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This Letter examines the effectiveness of the Dyson-Schwinger (DS) equations as a calculational tool in
quantum field theory. The DS equations are an infinite sequence of coupled equations that are satisfied
exactly by the connected Green’s functions Gn of the field theory. These equations link lower to higher
Green’s functions and, if they are truncated, the resulting finite system of equations is underdetermined.
The simplest way to solve the underdetermined system is to set all higher Green’s function(s) to zero and
then to solve the resulting determined system for the first few Green’s functions. The G1 or G2 so obtained
can be compared with exact results in solvable models to see if the accuracy improves for high-order
truncations. Five D ¼ 0 models are studied: Hermitian ϕ4 and ϕ6 and non-Hermitian iϕ3, −ϕ4, and iϕ5

theories. The truncated DS equations give a sequence of approximants that converge slowly to a limiting
value but this limiting value always differs from the exact value by a few percent. More sophisticated
truncation schemes based on mean-field-like approximations do not fix this formidable calculational
problem.
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The objective in quantum field theory is to calculate
connected Green’s functions Gnðx1;…; xnÞ, which contain
the physical content of the theory. In principle, the program
is to solve the field equations for the field ϕðxÞ and then to
calculate vacuum expectation values of time-ordered
products of ϕ: γnðx1;…; xnÞ≡ h0jTfϕðx1Þ…ϕðxnÞgj0i.
The nonconnected Green’s functions γn are then combined
into cumulants to get Gn [1].
The Dyson-Schwinger (DS) equations purport to be a

way to calculate both the perturbative and nonperturbative
behavior of Gn by using c-number functional analysis
without resorting to operator theory [2–5]. The procedure is
to truncate the infinite system of coupled DS equations to a
finite set of coupled equations that would give good
approximations to the first few Gn. The problem is that,
while the DS equations are satisfied exactly by Gn, the DS
equations are an underdetermined system; each new
equation introduces additional Green’s functions, so a
truncation of the system contains more Green’s functions
than equations [6]. A plausible strategy is to close the
truncated system by setting the highest Green’s function(s)
to zero and then to solve the resulting determined system.
Here we study the simplest case: quantum field theory in

zero-dimensional spacetime. Successive elimination gives
polynomial equations for G1 or G2. We examine the
convergence and accuracy of this procedure as the system
of coupled equations increases in size for five D ¼ 0
theories, Hermitian quartic and sextic theories, and non-
Hermitian PT -symmetric cubic, quartic, and quintic
theories [7]. The truncated DS equations provide fair
numerical values for the connected Green’s functions,

but these approximations do not converge to the exact
results when they are examined in high order.
The DS equations follow directly on differentiating the

functional integral for Z½J� [or logðZ½J�Þ] with respect to J,
giving γn (or Gn),

Z½J� ¼
Z

Dϕ exp
Z

dxf−L½ϕðxÞ� þ JðxÞϕðxÞg;

whereL is the Lagrangian, J is a c-number source, and Z½0�
is the Euclidean partition function [8,9].
Hermitian quartic D ¼ 0 theory.—The functional

integral Z½J� becomes an ordinary integral Z½J� ¼R
∞
−∞ dϕe−LðϕÞ, where LðϕÞ ¼ 1

4
ϕ4 − Jϕ. The exact con-

nected two-point Green’s function is

G2 ¼
Z

∞

−∞
dϕϕ2e−ϕ

4=4=
Z

∞

−∞
dϕ e−ϕ

4=4

¼ 2Γ
�
3

4

�
=Γ

�
1

4

�
¼ 0.675 978 240…: ð1Þ

We impose parity invariance when J ¼ 0, so all
odd Green’s functions vanish. The first nontrivial DS
equation reads G4 ¼ −3G2

2 þ 1. Truncating this equation
by setting G4 ¼ 0, we obtain the approximate result
G2 ¼ 1=

ffiffiffi
3

p ¼ 0.577 350…. In comparison with (1), this
result is 14.6% low, which is unimpressive.
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The next three DS equations are

G6 ¼ −12G2G4 − 6G3
2;

G8 ¼ −18G2G6 − 30G2
4 − 60G2

2G4;

G10 ¼ −24G2G8 − 168G4G6 − 126G2
2G6 − 420G2G2

4: ð2Þ

This system is underdetermined; the number of unknowns
is always one more than the number of equations. To solve
this system we eliminate G4 by substituting the first
equation into the second, we eliminate G6 by substituting
the first two equations into the third, and so on. We obtain
G2n as an nth degree polynomial PnðG2Þ (dividing by the
coefficient of the highest power of G2):

P2ðxÞ ¼ x2 −
1

3
; P3ðxÞ ¼ x3 −

2

5
x;

