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The study of the gravitational field produced by a spatially nonlocal, superposed quantum state of a
massive particle is an interesting and active area of research. One outstanding issue is whether the
gravitational field behaves like the classical superposition of the gravitational field of two particles
separated by a spatial distance with half the mass at each position. Alternatively, does the gravitational field
behave as a quantum superposition with a far more interesting and subtle behavior than a simple classical
superposition? Quantum field theory is ideally suited to probe exactly this kind of question. We study the
scattering of a massless scalar on a spatially nonlocal quantum superposition of a massive particle. We
compute the differential scattering cross section corresponding to one-graviton exchange. We find that the
scattering cross section disagrees with the Newton-Schrödinger picture of potential scattering from two
localized sources with half the mass at each source. This suggests that experimental observation of
gravitational scattering could inform the viability of the semiclassical treatment of the gravitational field, as
in the Newton-Schrödinger description, vs the fully quantum mechanical treatment adopted here. We
comment on the experimental feasibility of observing such effects in systems with many particles such as
Bose-Einstein condensates.
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Introduction.—At the core of modern physics lie two of
the most successful theories of physics: general relativity
and quantum field theory. Combining these theories in a
consistent manner is arguably the most important challenge
of modern theoretical physics. The most common approach
is to consider the quantum theory to be more fundamental
and to attempt to quantize gravity [1]. This choice is
justified indirectly; see, for instance, [2]. The opposite point
of view, “gravitizing” quantum mechanics, has also been
advocated, with some interesting repercussions [3–5].
In this Letter, we will sidestep the challenge of for-

mulating a complete quantum theory of gravity and will
investigate quantum gravity as a low-energy effective field
theory. This approach, while limited in scope, is perfectly
consistent within its domain of validity [6–9]. However, the
directly observable predictions of such an effective quan-
tum field theory present significant observational chal-
lenges. An intriguing possibility for the detection of noise
due to quantum fluctuations in the gravitational field at
gravitational wave detectors such as LIGO [10] has been
suggested recently [11]. Within the effective field theory
point of view, gravitation must be treated as a fully quantum
mechanical field, giving rise to the possibility of complex
and surprising behavior in scattering processes if the initial
state is nonstandard (whereby standard we refer to the
scattering of two particles in wave packets highly peaked
in momentum space, or simply in plane waves). It is in

this context that we examine the scattering of a mass-
less particle in a plane wave due to the gravitational field
of a massive particle in a spatially nonlocal quantum
superposition.
We begin with a brief discussion of the semiclassical

Newton-Schrödinger formalism to compare its implications
with our fully quantum treatment that follows. Then we
give a description of how to analyze scattering from a
nonlocal wave packet using the Korvalets-Kotkin et al.
formalism [12,13]. In the subsequent sections, we analyze
the one-graviton exchange scattering amplitude, the differ-
ential scattering cross section, and finally the multipole
expansion of this cross section. The main, interesting result
that we find is that the differential scattering cross section is
essentially insensitive to the fact that the massive particle
was in a spatially nonlocal quantum superposition. We end
with a discussion of our results and conclusion.
Newton-Schrödinger formalism.—The Newton-

Schrödinger (NS) equation was first introduced by
Ruffini and Bonazzola [14], in the analysis of self-
gravitation of boson stars. The NS equation appears as a
nonrelativistic limit of the Klein-Gordon equation or the
Dirac equation in the context of general relativity [15]. It
also describes fuzzy dark matter obeying a Vlasov-Poisson
type equation [16] as a model for cold dark matter in the
limit of large particle mass. The NS equation appears in the
context of the mutual gravitational or electromagnetic
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interaction of a plasma as proposed by Choquard as cited in
[17], where he has proved the uniqueness of the ground
state. There have been many other investigations into the
use of the NS equation; see, for example [18–21]. Diósi
[22] and Penrose [3], who actually coined the name of the
NS equation, studied the equation in an effort to understand
the collapse of the wave function. More recently, it has been
discussed in connection with the suggestion that gravity
might not need quantization [5]. The formalism incorpo-
rates the effect of gravity on a quantum particle under the
assumption that the gravitational potential is treated clas-
sically, with the mass probability density of the particle
appearing as the source.
Indeed, if the quantum particle is of mass m and is

described by the wave function ψ , according to the NS
formalism the gravitational potential Φ is determined by
Poisson’s equation,

∇2Φ ¼ 4πGmψ†ψ ; ð1Þ

whose formal solution is well known:

