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Certain Feynman integrals are associated to Calabi-Yau geometries. We demonstrate how these integrals
can be computed with the method of differential equations. The four-loop equal-mass banana integral is the
simplest Feynman integral whose geometry is a nontrivial Calabi-Yau manifold. We show that its
differential equation can be cast into an ε-factorized form. This allows us to obtain the solution to any
desired order in the dimensional regularization parameter ε. The method generalizes to other Calabi-Yau
Feynman integrals. Our calculation also shows that the four-loop banana integral is only minimally more
complicated than the corresponding Feynman integrals at two or three loops.
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Introduction.—In recent years it has been become clear
that we may associate to each Feynman integral a geometric
object, and that understanding this geometry helps in
computing the Feynman integral. Most Feynman integrals
that have been computed so far are associated to a sphere.
These Feynman integrals evaluate to multiple polylogar-
ithms [1,2]. The next more complicated Feynman integrals
are associated to elliptic curves. These evaluate to iterated
integrals of modular forms and elliptic polylogarithms [3,4].
These two classes of Feynman integrals (i.e., the ones
associated to spheres and elliptic curves) are by now quite
well understood and in many examples we are able to
transform the differential equation for these Feynman
integrals to an ε-factorized form [5]. Examples for the
elliptic case can be found in Refs. [6–9]. The differential
equation in an ε-factorized form together with values of the
Feynman integrals at a boundary point is all that we need:
from these data we can easily obtain the analytic solution to
any order in the dimensional regularization parameter ε.
We also know that there are Feynman integrals asso-

ciated to Calabi-Yau manifolds [10]. However, up to now it
was not known whether the differential equation for a
Feynman integral associated to a nontrivial Calabi-Yau
manifold can be transformed to an ε-factorized form. In this
Letter we show for the first time that this is indeed possible.
This implies that the Feynman integral can be solved to
any order in the dimensional regularization parameter ε

(the required boundary values are rather easily obtained).
Let us comment on what we mean by a “nontrivial” Calabi-
Yau manifold: Calabi-Yau onefolds are elliptic curves,
which are well understood. Feynman integrals associated
to higher-dimensional Calabi-Yau manifolds can in some
cases be related to elliptic curves. This occurs when their
Picard-Fuchs operator is the symmetric product of a degree
two operator of an elliptic curve [11]. We call such Calabi-
Yau manifolds “trivial.” The family of l-loop banana graphs
provides examples for Feynman integrals related to Calabi-
Yau (l − 1)-folds. For this reason it has received significant
attention in recent years [12–17]. The three-loop banana
integral, a Calabi-Yau twofold, is well known to possess an
operator that is a symmetric square [18,19]. It can therefore
be treated with methods similar to the elliptic case [20–24].
The first example from the family of banana graphs that is
nontrivial in the sense above is therefore the four-loop
equal-mass banana integral. It is related to a Calabi-Yau
threefold. This integral is, for example, relevant to the
process pp → tt̄ at N4LO (i.e. the fourth order beyond the
leading one, the abbreviation stands for next-to-next-to-
next-to-next-to-leading order).
In this Letter, we show that an ε-factorized differential

equation for this Feynman integral exists, give the differ-
ential 1-forms appearing in the differential equation, and
show how to solve the four-loop equal-mass banana
integral to all orders in the dimensional regularization
parameter ε. The benefits are threefold. Firstly, we obtain
analytic solutions to any order in the dimensional regu-
larization parameter. Secondly, our results give us very fast
numerical evaluations. Thirdly, the differential 1-forms
define the symbol alphabet for this Feynman integral
[see Eq. (26)]. Hence, as a by-product we obtain for the
first time the symbol alphabet for a Feynman integral
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associated to a Calabi-Yau threefold, extending recent work
on elliptic symbols [25,26].
The method we employ is not specific to this particular

