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By considering the quantum Oppenheimer-Snyder model in loop quantum cosmology, a new quantum
black hole model whose metric tensor is a suitably deformed Schwarzschild one is derived. The quantum
effects imply a lower bound on the mass of the black hole produced by the collapsing dust ball. For the case
of larger masses where the event horizon does form, the maximal extension of the spacetime and its
properties are investigated. By discussing the opposite scenario to the quantum Oppenheimer-Snyder, a
quantum Swiss Cheese model is obtained with a bubble surrounded by the quantum universe. This model is
analogous to black hole cosmology or fecund universes where the big bang is related to a white hole. Thus
our models open a new window to cosmological phenomenology.
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According to Subrahmanyan Chandrasekhar “The black
holes of nature are the most perfect macroscopic objects
there are in the Universe” [1]. Given development of
quantum models describing spacetime filled with dust,
the following two questions are addressed in this Letter:
What is a black hole (BH) spacetime containing a collaps-
ing matter ball like? What is a BH spacetime surrounded by
a universe like?
In classical general relativity (GR), our understanding on

these two questions is shaped by the Oppenheimer-Snyder
model [2], which depicts the collapse of the pressureless
homogenous dust coupled to the Friedmann-Lemaître-
Robertson-Walker metric. However, this metric appears
to be problematic due to the big bang singularity. A
proposal to resolve this singularity is to replace the big
bang by a big bounce, which was largely considered by
cosmologists for aesthetic reasons [3]. Thus, it is desirable
to answer the above two questions by considering collaps-
ing and bouncing matters.
Quantum gravity has always been expected to go beyond

the singularities of the classical GR. Indeed, the existence
of a big bounce resolving the big bang singularity has
found a diverse support in the loop quantum cosmology
(LQC) models (see, e.g., Refs. [4–6]). A concrete bouncing
model is the Ashtekar-Pawlowski-Singh (APS) model,
where the bounce is a rigorous result of the fundamental
discreteness [4]. In this model, the semiclassical metric
tensor has the form

ds2APS ¼ −dτ2 þ aðτÞ2ðdr̃2 þ r̃2dΩ2Þ; ð1Þ

where ðτ; r̃; θ;ϕÞ denotes a coordinate system, dΩ2 ¼
dθ2 þ sin2 θdϕ2. The function aðτÞ satisfies a deformed
Friedmann equation
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where the deformation parameter is the critical density
ρc ¼

ffiffiffi
3

p
=ð32π2γ3G2ℏÞ with the Barbero-Immirzi param-

eter γ, M is the mass of the ball of the dust with the radius
aðτÞr̃0 in the APS spacetime. Note that the second equation
in (2) with a constant M is the consequence of the
conversion law ∇μTμν ¼ 0 with Tμν ¼ ρðτÞð∇τÞμð∇τÞν.
Equation (2) reverts to the usual Friedmann equation in the
classical regime when ρ ≪ ρc. However, in the quantum
regime where ρ is comparable with ρc, the equation
prevents ρðτÞ from reaching infinity. This property ensures
that the metric tensor ds2APS is nowhere and never singular.
The function aðτÞ can be extended to the whole inter-
val ð−∞;∞Þ.
The particles of the dust in the APS spacetime (1) are the

geodesics satisfying r̃; θ;ϕ ¼ const. Therefore, an APS
dust ball can be characterized as a region 0 ≤ r̃ ≤ r̃0 of the
APS spacetime. Then, our quantum (or rather semiclass-
ical) Oppenheimer-Snyder (qOS) model assumes the
(pseudo) static [7] spherically symmetric metric