ΦðxÞ ¼ −Gm
Z

d3x0
ψ†ψðx0Þ
jx − x0j : ð2Þ

The potential, multiplied by m, appears as a potential
energy term in the Schrödinger equation, giving the so-
called NS equation

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
∇2ψ þmΦψ : ð3Þ

Note that, given Eq. (2), the NS equation is nonlinear and
nonlocal. We see clearly that if a particle is in a super-
position of two spatially separated components, according
to the NS formalism the gravitational potential will be the
coherent sum of the contributions from each component.
Gravitational scattering off such a particle would simply
result in the sum of two contributions, one from each
component.
Scattering on a spatially nonlocal wave packet.—The

goal of scattering experiments is to infer information about
the intrinsic interaction between the scattering particles (the
differential cross section) which is independent of the
details of the experiment (the particle fluxes, etc.).
Typically, the initial particles are presumed to be in plane
waves (or in states highly peaked in momentum space), and
therefore in spatially extended states. The cross section
depends only on the nature of the interaction, the energy of
the experiment, and the scattering angle; see, for example,
[23] for a detailed discussion including a definition of all
the parameters.

The usual formula for the differential cross section is

dσ¼
�Y

f

d3pf

ð2πÞ3
1

2Ef

�Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3

jMðk1;k2→fpfgÞj2
2ϵ12ϵ2jv1−v2j

× jϕ1ðk1Þj2jϕ2ðk2Þj2ð2πÞ4δ4
�
k1þk2−

X
pf

�
; ð4Þ

where ϕ1ðk1Þ, ϕ2ðk2Þ are the momentum-space wave
functions of the initial particles. Here, k1, etc., are the four
momenta; k1, etc., are the three momenta; and k̂1, etc., are
the unit three momenta; all the initial and final particles are
on shell, ϵi is the energy of the ith particle. The highly
peaked nature of the initial momentum-space wave func-
tions is an integral part of using Eq. (4) to extract the
differential scattering cross section; for a more general
initial state, a more careful treatment must be performed.
Here, we wish to consider a process outside the usual

paradigm, wherein one of the particles, of mass M, is not
highly peaked in momentum space. Rather, it is in a
superposition of two spatially localized states with negli-
gible overlap between them. As this is a priori not a
standard textbook calculation of a cross section, it is
necessary to use an approach that would enable us to
study the scattering of the wave packets in general. The
work [12,13] develops exactly such a method, generalizing
the customary (plane-wave) S-matrix formalism. In their
analysis, the incoming particles are described by their
Wigner functions [24].
Let the momentum-space wave function of the incoming

massive particle, which is necessarily broad, be ϕ1ðk1Þ. For
simplicity, we suppose ϕ1 is symmetrically distributed
around k1 ¼ 0, i.e., ϕ1ð−k1Þ ¼ ϕ1ðk1Þ. Thus, the calcu-
lation is done in the center-of-mass frame of the massive
particle. A second particle, presumed massless and of well-
defined momentum, scatters off the first. Let the momen-
tum-space state of this second particle be ϕ2ðk2Þ, highly
peaked about its central value p2.
We are interested in the inclusive scattering cross section

for the massless particle, p2 → p4, with the massive
particle, whose initial momentum is not highly peaked
around a single value, scattering into all possible single
particle final states as shown in Fig. 1. It is most convenient
to consider the wave function of the scattered massive
particle, that was initially in the spatially nonlocal wave
function, to be scattered to wave functions that are
eigenstates of momentum p3 that respect energy-momen-
tum conservation. Then to integrate over this momentum,
as the set of momentum eigenstates do correspond to a
complete set of final states for the massive particle. In
practice, the integration is of course not required as energy-
momentum conservation for given on-shell four momenta
k1, p2, p4 fixes the value of p3 (correspondingly for the
three-momenta, k1, p2, p4 fix the value of p3). Thus, the
scattering will give rise to final momenta k1 → p3 and
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p2 → p4 with integration over k1 smeared with wave
function ϕ1ðk1Þ understood.
In order to handle the broad nature of ϕ1ðk1Þ, we will use

the formalism of Kotkin et al. [12], which employs Wigner
functions [24] to describe the incoming particles that are
not in momentum eigenstates. We refer the reader to [13]
for a detailed discussion of the formalism and its domain of
validity. The formula given by Eq. (2.4) in [13] simplifies
for the case of one particle in a momentum eigenstate
scattering with one particle in a nontrivial wave packet,
we find

dσ ¼ σ2

Lπ3=2

Z
d3k1
ð2πÞ3 jTPWðfk1; p2g

→ fp3; p4gÞj2jϕ1ðk1Þj2ð2πÞ4δð4Þðk1 þ p2 − p3 − p4Þ

×
d3p3

ð2πÞ3
d3p4

ð2πÞ3 ; ð5Þ

where the plane wave amplitude TPWðfk1;p2g→fp3;p4gÞ
is given by

TPWðfk1; p2g → fp3; p4gÞ ¼
Mðfk1; p2g → fp3; p4gÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϵ12ϵ22ϵ32ϵ4
p