Feynman integral, and extends to other Feynman integrals
related to Calabi-Yau manifolds. For this Letter we have
checked that the same method works for the five-loop and
six-loop equal-mass banana integrals. Recently, two pub-
lications appeared showing the application of methods
similar to the one introduced here to equal-mass banana
integrals [27] and ice cone integrals [28] at any loop order.
In general, Feynman integrals depend on more than one
kinematic variable. Establishing an ε-factorized form for
these will require similar steps as going from the equal-
mass sunrise (one kinematic variable) to the unequal-mass
sunrise (three kinematic variables). The sunrise integrals
are related to Calabi-Yau onefolds, and an ε-factorized form
exists for both equal and unequal cases. Hence, the results
in this Letter open the door for calculating Feynman
integrals related to higher-dimensional Calabi-Yau mani-
folds with more parameters.
We find that there are two new ingredients required for

nontrivial Calabi-Yau manifolds. The first one is a change
of variables. In the two-loop and three-loop equal-mass
banana cases an important step is the change of variables
from the dimensionless ratio m2=ð−p2Þ to the modular
parameter τ, defined as the ratio of the two periods of the
elliptic curve. In the four-loop case there is no elliptic
curve. However, the above change of variables can be
viewed as the mirror map [29–31] for a family of Calabi-
Yau manifolds, and this generalizes to the cases of interest.
The second ingredient is the following: The ε-factorized

form is achieved by redefining the master integrals. One
pattern which emerges is that one of the master integrals of
the l-loop banana family in D ¼ 2 − 2ε space-time dimen-
sions is given by

I2 ¼
εl

ω1

I1…1|ffl{zffl}
lþ1

; ð1Þ

where ω1 is a specific solution of the homogeneous differ-
ential equation. With q ¼ expð2πiτÞ and θ ¼ qðd=dqÞ,
the Picard-Fuchs operators for I2 at two and three
loops are

θ2 and θ3: ð2Þ

At four loops we find

θ2
1

K
θ2: ð3Þ

The appearance of the new function K is related to the fact
that the Picard-Fuchs operator at four loops is not a
symmetric product. It also implies that at four loops the
first term of I2 in the ε expansion is not an Eichler

integral. In the literature on Calabi-Yau manifolds the
function K is known as the “Yukawa coupling” [32]
(see also Refs. [11,33–39]). In general the factorization
(or special local normal form) for a Calabi-Yau operator of
degree l is [11]

θ2
1

K1

θ
1

K2

θ � � � θ 1

Kl−4
θ

1

Kl−3
θ2; ð4Þ

withKi ¼ Kl−2−i. This factorization translates into an ansatz
for the ε-factorized form [see Eq. (12)]. In the following we
discuss concretely the case of the four-loop equal-mass
banana integral. It serves as an examplewhere complications
due to higher-dimensional Calabi-Yau manifolds occur for
the first time. Our main results are the ansatz given in
Eq. (12), the differential equation in ε-factorized form given
in Eqs. (24) and (25), and the symbol alphabet in Eq. (26).
Notation.—We are interested in the integrals

Iν1ν2ν3ν4ν5 ¼ e4γEεðm2Þ
P

5

j¼1
νj−2D

Z �Y5
a¼1

dDka
iπD=2

�

× iπD=2δD
�
p −

X5
b¼1

kb

��Y5
c¼1

1

ð−k2c þm2Þνc
�
;

ð5Þ

where D denotes the number of space-time dimensions,
ε the dimensional regularization parameter, and γE the
Euler-Mascheroni constant. We consider these integrals in
D ¼ 2 − 2ε space-time dimensions. The corresponding
Feynman graph is shown in Fig. 1. It is convenient to
introduce the dimensionless variable:

y ¼ −
m2

p2
: ð6Þ

It is well known that this family of Feynman integrals has
five master integrals. A possible choice for a basis of master
integrals is

I11110; I11111; I11112; I11113; I11114: ð7Þ

The Feynman integral I11110 is a product of four one-loop
tadpole integrals and rather simple. We set

I1 ¼ ε4I11110 ¼ ½eγEεΓð1þ εÞ�4: ð8Þ

FIG. 1. The four-loop banana graph.
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The integral I1 has uniform transcendental weight, where
we assign weight n to the ζ value ζn and weight (−1) to ε.
Let us now look at I11111. Useful information can be

extracted from the Picard-Fuchs operator [40–43]. For
I11111 we have the inhomogeneous fourth-order differential
equation:

L4I11111 ¼
120ε4

y3ð1þ yÞð1þ 9yÞð1þ 25yÞ I11110: ð9Þ

The dependence on ε of the fourth-order differential
operator L4 is polynomial. The ε-independent part of L4,

which we denote by Lð0Þ
4 , is of particular importance:

