼ aðkÞIN þP
i diðkÞ λi in terms of the generalized

Gell-Mann matrices λi ∈ SUðNÞ, which form a linearly
independent basis of traceless N × N matrices, and
aðkÞ ∈ R, dðkÞ ∈ RN2−1, see Ref. [70]. The mapping
described above connects kicked molecules to single-par-
ticle models of condensed matter physics. Furthermore, the
symmetries of the effective Hamiltonian are determined by
the symmetries of the time-translation operator. Unlike a
Hermitian system, however, this system exhibits periodic
quasienergies; the free choice of the initial time results in a
gauge freedom of the quasienergies. Since the first and the
last band can touch over the periodic boundary, this opens up
new possibilities such as anomalous topological Floquet
insulators [71,72], which are out of the scope of this Letter.

Here, we focus on the case of N ¼ 3 for intermediate
coupling where no closing of all gaps occurs [33], since
this, to the best of our knowledge, is the simplest situation
featuring nontrivial topological physics for a kicked mol-
ecule. We choose the following parametrization of the laser
strength parameters:

P1ðαÞ ¼ Pcos2ðαÞ; P2ðαÞ ¼ Psin2ðαÞ; ð5Þ
in terms of the offset parameter α ∈ ½0; 2πÞ, which serves as
an effective second dimension in addition to quasimomen-
tum and laser strength P. Since the linearly polarized laser
of Eq. (1) preserves the projection of angular momentum
m, we consider only the states with m ¼ 0. Figure 2 shows
the results of exact diagonalization. There are three bands,
shown in Fig. 2(a), with the second and third touching at
two points, forming Dirac cones, Fig. 2(b). The Fourier
transform shows that the bands touch exactly at k ¼ π,
indicating a symmetry in quasimomentum space. Indeed,
the system has a reflection and a time-reversal symmetry
that commute with each other [48], i.e.,

T Hk ¼ H�
−kT and RHk ¼ H−kR: ð6Þ

This implies that for the k → −k invariant points, i.e., k ¼ 0
or k ¼ π, the Hamiltonian commutes with T and R. From
the tenfold classification with crystal symmetries the class
is AIþRþ [73]. The topological analysis of the two Dirac
cones proceeds as follows. We combine the two variables
into a vector k ¼ ðk; αÞ, and compute the Berry connection,
AnðkÞ ¼ ihψnðkÞj∇kψnðkÞi, which is well defined if we
choose a gauge such that the eigenstates form a smooth
manifold. Numerically evaluating the Berry phase [74]
around one of these cones in the second or third band
results in

R
γ AðkÞndk ¼ �π thus proving the topological

nature of these cones [75]. As with spinless graphene, we
observe two linear dispersing edge states, connecting the
two Dirac cones. This is a result of the bulk-boundary

FIG. 2. Results of exact diagonalization forN ¼ 3 and P ¼ 2.5, see Eq. (5). (a) The full spectrum with the bulk states shown in orange
and the edge states in red. Two linearly dispersing edge states (one for each edge) connect the Dirac cones. (b) The quasienergies ϵk near
the Dirac cone, shown as a function of k and α. As a result of time-reversal and reflection symmetries, the two bands touch at k ¼ π. The
Dirac cone is topologically protected and cannot be gapped out by any deformation which preserves the symmetry, unless there is a
merging transition where a positively charged cone annihilates a negatively charged one. (c) The absolute value of the wave function of
the edge state. (d) A generic bulk state.
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correspondence for Dirac semimetals with crystal sym-
metries. For the bulk states we find plane-wave solutions as
predicted by the Fourier-transformed Hamiltonian. The
edge states manifest themselves as states localized at the
lower (or upper [76]) end of the lattice. Topologically
nonprotected edge states in kicked molecules have already
been theoretically described [33,34]. The localized edge
states shown in Fig. 2(c) are, on the other hand, topological,
in the sense that they cannot be destroyed without merging
the two Dirac cones.
The topological characteristics of the band structure

shown in Fig. 2 have observable experimental signatures.
In order to demonstrate that, we consider the time evolution
of a molecule adiabatically driven through the Dirac cones
(for fast quenches the phenomenon persists, but is super-
imposed by the quench dynamics). We adiabatically change
the parameter α of Eq. (5) as

αðtÞ ¼ t · ðαc=tcÞ; ð7Þ

where αc denotes the critical value of α for which the cones
appear at kc ¼ π. One can choose tc as the time when one
wishes the cones to emerge, here we set tc=T ¼ 15.
Experimentally that protocol implies changing α after
every kick. The Dirac cones form vortices in the k plane
with singularities at ðkc; αcÞ. We demonstrate that the
vortices lead to a flip of the molecular orientation during
the time evolution even if we time evolve a generic,
experimentally realizable wave packet, populated in one
of the bands involved in the crossing.
To this end, we consider a Gaussian wave packet