ð6Þ

with Mðfk1; p2g → fp3; p4gÞ the invariant matrix ele-
ment for the momentum space scattering process [23],
ϵi the energy of particle i, and L the total luminosity is
given by [13]

L ¼ σ2

π3=2

Z
d3k1
ð2πÞ3

�
1 −

k1z
M

þ jk1j2
2M2

þ � � �
�
jϕ1ðk1Þj2

¼ σ2

π3=2

�
1þ 3

4M2σ2
þ oðe−r2=σ2Þ

�
: ð7Þ

We note that L replaces the usual factor of jv1 − v2j of the
particle flux. The velocity of the massless particle is unity,
and the expression simplifies because of the assumed
symmetry of the wave function ϕ1ðk1Þ. The normalized
wave function for the spatially nonlocal particle in momen-
tum space is taken to have the form

jϕ1ðk1Þj2 ¼ 4ðπσ2Þ3=2e−σ2jk1j2 2þ e2ir·k1 þ e−2ir·k1

1þ e−jrj2=ðσ2Þ
; ð8Þ

where σ is the width of a Gaussian wave packet that is
superposed at spatial position r and −r. We could use a
more general form for the wave function of the nonlocal
state, however, we find that our main result depends only on
the overlap integral of the two spatially nonlocal peaks.
The one-graviton exchange and the scattering cross

section.—The amplitude is easily computed using the
linearized gravitational theory and corresponding graviton

propagator and matter vertices, following Donoghue [7,8]
(see also [9,25–29]), as prescribed by the Feynman dia-
gram Fig. (1).
The explicit expression for the amplitude is given by

M ¼ κ2

1− p̂2 · p̂4
½2M2 − 2Mk1 · ðp̂2 þ p̂4Þ

þMðω2 −ω4Þð1− p̂2 · p̂4Þ þ 2jk1j2
þ 2ðk1 · p̂2Þðk1 · p̂4Þ − k1 · ðω2p̂2 −ω4p̂4Þð1− p̂2 · p̂4Þ
−ω2ω4ð1− p̂2 · p̂4Þ2�: ð9Þ

where κ is the gravitational coupling constant and ω2 and
ω4 are shorthand notation for p0

2 and p0
4. The momentum

transfer is q ¼ p3 − k1 ¼ p2 − p4 with q2 ¼ −2p2 · p4 ¼
−2ω2ω4ð1 − p̂2 · p̂4Þ as p2 and p4 are massless and on
shell. The amplitude must now be folded in with the wave
function and various kinematical and numerical factors as
in Eq. (5) and then integrated over d3p3 (which removes the
spatial delta functions) and dω4 (which removes the
temporal delta function), where ωi is simply compact
notation for p0

i which is also the energy of the massless
particles, yielding the differential scattering cross section

dσ
dΩ4

¼ 1

½1þ 3
4M2σ2

þOðe−r2=σ2Þ�

Z
d3k1
29π5

jϕ1ðk1Þj2

×
jMj2

ϵ1ω2ϵ3ω4

ω2
4

jf0δðω4Þj
: ð10Þ

The energy conserving delta function is given by
δ½fδðω4Þ� ¼ δðϵ1 þ ω2 − ϵ3 − ω4Þwhere the complications
arise because ϵ3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðk1 þ p2 − ω4p̂4Þ2

p
where p̂4

corresponds to the unit three vector in the p4 direction.
ϵ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k21

p
is the energy of the Fourier component

corresponding to momentum k1 of the spatially nonlocal
particle wave function and ω2 is the energy of the incoming
massless particle. The full expression for the cross section
is complicated and unenlightening; however, its multipole
expansion does shed some light on the gravitational
interaction.
Multipole expansion of the scattering cross section.—We

can write the cross section from Eq. (10) as

FIG. 1. One-graviton exchange scattering Feynman diagram.
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dσ
dΩ4

