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Certain Feynman integrals are associated to Calabi-Yau geometries. We demonstrate how these integrals
can be computed with the method of differential equations. The four-loop equal-mass banana integral is the
simplest Feynman integral whose geometry is a nontrivial Calabi-Yau manifold. We show that its
differential equation can be cast into an e-factorized form. This allows us to obtain the solution to any
desired order in the dimensional regularization parameter . The method generalizes to other Calabi-Yau
Feynman integrals. Our calculation also shows that the four-loop banana integral is only minimally more
complicated than the corresponding Feynman integrals at two or three loops.
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Introduction.—In recent years it has been become clear
that we may associate to each Feynman integral a geometric
object, and that understanding this geometry helps in
computing the Feynman integral. Most Feynman integrals
that have been computed so far are associated to a sphere.
These Feynman integrals evaluate to multiple polylogar-
ithms [1,2]. The next more complicated Feynman integrals
are associated to elliptic curves. These evaluate to iterated
integrals of modular forms and elliptic polylogarithms [3,4].
These two classes of Feynman integrals (i.e., the ones
associated to spheres and elliptic curves) are by now quite
well understood and in many examples we are able to
transform the differential equation for these Feynman
integrals to an e-factorized form [5]. Examples for the
elliptic case can be found in Refs. [6-9]. The differential
equation in an e-factorized form together with values of the
Feynman integrals at a boundary point is all that we need:
from these data we can easily obtain the analytic solution to
any order in the dimensional regularization parameter &.

We also know that there are Feynman integrals asso-
ciated to Calabi-Yau manifolds [10]. However, up to now it
was not known whether the differential equation for a
Feynman integral associated to a nontrivial Calabi-Yau
manifold can be transformed to an e-factorized form. In this
Letter we show for the first time that this is indeed possible.
This implies that the Feynman integral can be solved to
any order in the dimensional regularization parameter &
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(the required boundary values are rather easily obtained).
Let us comment on what we mean by a “nontrivial” Calabi-
Yau manifold: Calabi-Yau onefolds are elliptic curves,
which are well understood. Feynman integrals associated
to higher-dimensional Calabi-Yau manifolds can in some
cases be related to elliptic curves. This occurs when their
Picard-Fuchs operator is the symmetric product of a degree
two operator of an elliptic curve [11]. We call such Calabi-
Yau manifolds “trivial.” The family of /-loop banana graphs
provides examples for Feynman integrals related to Calabi-
Yau (! — 1)-folds. For this reason it has received significant
attention in recent years [12—17]. The three-loop banana
integral, a Calabi-Yau twofold, is well known to possess an
operator that is a symmetric square [18,19]. It can therefore
be treated with methods similar to the elliptic case [20-24].
The first example from the family of banana graphs that is
nontrivial in the sense above is therefore the four-loop
equal-mass banana integral. It is related to a Calabi-Yau
threefold. This integral is, for example, relevant to the
process pp — 1 at N*LO (i.e. the fourth order beyond the
leading one, the abbreviation stands for next-to-next-to-
next-to-next-to-leading order).

In this Letter, we show that an e-factorized differential
equation for this Feynman integral exists, give the differ-
ential 1-forms appearing in the differential equation, and
show how to solve the four-loop equal-mass banana
integral to all orders in the dimensional regularization
parameter . The benefits are threefold. Firstly, we obtain
analytic solutions to any order in the dimensional regu-
larization parameter. Secondly, our results give us very fast
numerical evaluations. Thirdly, the differential 1-forms
define the symbol alphabet for this Feynman integral
[see Eq. (26)]. Hence, as a by-product we obtain for the
first time the symbol alphabet for a Feynman integral
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associated to a Calabi-Yau threefold, extending recent work
on elliptic symbols [25,26].

The method we employ is not specific to this particular
Feynman integral, and extends to other Feynman integrals
related to Calabi-Yau manifolds. For this Letter we have
checked that the same method works for the five-loop and
six-loop equal-mass banana integrals. Recently, two pub-
lications appeared showing the application of methods
similar to the one introduced here to equal-mass banana
integrals [27] and ice cone integrals [28] at any loop order.
In general, Feynman integrals depend on more than one
kinematic variable. Establishing an e-factorized form for
these will require similar steps as going from the equal-
mass sunrise (one kinematic variable) to the unequal-mass
sunrise (three kinematic variables). The sunrise integrals
are related to Calabi-Yau onefolds, and an e-factorized form
exists for both equal and unequal cases. Hence, the results
in this Letter open the door for calculating Feynman
integrals related to higher-dimensional Calabi-Yau mani-
folds with more parameters.