ds2MS ¼ −½1 − FðrÞ�dt2 þ ½1 −GðrÞ�−1dr2 þ r2dΩ2; ð3Þ

with some functions FðrÞ and GðrÞ, where ðt; r; θ;ϕÞ are
coordinates. The coordinates θ and ϕ are joint for the ball
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region and the exterior (meaning they are extensions of
each other), whereas the coordinates τ; r̃ are used in the ball
region only, while the coordinates t, r are used only in the
exterior region. Equation (3) is a minimal assumption if we
are to obtain an exact BH metric by the junction condition,
without employing equations of motion. As we are going to
show, there are close ties between the models of quantum
BH and quantum cosmology, providing a possibility to
detect the quantum effects in the early universe from BHs.
Actually, the resulting metric is a suitably deformed
Schwarzschild one, where the deforming term leads to a
BH mass gap. Moreover, the deformed Schwarzschild
metric induces a nonvanishing effective energy-momentum
tensor. This may relate the quantum effects of BHs with the
dark matter.
The methodology of LQC could also be applied to BH

models [8–24]. However, the answers do not form a unique
picture. Particularly, according to certain conjecture, the
bouncing interior of the BH destroys the Killing horizon in
the future, and the process takes the form of BH evaporation
[9]. According to another proposal, the reflecting interior
turns a BH into a white hole (WH), and the transitional
region of spacetime is strictly quantum, giving the process
the character of quantum tunneling [12,13]. In both of these
cases, the global structure of the null infinity is similar, there
is one scri. Subsequent models describe spacetime contain-
ing a quantum BH differently (see, e.g., [15]). According to
them, the bouncing interior does not affect the global
structure of the exterior. Hence, the spacetime looks similar
to the Kruskal diagram of Schwarzschild spacetime, with
the only difference that the singularity becomes an edge of
spacetime on which the metric is still regular. Now the
extension consists of gluing the diagrams, even of an
unbounded number, with the edges.
In the case of the second question, we consider the

opposite scenario: a spherically symmetric, static empty
region of spacetime (a bubble) surrounded by the quantum
universe according to the APS model. Precisely, this
scenario consists in removing the ball 0 ≤ r̃ ≤ r̃0 from
the APS spacetime; that is considering the APS metric
tensor ds2APS for r̃ ≥ r̃0. The hole left by the ball is filled
with a piece of the spacetime (3). Hence this is a quantum
swiss cheese (qSC) model whose physical meaning is quite
different from the qOS model. Before the quantum universe
bounces, the spherically symmetric bubble is being
squished. The question is whether its radius shrinks below
the radius of the horizon, and if so, what happens next.
Indeed, according to the result shown below, unless the size
of the region is of the order of the Planck length, the
horizon does form. The radius depends on the amount of
mass of the dust if it were filling the bubble. Briefly
speaking, the bouncing universe turns the bubbles
into BHs.
In both cases the key role is played by the dust space

surface (either outer or inner) r̃ ¼ r̃0 in the APS spacetime,

that in the spacetime (3) will be described in a partially
parametric form ðtðτÞ; rðτÞ; θ;ϕÞ, where −∞ < τ < ∞ is
the proper time, and the ranges of coordinates read 0 ≤
θ ≤ π; 0 ≤ ϕ < 2π. We glue the spacetimes by the identi-
fication ðτ; r̃0; θ;ϕÞ ∼ ðtðτÞ; rðτÞ; θ;ϕÞ such that the in-
duced metric and the extrinsic curvature are equal on the
gluing surfaces that become a single surface of the dusty
part of the spacetime. That will allow us to unambiguously
determine the functions F andG as well as a location of the
dust surface in the dust-free spacetime—asymptotically for
r → ∞ it is tangent to ∂t. Then, the metric (3) can be
obtained as

ds2MS ¼ −
�
1 −

2GM
r

þ αG2M2

r4

�
dt2

þ
�
1 −

2GM
r

þ αG2M2

r4

�−1
dr2 þ r2dΩ2; ð4Þ

where we introduced the parameter α ¼ 16
ffiffiffi
3

p
πγ3l2

p with

lp ¼ ffiffiffiffiffiffiffi
Gℏ

p
denoting the Planck length. Indeed, the calcu-

lation to determine the functions F and G is quite straight-
forward (see Supplemental Material [25] for details). It is
worth noting that the form (4) of the metric is deter-
mined for