Lð0Þ
4 ¼ d4

dy4
þ 2

�
1

y
þ 1

1þ y
þ 9

1þ 9y
þ 25

1þ 25y

�
d3

dy3

þ ð1þ 98yþ 1839y2 þ 3150y3Þ
y2ð1þ yÞð1þ 9yÞð1þ 25yÞ

d2

dy2

−
ð1þ 15yÞð1 − 15y − 60y2Þ
y3ð1þ yÞð1þ 9yÞð1þ 25yÞ

d
dy

þ 1þ 5y
y4ð1þ yÞð1þ 9yÞð1þ 25yÞ : ð10Þ

This operator appears as entry 34 in the table of Ref. [35].
The associated Calabi-Yau manifold has been studied
in Ref. [44].
The indicial equation for the operator Lð0Þ

4 at the point
y ¼ 0 is ðρ − 1Þ4 ¼ 0, showing that y ¼ 0 is a point of
maximal unipotent monodromy.
Master integrals.—The construction of the master

integrals, which put the differential equation into an
ε-factorized form, follows with one exception the pattern
found at two loops [6] and three loops [24]. Let

ω1ðyÞ; JðyÞ; KðyÞ;
F32ðyÞ; F42ðyÞ; F43ðyÞ; F52ðyÞ;
F53ðyÞ; F54ðyÞ ð11Þ

be nine a priori unknown functions of y. They are however
independent of ε. We start from the following ansatz for the
master integrals:

I1 ¼ ε4I11110;

I2 ¼
ε4

ω1

I11111;

I3 ¼
J
ε

d
dy

I2 þ F32I2;

I4 ¼
J
εK

d
dy

I3 þ F42I2 þ F43I3;

I5 ¼
J
ε

d
dy

I4 þ F52I2 þ F53I3 þ F54I4: ð12Þ

The new ingredient at four loops is the appearance of the
function K in the definition of I4. This ansatz leads to the
differential equation

dI ¼ AI; ð13Þ

where A is a 5 × 5 matrix. The entries in the first four rows
and the entry A5;1 are already proportional to ε. The
remaining entries in the fifth row may be written as

A5;k ¼
X1
j¼k−5

AðjÞ
5;kε

j; k ∈ f2; 3; 4; 5g; ð14Þ

where AðjÞ
5;k is independent of ε. We now require that the AðjÞ

5;k

with j < 1 vanish. This gives ten equations for nine
unknown functions. These equations can be satisfied as
follows: Let ω1–ω4 be four independent solutions of

Lð0Þ
4 ω ¼ 0. From Frobenius it follows that we may write

them as

ωk ¼
1

ð2πiÞk−1
Xk−1
j¼0

lnjy
j!

X∞
n¼0

ak−1−j;nynþ1: ð15Þ

As normalization we choose a0;0 ¼ 1. We identify the
holomorphic solution ω1 with the one appearing in
Eqs. (11) and (12). The first few terms read

ω1 ¼ yð1 − 5yþ 45y2 − 545y3Þ þOðy5Þ: ð16Þ

We set

τ ¼ ω2

ω1

; q ¼ e2πiτ; ð17Þ

and

J ¼ 1

2πi
dy
dτ

: ð18Þ

Equation (17) defines a change of variables from y to τ
(or q). This map is also called the mirror map [45]. We have

y ¼ qþ 8q2 þ 36q3 þ 168q4 þOðq5Þ: ð19Þ

As y goes to zero, τ approaches i∞ and q goes to zero. The
function K is given by

K ¼ J3

ω2
1

1

yð1þ yÞð1þ 9yÞð1þ 25yÞ : ð20Þ

We define iterated integrals by
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Iðf1;…; fn; τÞ

¼ lim
q0→0

R

�Z
q

q0

dq1
q1

� � �
Z

qn−1

q0

dqn
qn

f1ðτ1Þ…fnðτnÞ
�
; ð21Þ

where R is the operator which removes all lnðq0Þ terms,
corresponding to the standard “trailing zero” or “tangential
base point” regularization [3,46,47]. As the last argument
of all iterated integrals will always be τ, we simply write
Iðf1;…; fnÞ instead of Iðf1;…; fn; τÞ. The functions Fij

are given by

F32 ¼ −f2;a − f2;b;

F43 ¼ −
1

K
ðf2;a − f2;bÞ; F42 ¼ −

1

K
f4;a;

F54 ¼ −f2;a þ f2;b; F53 ¼ −f4;b; F52 ¼ −f6;