We find that there are two new ingredients required for
nontrivial Calabi-Yau manifolds. The first one is a change
of variables. In the two-loop and three-loop equal-mass
banana cases an important step is the change of variables
from the dimensionless ratio m?/(—p?) to the modular
parameter 7, defined as the ratio of the two periods of the
elliptic curve. In the four-loop case there is no elliptic
curve. However, the above change of variables can be
viewed as the mirror map [29-31] for a family of Calabi-
Yau manifolds, and this generalizes to the cases of interest.

The second ingredient is the following: The e-factorized
form is achieved by redefining the master integrals. One
pattern which emerges is that one of the master integrals of
the [-loop banana family in D = 2 — 2¢ space-time dimen-
sions is given by

el

L="1, 1, 1
w111 (1)

where @, is a specific solution of the homogeneous differ-
ential equation. With g = exp(2zir) and 6 = ¢(d/dq),
the Picard-Fuchs operators for I, at two and three
loops are

6> and 6. (2)

At four loops we find
0 Lo 3)
z7

The appearance of the new function K is related to the fact
that the Picard-Fuchs operator at four loops is not a
symmetric product. It also implies that at four loops the
first term of I, in the e expansion is not an FEichler

integral. In the literature on Calabi-Yau manifolds the
function K is known as the ‘“Yukawa coupling” [32]
(see also Refs. [11,33-39]). In general the factorization
(or special local normal form) for a Calabi-Yau operator of
degree [ is [11]

1 1 1 1
00— P, )
K, K, Ky Ki3

with K; = K;_,_;. This factorization translates into an ansatz
for the e-factorized form [see Eq. (12)]. In the following we
discuss concretely the case of the four-loop equal-mass
banana integral. It serves as an example where complications
due to higher-dimensional Calabi-Yau manifolds occur for
the first time. Our main results are the ansatz given in
Eq. (12), the differential equation in e-factorized form given
in Egs. (24) and (25), and the symbol alphabet in Eq. (26).
Notation.—We are interested in the integrals

S D
5 d°k
_ L AyEe( 2 -, vj—2D ” a
IU1D2U3U4I/5 = e (m ) =t / ( iﬂD/2>

a=1

o (p-50) {l )
(5)

where D denotes the number of space-time dimensions,
e the dimensional regularization parameter, and yy the
Euler-Mascheroni constant. We consider these integrals in
D =2 —2¢ space-time dimensions. The corresponding
Feynman graph is shown in Fig. 1. It is convenient to
introduce the dimensionless variable:

y=—--"—7- (6)

It is well known that this family of Feynman integrals has
five master integrals. A possible choice for a basis of master
integrals is

IlllIO’Illllls111112’1111137111114' (7)

The Feynman integral /¢ is a product of four one-loop
tadpole integrals and rather simple. We set

I} = e'1y1150 = [T (1 + €))%, (8)

)
N

The four-loop banana graph.

FIG. 1.
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The integral /, has uniform transcendental weight, where
we assign weight n to the £ value {,, and weight (—1) to e.

Let us now look at 7;;;;. Useful information can be
extracted from the Picard-Fuchs operator [40-43]. For
111117 we have the inhomogeneous fourth-order differential
equation:

120¢*
V(14 y)(149y)(1 + 25y

Lyl = )111110' 9)

The dependence on & of the fourth-order differential
operator L, is polynomial. The e-independent part of Ly,

which we denote by Lgo)’ is of particular importance:

L} —+2(1+ Ly 2 4.2 )d—3
dy* y 14y 149y 1+25y)dy’

(14 98y + 1839y + 3150y°) o?

Y21+ y)(1+9y)(1 +25y) dy?

(14 15y)(1 — 15y — 60y?) d

Y (14 y)(1+9y)(1 +25y) dy

n 1+ 5y

Y+ y)(1+9y)(1 +25y)°

(10)

This operator appears as entry 34 in the table of Ref. [35].
The associated Calabi-Yau manifold has been studied
in Ref. [44].

The indicial equation for the operator Lfto) at the point
y=0is (p—1)* =0, showing that y =0 is a point of
maximal unipotent monodromy.