r ≥ rb ¼
�
αGM
2

�1
3

; ð5Þ

which results from the fact that the dust surface radius
aðτÞr̃0 runs over ½rb;∞Þ. Hence the functions FðrÞ and
GðrÞ may be defined arbitrarily for r < rb. The parameter
M coincides with the ADM mass of the metric tensor (4).
As a quantum deformation of the Schwarzschild metric,
the spacetime metric tensor (4) coincides with that derived
in [26–28].
The global structure of the spacetime determined by (4)

depends on the number of roots of 1 − FðrÞ. It is conven-
ient to introduce the parameter 0 < β < 1 by

G2M2 ¼ 4β4

ð1 − β2Þ3 α: ð6Þ

For 0 < β < 1=2, that is when

M < Mmin ≔
4

3
ffiffiffi
3

p
G

ffiffiffi
α

p
; ð7Þ

1 − FðrÞ has no real root, implying that the metric (4) does
not admit any horizon. The global causal structure of the
maximally extended spacetime is the same as that of the
Minkowski spacetime. Hence the value

Mmin ¼
16γ

ffiffiffiffiffi
πγ

p
3

ffiffiffi
34

p lp

G
ð8Þ
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is a lower bound for BHs produced by our models (see
Refs. [23,24,29] for compatible results). The minimal mass
is of the order of the Planck mass. Its actual value depends
on the value of the Barbero-Immirzi parameter γ of LQG,
that is argued to be of the order of 0.2 [30,31].
Consider the case of M > Mmin, i.e., 1=2 < β < 1. The

function 1 − FðrÞ has exactly two roots

r� ¼ βð1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
2β − 1

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ βÞð1 − βÞ3

p ffiffiffi
α

p
;

which makes the coordinate t singular. We extend the
metric tensor ds2MS by following the steps similar to those
for the Reissner-Nordström (RN) metric. The resulting
Penrose diagram Fig. 1 also has the structure similar to that
of the RN spacetime. The A regions (such that r > rþ) are
static and asymptotically flat (even asymptotically simple
with both future and past complete scris). The C regions
(such that 0 ≤ r < r−) are static, however, for r < rb, the
metric tensor is not determined by the junction conditions.
Both the A regions andC regions contain complete orbits of

the time translation, where the time variable ranges from
−∞ to ∞. Finally, the B regions (such that r− < r < rþ)
are nowhere static, they are trapped or antitrapped. The
surfaces r ¼ r� set bifurcated Killing horizons, whereby
branches of the r ¼ rþ horizons are BH or WH event
horizons, while branches of the r ¼ r− horizons are
Cauchy future or past horizons.
Now we can maximally extend the surface of the dust

region that is generated by the geodesics of the dust surface.
This will be either the surface of the ball of dust or the inner
surface of the dusty universe surrounding a bubble of static
(in some regions) spacetime. The surface emanates from
the most past corner i− of an A region, crosses the BH
horizon, passes across the B region and crosses the opposite
inner horizon (the both branches of the crossed horizons
can be covered by a single advanced Eddington-Finkelstein
coordinate), reaches the minimal value rb of the r coor-
dinate, bounces, and continues symmetrically all the way to
most future corner iþ of another A region.
In the degenerate case M ¼ Mmin, the B regions shrink

and the spacetime consists of the static C and A regions,
and the Killing horizons corresponding to r− ¼ rþ are not
bifurcated but become BH or WH event horizons. As the
case of M > Mmin, the Penrose diagram has the structure
similar to that of the extremal RN spacetime [32].
We now turn to our qOS model. In the case M < Mmin,

the ball of the APS dust collapses from infinite radius to the
radius rb (5), bounces, and expands, and the world sheet of
the ball surface is symmetric with respect to the bounce.
The exterior is just a single static, asymptotically flat (and
asymptotically simple) region, such that every point of the
exterior can be connected with every of the scris with causal
curves. No black or white holes emerge.
Suppose M > Mmin. Replacing the part of the diagram