¼ 1

½1þ 3
4M2σ2

þ oðe−r2=σ2Þ�

Z
d3k1
29π5

jϕ1ðk1Þj2gðk1ÞjMj2

ð11Þ

(we will drop the exponentially small terms in the prefactor
in the following) and then gðk1ÞjMj2 admits an expansion
in powers of k1. It is important to always remember that the
true small parameter that we take is jk⃗1j=M. The Taylor
expansion is

gðk1ÞjMj2 ¼ :gðk1ÞjMj2jk1¼0

þ1

2
∂ki

1
∂kj

1
ðgðk1ÞjMj2Þj

k1¼0
ki1k

j
1þ�� � ; ð12Þ

where the terms odd in k1 are absent due to symmetry and
due to the fact that there is no physical, negative mass and
correspondingly the dipole term can always be removed by
a judicious choice of the origin of coordinates. Then the
scattering cross section admits the following multipole
expansion:

dσ
dΩ4

¼ α

Z
jϕ1ðk1Þj2

d3k1
ð2πÞ3

þ βij
Z

k1ik1jjϕ1ðk1Þj2
d3k1
ð2πÞ3 þ � � � ð13Þ

¼ αþβijδij
3

Z
jk1j2jϕ1ðk1Þj2

d3k1
ð2πÞ3

þβij
Z �

k1ik1j−
jk1j2
3

δij

�
jϕ1ðk1Þj2

d3k1
ð2πÞ3

þ�� � ð14Þ

¼ αþ
�
βijδij
3

�
3

2σ2
−
jrj2
σ4

1

1þejrj2=σ2

��

þ
�
βij

�jrj2
3

δij− rirj

�
1

σ4ð1þejrj2=σ2Þ

�
þ�� � ð15Þ

where evidently α¼f1=½1þð3=4M2σ2Þ�gð1=26π2Þgðk1Þ×
jMj2jk1¼0 and βij¼ð1=27π2Þf1=½1þð3=4M2σ2Þ�g∂ki

1
∂kj

1
×

ðgðk1ÞjMj2Þjk1¼0 and where we have used the integral

Z
k1ik1jjϕ1ðk1Þj2

d3k1
ð2πÞ3 ¼

δij
2σ2

−
rirj
σ4

1

1þ ejrj2=σ2
: ð16Þ

These leading terms in the expansion about k1 ¼ 0 are
found after a somewhat long calculation. For the second
derivative we will use

∂ki
1
∂kj

1
ðgðk1ÞjMj2Þj

k1¼0
¼ M2

∂ki
1
∂kj

1
gþ 2Mð∂ki

1
g∂kj

1
M

þ ∂kj
1
g∂ki

1
MÞ þ 2gð∂ki

1
M∂kj

1
M

þM∂ki
1
∂kj

1
MÞj

k1¼0
: ð17Þ

Putting everything together, we find

α ¼ 1

ð1þ 3
4M2σ2

Þ
�

κ4M2

16π2ð1 − p̂2 · p̂4Þ2
�
; ð18Þ

βij¼ 1

ð1þ 3
4M2σ2

Þ
�

κ4

16π2ð1− p̂2 · p̂4Þ2
�
ðδijþ3p̂2ip̂2jÞ: ð19Þ

The term α gives exactly the limiting gravitational deflec-
tion of a massless particles from a massive particle, at small
momentum transfer [29].
Discussion and conclusions.—The term proportional to

α, the lowest order monopole term, corresponds to the
scattering cross section from a single point particle of mass
M, the analog of the Rutherford-Thompson cross section of
a massless particle scattering from a pointlike Newtonian
potential. We see that the higher-order terms coming from
the βijδij ¼ f6=½1þ ð3=4M2σ2Þ�g½κ4=16π2ð1 − p̂2 · p̂4Þ2�
term in Eq. (15) contribute to the monopole, these con-
tributions are not exponentially suppressed. This does,
however, mean that the scattering cross section is able to
probe the nonpointlike nature of the gravitating source.
This addition to the monopole contribution is given by the
term in Eq. (15) in the curly brackets.
Our most surprising result is that the actual quadrupole-

type contribution is nothing like what would be expected if
the gravitational field behaved according to the NS for-
malism [3,22]. In the NS formalism we would expect to
have the gravitational field as if one-half the mass were
concentrated at each of the two spatially nonlocal points
[30], a configuration which has a quadrupole moment
M½ðjrj2=3Þδij − rirj�. The corresponding gravitational field
yields a contribution to the (gravitational) scattering cross
section