P4ðxÞ ¼ x4 −
8

15
x2 þ 1

21
; P5ðxÞ ¼ x5 −

2

3
x3 þ 193

1890
x:

ð3Þ

Closing the truncated DS equations means finding the
zeros of these polynomials. The positive roots are plotted in
Fig. 1. These roots are real and nondegenerate, and range
upwards towards the exact G2 in (1). We cannot know
a priori which root best approximates G2 but the roots
become denser at the upper end, so we would guess that the
largest root gives the best approximation.
Inaccuracy of DS approximants.—The accuracy of the

largest root in Fig. 1 improves slowly and monotonically
with the order of the truncation. However, while the
sequence of largest roots in Fig. 1 converges as n → ∞,
the limiting value is 0.663 488…, which is 1.85% below the
exact value of G2 in (1). This discrepancy arises because
truncating the DS equations means replacing G2n by 0, but
G2n is not small. The DS equations are exact, so we can
compute G2n by substituting G2 in (1) into (3). We find
that the Green’s functions grow rapidly with n:

G20 ¼ −4.2788 × 109, G22 ¼ 3.0137 × 1011. Richardson
extrapolation [10] yields the asymptotic behavior of G2n:

G2n ∼ 2r2nð−1Þnþ1ð2n − 1Þ! ðn → ∞Þ; ð4Þ

where r ¼ 0.409 505 7….
Because the DS equations are algebraic whenD ¼ 0, we

can derive this asymptotic behavior analytically: We sub-
stitute G2n ¼ ð−1Þnþ1ð2n − 1Þ!g2n, multiply the 2nth DS
equation by x2n, sum from n ¼ 1 to ∞, and define the
generating function uðxÞ≡ xg2 þ x3g4 þ x5g6 þ � � �. The
differential equation satisfied by uðxÞ is nonlinear:

u00ðxÞ ¼ 3u0ðxÞuðxÞ − u3ðxÞ − x; ð5Þ

where uð0Þ ¼ 0 and u0ð0Þ ¼ G2. We linearize (5) by
substituting uðxÞ ¼ −y0ðxÞ=yðxÞ and get y000ðxÞ ¼ xyðxÞ,
where yð0Þ ¼ 1, y0ð0Þ ¼ 0, y00ð0Þ ¼ −G2. The exact sol-
ution satisfying these initial conditions is

yðxÞ ¼ 2
ffiffiffi
2

p

Γð1=4Þ
Z

∞

0

dt cosðxtÞe−t4=4: ð6Þ

If yðxÞ ¼ 0, the generating function uðxÞ becomes infinite,
so the smallest value of jxj at which yðxÞ ¼ 0 is the radius
of convergence of the series for uðxÞ. A simple plot shows
that yðxÞ vanishes at x0 ¼ �2.441 968 2… [9]. Therefore,
r ¼ 1=x0 ¼ 0.409 506…, which confirms (4).
The asymptotic behavior in (4) indicates that G2n grows

much faster than the γ2n as n → ∞:

γ2n ¼
R
∞
−∞ dx x2ne−x

4=4R
∞
−∞ dx e−x

4=4
∼ 2n

Γðn=2þ 1=4Þ
Γð1=4Þ :

This is astonishing because we get the connected Green’s
functions by subtracting the disconnected parts from γ2n.
Surprisingly, neglecting the huge quantityG2n on the left

side of the DS equations (3) still leads to a reasonably
accurate result for G2, as Fig. 1 shows. This is because
while the term on the left side is big, the terms on the right
are comparably big [9]. We also find that Padé approx-
imants or mean-field-like schemes do not improve the
convergence. But there is a way to get accurate results:
Approximating the left side of the DS equations with the
asymptotic formula in (4) gives G2 to high precision (see
Fig. 2). This approach works well for D ¼ 0 but is difficult
to implement if D > 0 as the DS equations are coupled
nonlinear integral equations instead of algebraic equations.
Non-Hermitian cubic D ¼ 0 theory.—The massless

Lagrangian L ¼ 1
3
iϕ3 defines a non-Hermitian PT -

symmetric theory whose one-point Green’s function is

G1 ¼
Z

dx xe−ix
3=3=

Z
dx e−ix

3=3; ð7Þ

FIG. 1. Positive zeros of PnðxÞ in (3) plotted as a function of n
up to n ¼ 30. The zeros are nondegenerate and range from 0 up
to just below the exact value of G2 ¼ 0.675 978… (1) (heavy
horizontal line).
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where the path of integration terminates in aPT -symmetric
pair of Stokes sectors [7], so the exact value of G1

is G1 ¼ −i31=3Γð2
3
Þ=Γð1

3
Þ ¼ −0.729 011 13…i.