Master integrals.—The construction of the master
integrals, which put the differential equation into an
e-factorized form, follows with one exception the pattern
found at two loops [6] and three loops [24]. Let

o (y), Jb), K@),
F3(y), Fi(y), Fu3(y), Fsy(y),
Fs3(y), Fsy(y) (11)

be nine a priori unknown functions of y. They are however
independent of €. We start from the following ansatz for the
master integrals:

Iy = ' 1110,
&
I, = —1I11,
(@)
J d
I3 = —— 1, + F3l,,
edy
J d
4 K dy 3+ Faply + Fyzls
J d
Is = Ed_yl4 + Fsyly + Fs3ls + Fsyly. (12)

The new ingredient at four loops is the appearance of the
function K in the definition of /,. This ansatz leads to the
differential equation

dl = Al, (13)
where A is a 5 x 5 matrix. The entries in the first four rows

and the entry As; are already proportional to e. The
remaining entries in the fifth row may be written as

|
Asi= ) AL
j=k=5

ke {2,345},  (14)

where Ag’ ,)< is independent of . We now require that the Agj 11
with j <1 vanish. This gives ten equations for nine
unknown functions. These equations can be satisfied as
follows: Let w;—w,; be four independent solutions of
Lgo)a) = 0. From Frobenius it follows that we may write
them as

1 k—1 ll'ljy 0
= — oyt
Pk = (Zﬂi)k_l Z ]1 Z Aj—1-jny . (15)
Jj=0 n=0

As normalization we choose ago = 1. We identify the
holomorphic solution ®; with the one appearing in
Egs. (11) and (12). The first few terms read

w; = y(1 =5y +45y? = 545y3) + O(y°).  (16)

We set
() i
=z, — mr’ 17
=2 = (17)
and
1 dy
=—" 18
2ri dt ( )

Equation (17) defines a change of variables from y to 7
(or g). This map is also called the mirror map [45]. We have

y=q+8q¢*+36¢° +168¢* + O(q°). (19)

As y goes to zero, 7 approaches ico and g goes to zero. The
function K is given by

J3 1
K=ty oyarsy 2

We define iterated integrals by
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I(flv "'7fn;7)

= limR {
qo—0

qul

../qnl dq"fl(Tl)---fn(Tn) , (21)

40 q1 0 n

where R is the operator which removes all In(g,) terms,
corresponding to the standard “trailing zero” or “tangential
base point” regularization [3,46,47]. As the last argument
of all iterated integrals will always be 7, we simply write
I(fy,.... f,) instead of I(fy, ..., f,:7). The functions F;

are given by
Fyp=—foa=fops

1
Fu3 = _E(fZ,a = fap)s

Fss =—=fou+ fop

1
Fyp = _Efét,a’

F53:_f4,bv F52:_f6v
(22)

where

5 1 9 25
f2,a:'] P - - ’
2y 1+y 149y 1425y
f2,b :I(K,h()),
faa=—I(K.he)* =2KI(1,K, hg, he) — KI(1, hg ).
f4,b == 4[(1, K, h6, h6) +2I(1, hS,b) + /’l47
J
fs =120,
y
fo = fapl(K, he) —4he,
fs = fapll(K, he)]* — 8heI (K, h)

KU hgy) + 200K g )P + By (23)
|

The helper functions hy, hg, hg ,, and hg ;, are defined in the
Appendix. This completes the definition of the master
integrals and it can be verified that with this definition
the terms Ag’,l with j < 1 vanish in Eq. (14). Hence, the
differential equation is in e-factorized form,

dl =2rieA ldr, (24)
with
0 0 0 0 0
0 foatSop 1 0 0
Ar = 0 f4,a fZ,a _f2.b K 0
0 fe fap  Jra—Job 1
fs /3 fe Jaa  JratSon
(25)

This is a differential equation with an alphabet consisting of
nine letters:

A=A{LK, fo4 fops faa fap 5. f6: fs}. (26)

We observe the symmetry
Ai,j = A7—j,7—i’ for l,] > 2. (27)
We further observe that the g expansions of all entries of the

matrix A, have integer coefficients (apart from a possible
rational prefactor):

K=1-q+17¢*> - 253q + 3345¢* + O(¢°),

5
fra= - 159 + 167¢* — 27874 + 40631¢* + O(q°),

fap =1q —135¢% +2275¢° — 34759¢* + O(q°),

1
faa= -1 (147q — 3267¢% +59943q° — 1017027¢*) + O(q°),

5
fap= 3= 52q + 1460¢> — 33316¢° + 652212¢* + O(q°),

fs = 120(1 +3q —27¢* + 147> — 1467¢*) + O(q°),

|
fo = =5 (21q = 28057 +108777¢" = 2772213¢") + O(g°).

1
fy = —— (9 — 855 + 7623¢% + 606 78943 ~31 766 8414*) + O(g°). (28)

16
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Results.—We write
=Y 1¢
=0

for the & expansion of the master integral /;.