dσNS

dΩ4;quad
¼ κ4M2ω2

2

16π2ð1 − p̂2 · p̂4Þ2
ðp̂4i − p̂2iÞðp̂4j − p̂2jÞ

×

�jrj2
3

δij − rirj

�
ð20Þ

obtained from a presumed Newtonian potential scattering
from two point sources of mass M=2 located at the two
peaks of the spatially nonlocal wave function where κ ¼ffiffiffiffiffiffiffiffiffi
8πG

p
which gives a coefficient 4G2. This result is not at all

what we find, the quadrupole contribution is given by the
term in Eq. (15) in the square brackets
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dσ1GE

dΩ4;quad
¼ 1

ð1þ 3
4M2σ2

Þ
κ4

16π2σ4ð1þ ejrj2=σ2Þ

×
3p̂2ip̂2j

ð1 − p̂2 · p̂4Þ2
�jrj2

3
δij − rirj

�
; ð21Þ

where 1 GE stands for one graviton exchange. Indeed, the
quadrupole term from one-graviton exchange scattering is
exponentially small as jrj ≫ σ compared to the result
expected from scattering from a potential where the mass
is split between two positions as prescribed by the NS
formalism. The exponential suppression occurs from the
integration over the momenta of the incoming spatially
nonlocal wave function. In momentum space this wave
function has the form given in Eq. (8). Performing a
multipole expansion of the amplitude and the subsequent
momentum integral will only give multipole moments in r
that are exponentially suppressed. For a generic spatially
nonlocal wave function with two peaks, the suppression
would be proportional to the overlap integral of the
two peaks.
This result casts doubt on the general applicability of the

NS formalism; the calculation corresponding to one-
graviton exchange is clearly justified in the context of
scattering of a massless particle, where the relativistic
formalism is indispensable. Furthermore, one-graviton
exchange is perfectly understood in an effective quantum
field theory of gravitation that is a valid quantum descrip-
tion of gravitation in all processes that do not involve the
ultraviolet limit [9]. Our result Eq. (21) shows that the wave
function is only probed by the incoming massless particle’s
direction relative to the direction of separation r, a behavior
that may prove to be experimentally verifiable. One should
not conclude that the differential cross section is indepen-
dent of p4 as it does appear in the factor ½1=ð1 − p̂2 · p̂4Þ2�
in the front of the expression for the quadrupole contribu-
tion Eq. (21). That the p4 dependence is not analogous to
that for the NS result in Eq. (20) is a further manifestation
of the apparent fact that the differential scattering cross
section is rather insensitive to the nonlocal superposition.
Further quantum corrections can of course be computed via
higher-order loop corrections to the scattering cross section.
A useful further calculation would be to compute the

gravitational contribution to the self-energy of a massive
particle in a spatially nonlocal wave function. One would
look for the amplitude and behavior of the self-energy as a
function of the spatial separation r of the nonlocal wave
function. A 1=r behavior of the self-energy would corre-
spond to the Newtonian potential and the 1=r2 law of
attraction of the two nonlocal lumps. A calculation of the
amplitude would indicate how the two nonlocal lumps
behave gravitationally with respect to each other.
If the NS formalism is assumed derived from a fully

quantum fundamental theory, it should admit improve-
ments from relativistic quantum mechanics as worked out

here. But the NS formalism in the more limited sense is
considered complete in itself [21,31,32] and it predicts
deviation from linear superposition. It will face tests
through proposals such as [33,34]. Experimental proposals
include measurement of Aharonov-Bohm type phases [35]
and inference of the gravitational field superposition
through quantum measurements [33]. A more direct check
that the NS needs to be modified along the lines of this
investigation, would require an experimentally obtained
spatially nonlocal superposition of about 109 atoms. A
Bose condensate, which typically comprises this number of
atoms could in principle be launched in an atom interfer-
ometer to give rise to a spatially nonlocal superposition
[33,36] and might be experimentally realizable [37].
Further possibilities include molecular interferometry
[38] and its possible deployment in space [31].
Another very interesting aspect would be to investi-

gate the decoherence of a spatially nonlocal superposi-
tion. However, it is clear from our calculations that the
differential scattering cross section is unable to do so. A
finer-toothed comb would be necessary to uncover any
relationship between the gravitational field and decohe-
rence. Coupling to an external heat bath and entanglement
with other external systems would be critical for the
analysis of decoherence [39,40] which is a clearly identi-
fied direction for future work.
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U. A. Y. is supported by an Institute Chair Professorship.