ð22Þ

where

f2;a ¼ J

�
5

2y
−

1

1þ y
−

9

1þ 9y
−

25

1þ 25y

�
;

f2;b ¼ IðK; h6Þ;
f4;a ¼ −½IðK; h6Þ�2 − 2KIð1; K; h6; h6Þ − KIð1; h8;bÞ;
f4;b ¼ 4Ið1; K; h6; h6Þ þ 2Ið1; h8;bÞ þ h4;

f5 ¼ 120
Jω
y2

;

f6 ¼ f4;bIðK; h6Þ − 4h6;

f8 ¼ f4;b½IðK; h6Þ�2 − 8h6IðK; h6Þ
þ K½Ið1; h8;bÞ þ 2Ið1; K; h6; h6Þ�2 þ h8;a: ð23Þ

The helper functions h4, h6, h8;a, and h8;b are defined in the
Appendix. This completes the definition of the master
integrals and it can be verified that with this definition

the terms AðjÞ
5;k with j < 1 vanish in Eq. (14). Hence, the

differential equation is in ε-factorized form,

dI ¼ 2πiεAτIdτ; ð24Þ

with

Aτ ¼

0
BBBBBBBB@

0 0 0 0 0

0 f2;aþf2;b 1 0 0

0 f4;a f2;a−f2;b K 0

0 f6 f4;b f2;a−f2;b 1

f5 f8 f6 f4;a f2;aþf2;b

1
CCCCCCCCA
:

ð25Þ

This is a differential equation with an alphabet consisting of
nine letters:

A ¼ f1; K; f2;a; f2;b; f4;a; f4;b; f5; f6; f8g: ð26Þ

We observe the symmetry

Ai;j ¼ A7−j;7−i; for i; j ≥ 2: ð27Þ

We further observe that the q expansions of all entries of the
matrix Aτ have integer coefficients (apart from a possible
rational prefactor):

K ¼ 1 − qþ 17q2 − 253q3 þ 3345q4 þOðq5Þ;

f2;a ¼
5

2
− 15qþ 167q2 − 2787q3 þ 40 631q4 þOðq5Þ;

f2;b ¼ 7q − 135q2 þ 2275q3 − 34 759q4 þOðq5Þ;

f4;a ¼ −
1

4
ð147q − 3267q2 þ 59 943q3 − 1 017 027q4Þ þOðq5Þ;

f4;b ¼
5

2
− 52qþ 1460q2 − 33 316q3 þ 652 212q4 þOðq5Þ;

f5 ¼ 120ð1þ 3q − 27q2 þ 147q3 − 1467q4Þ þOðq5Þ;

f6 ¼ −
1

2
ð21q − 2805q2 þ 108 777q3 − 2 772 213q4Þ þOðq5Þ;

f8 ¼ −
1

16
ð9 − 855qþ 7623q2 þ 606 789q3−31 766 841q4Þ þOðq5Þ: ð28Þ
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Results.—We write

Ik ¼
X∞
j¼0

IðjÞk εj ð29Þ

for the ε expansion of the master integral Ik.
With the differential equation (24) at handwe only need the

boundary values as additional input. We choose y ¼ 0 as
boundary point. The boundary values are easily obtainedwith
the help of the Mellin-Barnes technique. The calculation
follows the lines of the corresponding calculation at three
loops [22,24]. We need the constant term and all logarithms
lnðyÞ. We obtain for the boundary value of I2 [15]:

I2jy→0 ¼ 5e4γEε
X4
j¼0

�
4

j

�
ð−1Þjyjε

×
Γð1þ εÞ4−jΓð1 − εÞ1þjΓð1þ jεÞ

Γ½1 − ðjþ 1Þε� : ð30Þ

Note that Eq. (30) determines the boundary values of all
master integrals.

With the boundary values we may now obtain analytical
results for all master integrals. As an example, we focus on I2.
With

fþ2 ¼ f2;a þ f2;b; f−2 ¼ f2;a − f2;b; ð31Þ

the analytic result for the integral I2 up to Oðε5Þ is given by

I2 ¼ ε4½Ið1; K; 1; f5Þ − 80ζ3 ln q� þ ε5fIð1; K; 1; fþ2 ; f5Þ þ Ið1; K; f−2 ; 1; f5Þ þ Ið1; f−2 ; K; 1; f5Þ þ Iðfþ2 ; 1; K; 1; f5Þ
−120ζ2Ið1; K; 1Þ − 40ζ3½13Ið1; KÞ þ 2Ið1; f−2 Þþ2Iðfþ2 ; 1Þ� − 120ζ4 ln qþ 80ζ2ζ3 − 600ζ5g þOðε6Þ: ð32Þ