Fig. 1 to the left of the surface, i.e., the surface’s interior,
with the spacetime (1) of dust ball with r̃ < r̃0, we get the
Penrose diagram containing the collapsing dust. For clarity,
the region of the spacetime outside the collapsing dust is
plotted in Fig. 2(a) [28]. We call it exterior. It is contained in
the A, B, and C regions. Consider the part of the exterior
that is contained in the past A region. It is static and
asymptotically simple, however, it is bounded not only by
the surface of the ball of dust, but also by event horizon
beyond which the ball disappears. No observer who stays in
this part of the exterior will know about the bounce of the
ball spacetime and the expanding phase. They will see a
collapsing ball that sinks into the horizon. The exterior part
contained in the future A region is just the time inverse of
the past part. An observer staying at the site sees first the
WH and then a ball of dust pouring out of it. They may
receive information about the formation of a BH in the past,
but they will never experience it themselves. An outside
ball observer in the past A region also has the option of
crossing the event horizon. After crossing the nonstatic
region B, they will be in one of the two static regions C.

FIG. 1. Penrose diagram of the maximal extension for
1=2 < β < 1. The geodesic of the dust surface is plotted in
the red dashed line. The blue line plots r ¼ rb. Indeed, rb is the
root of FðrÞ. The doted lines plot r ¼ 0 if we analytically extend
ds2MS. A modified Kruskal region is encircled by the thick lines.
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From one of them, they can follow the bouncing sphere to
the future region A. However, there is another C region
outside the sphere that is static and exceeds the radius limit
rb away from the sphere. There, the observer can enter
static areas with values r < rb while still remaining outside
the sphere. This part of the exterior is spatially bounded but
temporally unbounded, hence the observer may stay there
forever on one of the Killing orbits and never hit the ball.
The WH horizons are at the same time the Cauchy
horizons, as in the RN spacetimes. While they are math-
ematically convincing, physically they are likely to be
unstable with respect to perturbations. Indeed, it is easy to
find an example of such a contour that a flux of the energy
of a radiation through a finite wall transverse to the Cauchy
horizon would have to balance the flux through another
wall that terminates in the future scri of the previous region
A and is therefore infinite.
In the case of M ¼ Mmin the asymptotically flat A-type

static regions of the exterior have the same properties as
described above in the case of a greater M. The exterior
regions beyond the horizon though are different. Namely,
the nonstatic regions of the B do not occur at all and the
C-type region has only the part containing the bouncing
ball but does not extend to regions of r < rb. Hence, any
external observer that entered the BH horizon will get to the
future A region at some point.
In conclusion, the exterior observers living in the

asymptotically simple past A-type regions may not see
any quantum effects in the causal structure. All they will
see is a collapsing ball that disappears beyond a horizon.

There is, however, a quantum effect on the induced metric
tensor. If we define the energy-momentum tensor of the
metric tensor (4) by Tq

μν ≔ Gμν=ð8πGÞ, where Gμν is the
Einstein tensor, then we find that a Killing observer
perceives energy density

ρq ¼ 3αGM2

8πr6
: ð9Þ

Clearly, when the quantum deformation of the APS space-
time vanishes, then Tq

μν vanishes as well, hence it is a purely
quantum effect.
There is one more remark. Even if we just analytically

extend the spacetime (4) to the region r < rb such that the
diagram contains a singularity, i.e., the one at r ¼ 0 in
Fig. 2(a). This singularity cannot be hit by timelike geo-
desics, because all timelike geodesics turn out to enter the
left C region in Fig. 2(a), just like the dust surface geodesic.
This means that the spacetime is timelike geodesically
complete. In addition, even though there are timelike
nongeodesics reaching the singularity, the singularity is
still physically inaccessible for observers. This statement
results from the fact that those timelike curves reaching the
singularity carry infinite integrated acceleration, in contrast
to the finite integrated acceleration along the world line
of a physically reasonable observer that carries a finite
payload [33].
Let us turn to the qSC model. In this model, we are