*remi.ligez@umontreal.ca
†richard.mackenzie@umontreal.ca
‡victor.massart@umontreal.ca
§Corresponding author.
paranj@lps.umontreal.ca

∥yajnik@iitb.ac.in
[1] Claus Kiefer, Quantum Gravity, 2nd ed. (Oxford University

Press, New York, 2007).
[2] Don N. Page and C. D. Geilker, Indirect Evidence for

Quantum Gravity, Phys. Rev. Lett. 47, 979 (1981).
[3] Roger Penrose, On gravity’s role in quantum state reduction,

Gen. Relativ. Gravit. 28, 581 (1996).
[4] Roger Penrose, On the gravitization of quantum mechanics

1: Quantum state reduction, Found. Phys. 44, 557 (2014).
[5] Steve Carlip, Is quantum gravity necessary?, Classical

Quantum Gravity 25, 154010 (2008).
[6] John F. Donoghue, Leading Quantum Correction to the

Newtonian Potential, Phys. Rev. Lett. 72, 2996 (1994).

PHYSICAL REVIEW LETTERS 130, 101502 (2023)

101502-5

https://doi.org/10.1103/PhysRevLett.47.979
https://doi.org/10.1007/BF02105068
https://doi.org/10.1007/s10701-013-9770-0
https://doi.org/10.1088/0264-9381/25/15/154010
https://doi.org/10.1088/0264-9381/25/15/154010
https://doi.org/10.1103/PhysRevLett.72.2996


[7] John F. Donoghue, General relativity as an effective field
theory: The leading quantum corrections, Phys. Rev. D 50,
3874 (1994).

[8] John F. Donoghue, Introduction to the effective field theory
description of gravity, in Advanced School on Effective
Theories, edited by F. Cornet and M. J. Herrero (World
Scientific Press, Singapore, 1995), p. 27610.1142/3326.

[9] C. P. Burgess, Quantum gravity in everyday life: General
relativity as an effective field theory, Living Rev. Relativity
7, 5 (2004).

[10] Gregory M. Harry et al. (LIGO Scientific Collaboration),
Advanced LIGO: The next generation of gravitational wave
detectors, Classical Quantum Gravity 27, 084006 (2010).

[11] Maulik Parikh, Frank Wilczek, and George Zahariade,
Quantum Mechanics of Gravitational Waves, Phys. Rev.
Lett. 127, 081602 (2021).

[12] G. L. Kotkin, V. G. Serbo, and A. Schiller, Processes with
large impact parameters at colliding beams, Int. J. Mod.
Phys. A 07, 4707 (1992).

[13] Dmitry V. Karlovets, Scattering of wave packets with
phases, J. High Energy Phys. 03 (2017) 049.

[14] Remo Ruffini and Silvano Bonazzola, Systems of self-
gravitating particles in general relativity and the concept of
an equation of state, Phys. Rev. 187, 1767 (1969).

[15] Domenico Giulini and André Großardt, The Schrödinger-
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[20] Mohammad Bahrami, André Großardt, Sandro Donadi, and
Angelo Bassi, The Schrödinger-Newton equation and its
foundations, New J. Phys. 16, 115007 (2014).

[21] Huan Yang, Haixing Miao, Da-Shin Lee, Bassam Helou,
and Yanbei Chen, Macroscopic Quantum Mechanics in a
Classical Spacetime, Phys. Rev. Lett. 110, 170401 (2013).

[22] L. Diosi, Gravitation and quantum-mechanical localization
of macro-objects, Phys. Lett. 105A, 199 (1984).

[23] Michael E. Peskin and Daniel V. Schroeder, An Introduction
to Quantum Field Theory (Addison-Wesley, Reading, USA,
1995).

[24] E. Wigner, On the quantum correction for thermodynamic
equilibrium, Phys. Rev. 40, 749 (1932).

[25] Bryce S DeWitt, Quantum theory of gravity. I. The
canonical theory, Phys. Rev. 160, 1113 (1967).

[26] Bryce S. DeWitt, Quantum theory of gravity. II. The
manifestly covariant theory, Phys. Rev. 162, 1195 (1967).

[27] Bryce S. DeWitt, Quantum theory of gravity. III. Applica-
tions of the covariant theory, Phys. Rev. 162, 1239 (1967).

[28] Martin J. G. Veltman, Quantum theory of gravitation,
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