From Eq. (28) we obtain the q expansion of all
iterated integrals and hence the q expansion of the master

integrals. For example, the first few terms of Ið4Þ2 read with
L ¼ ln q:

Ið4Þ2 ¼ 5L4 − 80ζ3Lþ 60Lð4 − LÞq
þ 15ð6 − 34Lþ 17L2Þq2

−
10

9
ð123 − 2024Lþ 1518L2Þq3

−
25

8
ð851þ 4014L − 4014L2Þq4 þOðq5Þ: ð33Þ

In addition, we must compute the value of q from a given
value y. In the region jyj < 1=25 we may use the series for
ω1 and ω2 given in Eq. (15) to obtain from a given value of
y the corresponding value of q. Note that this is different
from the situation at two and three loops, where we may use
complete elliptic integrals to obtain the value of q from y.
In the plots, we will use the kinematical variable

x ¼ −1=y ¼ p2=m2 instead of y. The condition jyj < 1=25
translates to jxj > 25. This is the region where we may
evaluate the integral numerically. The correct branch is
selected by giving x an infinitesimal positive imaginary part
according to Feynman’s iδ prescription. Figures 2 and 3

show the numerical results for the ε4 term Ið4Þ2 and the ε5

term Ið5Þ2 of I2. We also plotted the results from the program
pySecDec [48]. We observe excellent agreement. The CPU
time for the numerical evaluation of our result is negligible,
a kinematic point by pySecDec takes about 10 min on a
desktop.
Numerical evaluations around the singular points x ¼ 0,

x ¼ 1, x ¼ 9, and x ¼ 25 will be discussed in a longer
publication.

FIG. 2. Comparison of our result for Ið4Þ2 (plotted as curves)
with numerical results from pySecDec (points).

FIG. 3. Comparison of our result for Ið5Þ2 (plotted as curves)
with numerical results from pySecDec (points).
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Conclusions.—In this Letter, we showed that the differ-
ential equation for the four-loop equal-mass banana graph
can be cast into an ε-factorized form, which allows for a
systematic solution to any desired order in the dimensional
regularization parameter.
We used the mirror map to define new variables τ and q.

The relevant Picard-Fuchs operator is no longer a sym-
metric product. We showed that this is not an essential
complication, it merely introduces the function K.
Our calculation shows that the four-loop equal-mass

banana integral is only minimally more complicated than
the corresponding Feynman integrals at two or three loops.
This is good news, as it opens a path toward Feynman

integrals related to genuinely generic Calabi-Yau
manifolds.

This work has been supported by the Cluster of
Excellence Precision Physics, Fundamental Interactions,
and Structure of Matter, Universität Mainz and the Cluster
of Excellence Origins, Technische Universität München,
both funded by the German Research Foundation (DFG)
within the German Excellence Strategy (Project IDs EXC
2118-39083149 and EXC 2094-390783311).

Appendix: Helper functions.—Here, we give the
explicit expressions for the helper functions h4, h6, h8;a,
and h8;b:

h4 ¼
5þ 14y − 569y2 − 12 044y3 þ 77 427y4 − 302 850y5 þ 50 625y6

2yð1þ yÞð1þ 9yÞð1þ 25yÞ
ω2
1

J
;

h6 ¼
�
7

y
þ 192y
ð1þ yÞ2 þ

64ð1 − 9yÞ
ð1þ 9yÞ2 −

192ð3þ 25yÞ
ð1þ 25yÞ2

�
ω2
1;

h8;a ¼ −ð1þ 33y − 577y2 − 225y3Þð3 − 25y − 187y2 þ 225y3Þ

×
ð3 − 38y − 2167y2 þ 4060y3 þ 307 893y4 þ 693 450y5 − 50 625y6Þ

16y3ð1þ yÞ3ð1þ 9yÞ3ð1þ 25yÞ3 ω2
1J;

h8;b ¼
�
−
h4J
ω2
1

d2ω1

dy2
−
�
d
dy

h4J
ω2
1

��
dω1

dy

�
−

X
4y3ð1þ yÞ3ð1þ 9yÞ3ð1þ 25yÞ3 ω1

�
ω1J;

X ¼ 10þ 953yþ 36 365y2 þ 624 143y3 þ 5 506 553y4 þ 25 045 562y5 − 43 328 414y6 − 1 595 702 658y7

− 3 663 006 612y8 þ 4 836 275 325y9 þ 29 858 270 625y10 þ 9 146 671 875y11 þ 2 562 890 625y12: ðA1Þ
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