The first four DS equations are

G2 ¼ −G2
1; G3 ¼ −2G1G2 − i;

G4 ¼ −2G2
2 − 2G1G3; G5 ¼ −6G2G3 − 2G1G4: ð8Þ

To obtain the leading approximation to G1 we substitute
the first equation into the second and truncate by
setting G3 ¼ 0. The resulting equation is G3

1 ¼ 1
2
i and

the solution that is consistent with PT symmetry is
G1 ¼ −2−1=3i ¼ −0.793 700 53…i. This result differs by
8.9% from the exact value of G1.
At higher order we again truncate the system and find the

roots of the associated polynomial in G1. At first, the roots
consistent with PT symmetry obtained by this procedure
approach the exactG1 but unlike the roots for the Hermitian
quartic theory, where the approach is monotone (Fig. 1),
the approach is oscillatory: for the n ¼ 4, 5, 6, 7 truncations
the closest roots to the exact G1 are −0.693 361…i,
−0.746 900…i, −0.712 564…i, and −0.739 871…i.
However, for n ¼ 8 this pattern breaks; the closest root
is −0.712 368…i, which is a worse approximation than the
n ¼ 6 root.
This departure from oscillatory convergence is the first

indication of a qualitative change in the approximants. For
n ¼ 10 the roots closest toG1 are a pair on either side of the
negative-imaginary axis at −0.717 367…i� 0.016 050….
We solve the DS equations up to the 150th truncation and
plot in Fig. 3 all roots from n ¼ 2 to 150 as dots in the
complex plane. These roots become dense on a three-
bladed propeller shape, with a small loop at the tip of each
blade. The inset shows that dots on the loop surround but do
not approach the exact G1.
The roots in Fig. 3 have threefold symmetry because the

truncated DS equations give polynomials having only
powers of x3 (apart from a root at 0). The DS equations
depend only locally on the integrand of the functional

integral; they are totally insensitive to the boundary
conditions on the functional integrals. There are three
pairs of Stokes sectors of angular opening 60° inside of
which the integration path in (7) can terminate. These
sectors are centered about θ1 ¼ ðπ=2Þ, θ2 ¼ −ðπ=6Þ, or
θ3 ¼ −ð5π=6Þ. If the integration path terminates in the
PT -symmetric (2,3) sectors, G1 is negative imaginary, but
if it terminates in the (1,2) or (1,3) sectors, G1 is complex.
Asymptotic behavior of Gn for large n.—Richardson

extrapolation gives the large-n behavior of the exact Green’s
functions for the cubic theory (G14 ¼ 42 692.806 116,
G15 ¼ −255 589.034 701 i):

Gn ∼ −ðn − 1Þ!rnð−iÞn ðn → ∞Þ; ð9Þ

where r ¼ 0.427 696 347 707…. Equation (9) is analogous
to (4) for the Hermitian quartic theory, and can be confirmed
analytically [9].
To calculate r analytically we follow the procedure

used above for the Hermitian quartic theory. Define
gp ≡ −inGp=ðp − 1Þ! and rewrite the DS equations for
the Green’s functions Gn as one compact equation:

gp ¼ 1

p − 1

Xp−1
k¼1

gkgp−k þ
1

2
δp;3 ðp ≥ 2Þ:

Next, multiply by ðp − 1Þxp, sum from p ¼ 2 to ∞, and
define the generating function fðxÞ≡P∞

p¼1 x
pgp, which

obeys the Riccati equation xf0ðxÞ − fðxÞ ¼ f2ðxÞ þ x3.
Substituting fðxÞ ¼ −xu0ðxÞ=uðxÞ linearizes this equa-

tion: u00ðxÞ ¼ −xuðxÞ. This is an Airy equation whose
general solution is uðxÞ ¼ aAið−xÞ þ bBið−xÞ. From

FIG. 2. Dramatic improvement of the results in Fig. 1 obtained
by replacing the left side of the DS equations (3) by the
asymptotic approximation (4) instead of zero.

FIG. 3. All solutions of the truncated DS equations (8) for the
non-Hermitian cubic theory. Inset: The square indicates the exact
G1 ¼ −0.729 011 13…i.
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f0ð0Þ ¼ g1 ¼ −31=3Γð2
3
Þ=Γð1

3
Þ we find that a is arbitrary

and b ¼ 0, so fðxÞ ¼ xAi0ð−xÞ=Aið−xÞ.
The power series for the generating function

fðxÞ blows up when the denominator vanishes, when
x ¼ 2.338 107 410 460…. This is the radius of convergence
of the series and its inverse is the value of r in (9).
The rapid growth of Gn in (9) explains the slow

convergence and inaccurate numerical results obtained
by truncating the DS equations (Fig. 3). Once again, using
this asymptotic approximation instead of setting Gn ¼ 0
gives extremely accurate and rapidly convergent approx-
imations to G1 [9].
Non-Hermitian quartic D ¼ 0 theory.—The Lagrangian