concerned with the cases where the horizon does form as
the bubble is being squeezed. Thus, we supposeM ≥ Mmin.
ForM > Mmin, replacing the part of the diagram Fig. 1 to

the right of the surface with the spacetime of the dust
universe with r̃ > r̃0, we get the Penrose diagram of the
qSC model. For clarity, the region of the spacetime inside
the collapsing dust universe is plotted in Fig. 2(b).
The qSC diagram Fig. 2(b) contains infinitely many A, B,

and C regions. Consider observers staying in the left past A
region. In order to not hit the dust universe, the observers
have to travel towards the center of the bubble. Then,
crossing the horizon at rþ, they will enter the trapped
region B, and pass the horizon r ¼ r− to get into the
wormhole region C. There, they can fall into the region
with r < rb to avoid the dust universe and move into the
expansion epoch. In the expansion epoch, the observers can
stay in wormhole region C forever, or follow the expanding
dust universe to arrive at the right future A region, i.e., the
piece of the diagram Fig. 2(b) labeled by the bold A. This
region is static and asymptotically simple, and is called the
current universe. Observers living here can see a WH from
the past. This WH is the same as that in the Kruskal
spacetime up to some quantum correction. According to
this discussion, the qSC relates the Big Bang with a WH,
which could open a new door for the cosmological
phenomenology, like a new explanation on the fast radio
bursts and some high-energy cosmic rays [34]. Indeed,

FIG. 2. (a) The piece outside the collapsing dust of the Penrose
diagram containing the collapsing dust, for 1=2 < β < 1. (b) The
piece inside the LQC dust of the swiss cheese diagram. The A
region labeled by the bold A is the asymptotically flat region of
the current universe in the qSC model, and the one labeled by the
bold B is the trapped region accessible for observers in the current
universe.
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there have been a few discussions relating the big bang to a
WH [35–37]. Our qSCmodel depicts a picture analogous to
the BH cosmology [35] or fecund universes [38].
Observers in the current universe can also observe a BH

horizon that is the same as the Schwarzschild one up to
some quantum correction. This correction could cause
some remarkable effects. At first, a Killing observer could
perceive energy density ρq given by (9). With γ ¼ 0.2375,
ρq around the horizon of a solar mass BH takes the value
∼1017 kg=m3. This could provide a new piece of the dark
matter. Moreover, once the observers cross the horizon,
their fate will be quite different from the classical one.
Unlike in the Schwarzschild spacetime where they have to
hit the spacelike singularity, they will pass the trapped
region, experience an antitrapped B region after a worm-
hole C region, and move into another universe. That
universe could not yet be their final destination, as they
can enter another trapped B region through that universe
and continue their journey.
To summarize, the (pseudo) static spherically symmetric

spacetime (4) that contains a collapsing ball of quantum
APS dust (the flat model) is determined as a suitably
modified Schwarzschild spacetime. The only assumption is
that the metric tensor is at least first-order differentiable at
the junction surface. There is a lower bound Mmin ¼
ð16γ ffiffiffiffiffi

πγ
p

=3
ffiffiffi
34

p Þðlp=GÞ for the mass in order to create a
BH. For the larger M, the observers sitting in a past
asymptotically flat region will see the BH formed by the
collapse but will never see the ball bounce behind the
horizon. However, they will feel a nonzero energy tensor
induced by the quantum properties of the dust ball. That
apparent matter curves the spacetime, and hence it has
properties of the dark matter. The future asymptotically flat
region is the time reflection. The WH horizon therein is a
Cauchy horizon that is (most likely) unstable with respect
to perturbations of spacetime by the analogy with the RN
spacetime. The spacetime metric (4) is not determined for r
less than the radius of the bounce of the ball. But even if we
consider just the analytic continuation, the singularity
inside is timelike and reaching it would take infinite energy
(similarly to the RN case).
If a bubble of the (pseudo) static spherically symmetric