hljϕðt ¼ 0Þi ∝ e−ðl−l0Þ2=2Δl2 and project this state into the
third band with a peak at k ¼ π [77]. This furnishes a state
which is both localized in angular momentum l and
quasimomentum k. The occupation in the third band leads
to high orientation and alignment signals. Henceforth we
time-evolve this wave packet according to the adiabatic
protocol in real space and without approximation of Fourier
space conversion.
In Fig. 3 we show the results of this calculation for an

initial Gaussian states with width Δl ¼ 0.5 and peak at l0 ¼
30 and l0 ¼ 0, respectively. Furthermore, with yellow dots
we show the results for a “generic” initial state created by a
single laser pulse from ϕ ¼ δl;0. Generic implies that we are
choosing a state which can be created by one laser pulse
starting from l ¼ 0. Evidently, to see a difference in the
alignment and orientation signal, one needs to start from a
state which is somewhat aligned or oriented [78]. Shown are
(a) the orientation cosine hcosðθ̂Þi≡ hϕðtÞj cosðθ̂ÞjϕðtÞi,
(b) the alignment cosine hcos2ðθ̂Þi≡ hϕðtÞjcos2ðθ̂ÞjϕðtÞi,
and (c) the absolute values squared of the wave function
components of the generic state created by a pulse
jhljϕðtÞij2. These quantities, expressed through the popu-
lations of rotational states and molecular axis distributions
in real space, are being routinely measured in gas-phase

molecular experiments, e.g., using Coulomb explosion [57]
and Raman spectroscopy [79], for (a),(b), and (c),
respectively.
In the initial time evolution, we observe a stagnant phase

with little growth in energy and change in the alignment
traces, which is due to the occupation within a specific
band. Near the Dirac cones, however, the behavior changes,
and we see a change of the orientation and alignment traces.
After the cone, the generic behavior predicted at a quantum
resonance, namely the linear spread of the wave function in
angular momentum space, is observed. This can also be
intuitively understood in terms of a quantum walk in the

FIG. 3. Time evolution of three different molecular states
initially prepared in the third band of the spectrum peaked at
k ¼ π, see Fig. 2(a), which are evolved through the Dirac cone at
tc ¼ 15, cf. Eq. (7). To demonstrate that the phenomenon is
generic we show a Gaussian state peaked at l0 ¼ 30 (orange),
l0 ¼ 0 (blue), and a generic state prepared with one laser pulse
from l ¼ 0 (dotted). As a function of the number of laser kicks are
shown (a) the orientation cosine hcosðθ̂Þi, (b) the alignment
cosine hcos2ðθ̂Þi, and (c) the absolute values squared of the wave
function components jhljϕðtÞij2 of the generic state. The dy-
namics changes drastically in the vicinity of the Dirac cone,
marked by vertical dashed lines (red), see the text. The reason for
this is a monopole at k ¼ π, α ¼ αc which changes the nature of
the eigenstates.

PHYSICAL REVIEW LETTERS 130, 103202 (2023)

103202-4



tight-binding description of the lattice. If we assume that
the overlap of the initial wave packet with the edge states is
vanishing, we can expand its Fourier transform in eigen-
states with ϕkðt ¼ 0Þ ¼ P

n ξnψnðk; 0Þ, see Eq. (4). The
orientation and alignment traces change their behavior at
the Dirac cones due to the change of the eigenstates. We
note that for a generic wave packet which is not prepared
exactly in the third band, this phenomenon is still visible,
although not as pronounced, depending on the particular
setup, see Fig. 3. Finally, we note that the example we are
looking at with ≲30 pulses is currently accessible in
laboratory, as 24 kicks were used to observe dynamical
localization with nitrogen molecules [38].
To summarize, we have demonstrated the possibility to

observe topological charges in periodically kicked mole-
cules. A key step connecting molecular rotational spectros-
copy with single-particle models of condensed matter was to
introduce quasimomentum, in addition to quasienergies of
the Floquet representation. As opposed to topological states
in solid-state systems, which usually show up through some
macroscopic observables [2,80], and topological conical
intersections that can alter chemical reaction dynamics
[11,12], the topological charges described here can be probed
directly by imagingmolecular rotational states. In addition to
new insights into the topological physics in molecular
systems, this paves the way to engineer chemically relevant
states of molecules using topological invariants. Unlike in
many other topological systems, the position of the Dirac
cones inmolecules can be controlled directly by changing the
parametrization of the laser strengths. Furthermore, laser
pulses can be applied in a way selectively breaking the
symmetries (e.g., time reversal). The richness of internal
degrees of freedom even for diatomic molecules [81] along
with the possibilities to coherently control them [44] makes
the extensions of the model to higher dimensions possible.
Using elliptically polarized laser pulses the space of rotations
for an asymmetric molecule becomes three dimensional (in
the quantum numbers l, m, k) and a hopping in all the three
dimensions can be induced [82]. Applying pulses which are
in resonance with the rotational periods, multiband and
possibly non-Abelian physics in more than one physical
dimension could be probed. Last, previous works indicate
that immersing rotating molecules into superfluid helium
[83] might generate an interacting topological system with
non-Abelian invariants [84].
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