L ¼ − 1
4
ϕ4 defines a non-Hermitian PT -symmetric theory,

where

G1 ¼
R
dx x expðx4=4ÞR
dx expðx4=4Þ ¼ −

2i
ffiffiffi
π

p
Γð1=4Þ ¼ −0.977 741…i;

and the path of integration lies inside a PT -symmetric pair
of Stokes sectors in the lower-half complex-x plane.
The first three DS equations are

G3 ¼ −G3
1 − 3G1G2;

G4 ¼ −3G1G3 − 3G2
2 − 3G2

1G2 − 1;

G5 ¼ −3G1G4 − 9G2G3 − 3G2
1G3 − 6G1G2

2: ð10Þ

Solving these equations is harder than for the Hermitian
quartic or the non-Hermitian cubic theory, as two Green’s
functions must be set to zero to close the system, and
two coupled polynomials equations must be solved
simultaneously. The leading-order truncation leads to
G1 ¼ −ið3=2Þ1=4 ¼ −1.106 682…i, which differs from
the exact G1 above by 13.2%.
This procedure is continued for larger n. The number of

roots increases rapidly and the roots have fourfold sym-
metry in the complex plane. All roots up to n ¼ 33 are
shown in Fig. 4. There are four concentrations of roots on
the axes but PT symmetry requires that G1 be negative
imaginary. Unlike Fig. 3 the dots are scattered over the
complex plane because truncating the DS equations gives
two coupled polynomial equations.
We can determine the asymptotic behavior of Gn for

large n from the DS equations in (10). We find
Gn ∼ −iðn − 1Þ!ð−iÞnrn, where r ¼ 0.346 40…. This
result is analogous to the asymptotic behavior in (9).
Quintic and sextic D ¼ 0 theories.—The DS equations

for the PT -symmetric D ¼ 0 Lagrangian − 1
5
iϕ5 require

that three higher Green’s functions be set to 0 to close the
truncated system, leading to three coupled polynomial
equations for G1, G2, and G3. Going to the n ¼ 11
truncation we see ten concentrations of roots in Fig. 5.
(The DS equations are insensitive to the choice of Stokes
sectors for the functional integral.) There are two pairs of

PT -symmetric boundary conditions, which give rise to
two imaginary values of G1 ¼ 0.412 009…i and G1 ¼
−1.078 653…i [11], seen on Fig. 5 as heavy dots.
For the sextic case L ¼ 1

6
ϕ6 we truncate the DS

equations and set the four highest Green’s functions to
0. We must solve four coupled polynomial equations. To
reduce the number of solutions we impose parity symmetry,
so G1 ¼ G3 ¼ 0. This eliminates all but three pairs of
Stokes sectors. Figure 6 shows three concentrations
of roots for G2 up to the n ¼ 32 truncation. The exact
values of G2 (squares) are 61=3

ffiffiffi
π

p
=Γð1=6Þ ¼ 0.578 617…

and −0.289 302…� 0.501 097i; the error is a few percent.

FIG. 4. All roots G1 up to n ¼ 33 plotted as points in the
complex plane. The roots exhibit fourfold symmetry but only
those on the negative-imaginary axis respect PT symmetry.

FIG. 5. Solutions to the DS equations for a quintic D ¼ 0 field
theory. Exact values are denoted by squares.
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Summary.—For fiveD ¼ 0 field theories we have shown
that the truncated DS equations yield underdetermined
polynomial systems. There is no effective strategy to solve
such systems: Closing the systems by setting higher
Green’s functions to zero gives sequences of approximants
that converge to incorrect limiting values. Replacing higher
Green’s functions with mean-field-like approximations also
gives incorrect limiting values, and this approach has the
drawback that if D > 0, renormalization is required. The
one numerically accurate approach is to replace the higher
Gn’s by their large-n asymptotic behaviors. This is difficult
when D > 0, but we believe that it may be possible to
calculate, and it presents an interesting avenue for further
research.
This Letter emphasizes that the DS equations are local.

Deriving the DS equations assumes only that the functional
integrals exist; the DS equations are insensitive to which
Stokes sectors in function space are used. As a result, the
approximants try (but fail) to approach many different
limits, most of which are complex [12].
The accuracy of the DS truncations worsens when

interaction terms have higher powers of the field because
the indeterminacy of the system increases. More Green’s
functions must be set to 0 to close the truncated system.
For Lagrangians having a weak-coupling constant g we

can expand allGn in the DS equations as series in powers of

g. This removes all ambiguities discussed in here and gives
the unique weak-coupling expansion for each Gn.
However, this merely replicates a Feynman-diagram cal-
culation of the Green’s functions and totally ignores the
nonperturbative content of the theory.
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