spacetime is surrounded by a universe of the quantum APS
dust, then again the metric tensor is determined as the
modified Schwarzschild metric. The same lower bound for
the emergence of the horizon applies. Probably the most
important quantum effect is the emergence of the apparent
matter that really curves the spacetime. The future static
part of the bubble contains both the BH and the WH. After
jumping inside the BH horizon an observer has options
similar to those in the RN spacetime. The new pictures
provided by the two models open a new window to test
the effects of quantum gravity through the cosmological
phenomenology.

It should be noted that our method to obtain the modified
Schwarzschild metric is also valid for more general
effective dynamics of the collapsing dust ball. Given a
deformed Friedemann equation H2 ¼ 8πGρXðρÞ=3 with a
general function XðρÞ, following the derivations in the
Supplemental Material [25], we get the functions FðrÞ and
GðrÞ in (3) as FðrÞ ¼ GðrÞ ¼ 2GMr−1Xð3M=ð4πr3ÞÞ.
Note also that while the current work concerns the flat
LQC model since it is simple and well understood, the qOS
and the qSC models with dust ball governed by open or
close LQC dynamics can be investigated similarly. Taking
the LQC models with k ¼ �1 in [39–41], for instance, and
applying the junction condition, one can obtain FðrÞ ¼
GðrÞ ¼ ð2GM=rÞ − ðα=r2Þ½ðGM=rÞ − ðkr̃0=2Þ�2 (see also
[42]). Here the spatial curvature of the dust plays a role in
the quantum correction. The effect of this correction is left
for our future study.
The insight of the current work can be manifested by

comparing with other works on qOS models. In [43], the
collapse of dust and radiation with quantum cosmological
corrections was studied. Based on the unconventional
properties of the effective matter, it was argued that an
event horizon could not form even though there appear
apparent horizons during the collapse. In [44], the exact
Schwarzschild metric was assumed outside the LQC
collapsing ball. By this assumption it was also argued that
no BH could form in this model. However, in the current
work, the external metric is a priori arbitrary, spherically
symmetric and (pseudo) static. The global structure of the
exterior spacetime shows that there do exist event horizons
during the collapse. It should be noted that the BH metric
(4) was also obtained as a solution to the effective equations
in certain LQG spherically symmetric model [26,45]. So
our result prefers to this spherically symmetric model and
indicates its consistency with the LQC model. The robust-
ness of our calculation for the modified metric has been
confirmed by other considerations [27,28,46]. Our results
further indicates that the modified metric (4) is the only
spherically symmetric and (pseudo) static metric that fits
the collapsing ball of the flat APS model. Moreover, in
[24,45], one accepted discontinuity and introduced shock
waves to match bouncing interior and nonbouncing
exterior, unlike our model.
There are a few other open issues left by the current

work. First, the qOS and the qSC models are considered
separately, while a realistic cosmology model containing
BHs should combine the two models together, so that the
bubble in the quantum universe should be composed of
BHs formed by the collapsing dust. Second, an alternative
dynamics in LQC results in an asymmetric bounce such
that a de Sitter cosmos emerges [5,6,47]. In the asymmetric
bouncing spacetime, the modified Friedemann equation
changes its form after the bounce. Thus how to glue a BH
with that model is a challenging issue which deserves future
investigating. Last but not the least, the resolution of the
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singularity in our result is related to the appearance of an
inner horizon which could develop instabilities [48].
Moreover, there might be other quantum gravity pheno-
mena occurring in the high curvature region once Hawking
radiation was taken into account [49]. Those phenomena
might affect the global structure of the quantum modified
spacetime and thus resolve the would-be instabilities. All
these issues deserve further investigating.
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