With the differential equation (24) at hand we only need the
boundary values as additional input. We choose y = 0 as
boundary point. The boundary values are easily obtained with
the help of the Mellin-Barnes technique. The calculation
follows the lines of the corresponding calculation at three
loops [22,24]. We need the constant term and all logarithms
In(y). We obtain for the boundary value of I, [15]:

G4 o
L], = St z(J.) (—1)iye

J=0

(29)

C(1+ &)*T(1 —&)'"I(1 + je)
1= (j+ 1)

(30)

Note that Eq. (30) determines the boundary values of all
master integrals.
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FIG. 2. Comparison of our result for 1(24) (plotted as curves)
with numerical results from pysecbec (points).

With the boundary values we may now obtain analytical
results for all master integrals. As an example, we focus on /5.
With

f3 = foa+ fans

f; :fZ.a_fZ,lﬂ (31)

the analytic result for the integral 7, up to O(e&’) is given by

I =e'I(1.K. 1. fs5) =803 Ing] + {I(1. K. 1. f3. f5) + I(1L.K. f3. 1. f5) + I(1. f3. K. 1. f5) + I(f3. 1. K. 1. f5)

—1205,1(1, K. 1) —40&5[131(1, K) + 21(1, f3)+21(fF.1)] = 12044 In g + 80¢,¢3 — 60085} 4 O(&°).

From Eq. (28) we obtain the ¢ expansion of all

iterated integrals and hence the g expansion of the master
)

integrals. For example, the first few terms of ;" read with
L=Ing:
1) =514 —80¢,L + 60L(4 — L)g
+15(6 — 34L + 17L%)q?
10
Y (123 —2024L + 1518L%)q?
25 2\ 4 5
iy (851 +4014L —4014L%)q"* + O(q°). (33)

In addition, we must compute the value of ¢ from a given
value y. In the region |y| < 1/25 we may use the series for
w; and w, given in Eq. (15) to obtain from a given value of
y the corresponding value of ¢. Note that this is different
from the situation at two and three loops, where we may use
complete elliptic integrals to obtain the value of ¢ from y.

In the plots, we will use the kinematical variable
x = —1/y = p?/m? instead of y. The condition |y| < 1/25
translates to |x| > 25. This is the region where we may
evaluate the integral numerically. The correct branch is
selected by giving x an infinitesimal positive imaginary part
according to Feynman’s i6 prescription. Figures 2 and 3

(32)

show the numerical results for the ¢* term 124)

term Igs)

and the &
of 1,. We also plotted the results from the program

pySecDec [48]. We observe excellent agreement. The CPU
time for the numerical evaluation of our result is negligible,
a kinematic point by pySecDec takes about 10 min on a
desktop.

Numerical evaluations around the singular points x = 0,
x=1, x=9, and x =25 will be discussed in a longer
publication.

100000

50000

,(25)

-50000 L L L L L L
-200 -100 0 100 200 300 400 500

x:pQ/m2

FIG. 3. Comparison of our result for 1&5) (plotted as curves)
with numerical results from pysecbec (points).
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Conclusions.—In this Letter, we showed that the differ-
ential equation for the four-loop equal-mass banana graph
can be cast into an e-factorized form, which allows for a
systematic solution to any desired order in the dimensional
regularization parameter.

We used the mirror map to define new variables 7 and q.
The relevant Picard-Fuchs operator is no longer a sym-
metric product. We showed that this is not an essential
complication, it merely introduces the function K.

Our calculation shows that the four-loop equal-mass
banana integral is only minimally more complicated than
the corresponding Feynman integrals at two or three loops.
This is good news, as it opens a path toward Feynman
|

hy

integrals related Calabi-Yau

manifolds.

to genuinely generic
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Appendix: Helper functions.—Here, we give the
explicit expressions for the helper functions hy, hg, hg .
and hg

_ 5+ 14y — 569y% — 12044y3 + 77 427y* — 302 850y° + 50 625y° a)_%

2y(1 + y)(14+9y)(1 + 25y)
L [z+ 192y 64(1—9y)_192(3+25y)] )
Tl Ty (1492 (1+25y)

1°

J ’

hsg . = —(1 + 33y — 577y> — 225y°)(3 — 25y — 187y* + 225y°)
" (3 — 38y — 2167y* + 4060y* + 307 893y* + 693 450y — 50 625y°)
16y*(1+ )3 (1 +9y)3(1 + 25y)*

hg, = [_hijdzwl - (iﬂ> (ﬂ> - X Wy |wyJ,
’ wi dy*  \dywi)\dy ) 414y (1+9y)(1+25y)°
X = 10 + 953y + 36 365y% + 624 143y> + 5506 553y* + 25045 562y° — 43328 414y° — 1595702 658y’
—3663006612y% + 4836275325y° + 29858270 625y'0 + 9 146 671 875y'" + 2562890 625y'2.

a)%J ,
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